Eigenvalue bounds for the Gramian operator of the heat equation

Martin Lazar University of Dubrovnik

X Partial differential equations, optimal design and numerics Benasque, August 2024

Joint work with E. Zuazua, FAU.

Eigenvalue bounds for the Gramian operator of the heat equation, Automatica, (2024)

The problem framework

We analyse the spectral properties of the Gramian operator associated to the heat equation

$$
\begin{cases}\n y_t - \Delta y = v1_\omega & \text{in } \Omega \times (0, \infty), \\
y = 0 & \text{on } \partial \Omega \times (0, \infty) \\
y(0) = y_0 & \text{in } \Omega.\n\end{cases}
$$

The (infinite-time) Gramian is given by

$$
X_{\omega} = \int_0^{\infty} \exp(\Delta t) 1_{\omega} \exp(\Delta t) dt.
$$
 (1)

and is the solution of the Lyapunov equation

$$
\Delta X_{\omega}+X_{\omega}\Delta=-1_{\omega}.
$$

The research was motivated by

L. GRUBISIĆ AND D. KRESSNER, On the eigenvalue decay of solutions to operator Lyapunov equations, Systems & Control Letters, 73 (2014) 42–47.

M. Opmeer, Decay of singular values of the Gramians of infinite-dimensional systems, in Proceedings 2015 European Control Conference (ECC), Linz, 1183–1188. They considered a general setting

$$
AX+XA^*=-BB^*.
$$

 QQ

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Characterisation of the Gramian

$$
=\int_0^{\infty}\int_{\omega}p^2dxdt
$$

where p is the solution of the heat eqwuation in the infinite-time horizon

$$
\begin{cases}\n p_t - \Delta p = 0 & \text{in } \Omega \times (0, \infty) \\
p = 0 & \text{on } \partial \Omega \times (0, \infty) \\
p(0) = p_0 \in L^2(\Omega) & \text{in } \Omega.\n\end{cases}
$$

Lemma

The Gramian operator X_{ω} is a compact, self-adjoint operator on $L^2(\Omega)$. In particular, it allows for the spectral decomposition. Its eigenvalues μ_k constitute a sequence of positive real numbers accumulating at zero and the corresponding eigenfunctions ψ_k form an orthonormal basis of $L^2(\Omega)$.

 (μ_k, ψ_k) – eigenpairs of X_ω

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Clasical observability estimates

$$
\sum_{j\geq 1} \exp(-a\lambda_j)|\hat{\rho}_{0,j}|^2 \leq C \int_0^T \int_{\omega} \rho^2 dxdt, \qquad (2)
$$

 (λ_i, ϕ_i) – eigenpairs of $-\Delta$, $\hat{p}_{0,j} = \langle p_0 | \phi_j \rangle$ - Fourier coefficients of p_0 .

 299

Improved ones

$$
\sum_{j\geq 1} \exp(-a\sqrt{\lambda_j})|\hat{\rho}_{0,j}|^2 \leq C \int_0^{\tau} \int_{\omega} \rho^2 dxdt, \qquad (2)
$$

量

E. FERNÁNDEZ-CARA AND E. ZUAZUA, The cost of approximate controllability for heat equations: The linear case, Advances in Differential Equations, 5(4-6) (2000) 465—514.

∍

 298

Improved ones

$$
\sum_{j\geq 1} \exp(-a\sqrt{\lambda_j})|\hat{\rho}_{0,j}|^2 \leq C \int_0^T \int_{\omega} \rho^2 dxdt, \qquad (2)
$$

E. FERNÁNDEZ-CARA AND E. ZUAZUA, The cost of approximate controllability for heat equations: The linear case, Advances in Differential Equations, 5(4-6) (2000) 465—514.

The energy estimate:

$$
\int_0^\infty \int_\Omega p^2 dx dt = \frac{1}{2} ||p_0||^2_{H^{-1}(\Omega)}.
$$

By combining the last estimate with [\(2\)](#page-3-0), we get the following, two-sided bounds on the observed energy in the infinite time horizon

ł,

$$
\frac{1}{C}\sum_{j\geq 1}\exp(-a\sqrt{\lambda_j})|\hat{\rho}_{0,j}|^2\leq \int_0^\infty \int_\omega \rho^2dxdt\leq \sum_{j\geq 1}\frac{1}{2\lambda_j}|\hat{\rho}_{0,j}|^2
$$

 299

Improved ones

$$
\sum_{j\geq 1} \exp(-a\sqrt{\lambda_j})|\hat{\rho}_{0,j}|^2 \leq C \int_0^T \int_{\omega} \rho^2 dxdt, \qquad (2)
$$

昴

E. FERNÁNDEZ-CARA AND E. ZUAZUA, The cost of approximate controllability for heat equations: The linear case, Advances in Differential Equations, 5(4-6) (2000) 465—514.

The energy estimate:

$$
\int_0^\infty \int_\Omega p^2 dx dt = \frac{1}{2} ||p_0||^2_{H^{-1}(\Omega)}.
$$

By combining the last estimate with [\(2\)](#page-3-0), we get the following, two-sided bounds on the observed energy in the infinite time horizon

$$
\frac{1}{C}\sum_{j\geq 1}\exp(-a\sqrt{\lambda_j})|\hat{\rho}_{0,j}|^2\leq \underbrace{\int_0^\infty \int_\omega \rho^2 dxdt}_{=}\leq \sum_{j\geq 1}\frac{1}{2\lambda_j}|\hat{\rho}_{0,j}|^2
$$

 Ω

Preliminary bounds on the eigenvalue decay for the Gramian

Proposition

There exist positive constants a and \tilde{C}_1 such that

$$
\tilde{C}_1 \exp(-a\sqrt{\lambda_k}) \leq \mu_k \leq \frac{1}{2\lambda_k},
$$

 μ_k being the eigenvalues of the Gramian X_ω .

Proof based on min-max (and max-min) characterization of the eigenvalues of symmetric operators:

$$
\mu_k = \min_{\substack{\dim E = k-1 \\ E \subseteq L^2(\Omega)}} \left[\max \left[R_\omega(p_0) : p_0 \in E^\perp \setminus \{0\} \right] \right],
$$

where R_{ω} stands for the Rayleigh quotient defined as the ratio of the observed energy and the initial one, i.e.

$$
R_{\omega}(p_0) = \frac{}{||p_0||^2_{L^2(\Omega)}} = \frac{\int_0^{\infty}\int_{\omega}p^2dxdt}{\sum_{j\geq 1}|\hat{p}_{0,j}|^2}.
$$

 Ω

イロト イ御 トイ ヨ トイ ヨ)

Numerical example

 $\omega = [0, \pi/2], \Omega = [0, \pi].$ Finite dimensional approximation of the Gramian

$$
X_N:=P_{V_N}\circ (X_\omega)_{|V_N},
$$

where $\mathcal{V}_\mathcal{N} = [\phi_1, \ldots, \phi_N] \subset \mathcal{L}^2(\Omega)$ is the space spanned by first N eigenvectors of the Dirichlet Laplacian, P_{V_N} is the orthogonal projection from $L^2(\Omega)$ onto V_N , while $(X_\omega)_{|V_N}$ is the restriction of the Gramian to V_N .

 Ω

Numerical example

 $\omega = [0, \pi/2], \Omega = [0, \pi].$ Finite dimensional approximation of the Gramian

$$
X_N:=P_{V_N}\circ (X_\omega)_{|V_N},
$$

where $\mathcal{V}_\mathcal{N} = [\phi_1, \ldots, \phi_N] \subset \mathcal{L}^2(\Omega)$ is the space spanned by first N eigenvectors of the Dirichlet Laplacian, P_{V_N} is the orthogonal projection from $L^2(\Omega)$ onto V_N , while $(X_\omega)_{|V_N}$ is the restriction of the Gramian to V_N .

Figure: Eigenvalues decay for the finite dimensional approximation of the Gramian X_N for $N = 100$. Polynomial branch of the spectrum of X for $k \le 55$, exponential branch for $55 < k < 80$ and irrelevant branch for $k > 80$. **K ロ ト K 何 ト K ヨ**

 Ω

M. Lazar (UniDu) Benasque, August 2024. 6/14

Figure: Eigenvectors of the Gramian X_N ($N = 100$) corresponding to (a) polynomially and (b) exponentially decaying eigenvalues.

The largest eigenvalues try to maximize the Rayleigh quotient:

$$
\mu_1^{(N)} = \max_{\rho_0 \in V_N} \frac{\int_0^\infty \int_\omega \rho^2 dx dt}{\|\rho_0\|_{L^2(\Omega)}^2},\tag{3}
$$

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \overline{m}

where p is the solution to the adjoint equation [\(3\)](#page-2-0) with the initial datum p_0 .

 Ω

Lemma

 \bullet

2

(Improved observability estimates)

Let p be the solution to the heat equation [\(3\)](#page-2-0) with initial datum $p_0\in H^{-1}(\Omega)$ supported in a compact set $K \subset \omega$. Then for every $T \in (0, \infty]$ there exists constants c_T , C_T independent of p_0 , such that the following estimates hold:

$$
\int_0^T \int_{\omega^c} p^2 dx dt \leq C_T ||p_0||^2_{H^{-2}(\Omega)},
$$

$$
\int_0^T \int_\omega \rho^2 dx dt \geq c_T ||p_0||^2_{H^{-1}(\Omega)}.
$$
 (4)

Proof:

- **D** Multiplication by cut-off function supported on ω^c
	- Regularity and energy results for the solution to HE.

2

$$
c_T||p_0||^2_{H^{-1}(\Omega)} \leq \int_0^T \int_{\Omega} p^2 dxdt \leq \int_0^T \int_{\omega} p^2 dxdt + ||p_0||^2_{H^{-2}(\Omega)}.
$$

– Classical compactness-uniqueness arguments.

 Ω

 4 ロ \rightarrow 4 $\overline{7}$ \rightarrow \rightarrow $\overline{2}$ \rightarrow \rightarrow

Lemma

The sequence of eigenvalues μ_k of the Gramian operator allow for a lower, polynomially decaying bound of the form

$$
\frac{c_{\infty}}{\lambda_{\omega,k}}\leq\mu_k,
$$

where $\lambda_{\omega,k}$ are eigenvalues of the Dirichlet Laplacian on ω and c_{∞} is the positive constant from [\(4\)](#page-11-0) (for $T = \infty$).

We combine the last result

- with the previously obtained upper estimate
- with the Weyl's asymptotic law

 $\lambda_{\omega, k} \sim \mathcal{C}(\omega) k^{2/d}.$

 Ω

イロト イ御 トイミトイ

Lemma

The sequence of eigenvalues μ_k of the Gramian operator allow for a lower, polynomially decaying bound of the form

$$
\frac{c_{\infty}}{\lambda_{\omega,k}}\leq\mu_k,
$$

where $\lambda_{\omega,k}$ are eigenvalues of the Dirichlet Laplacian on ω and c_{∞} is the positive constant from [\(4\)](#page-11-0) (for $T = \infty$).

We combine the last result

- with the previously obtained upper estimate
- with the Weyl's asymptotic law

$$
\lambda_{\omega,k}\sim C(\omega)k^{2/d}.
$$

Theorem (The main result)

The sequence of eigenvalues μ_k of the Gramian operator X_ω given by [\(1\)](#page-1-0) allow for a two-sided, polynomially decaying bounds of the form

$$
C_1k^{-2/d}\leq \mu_k\leq C_2k^{-2/d},
$$

where $C_{1,2}$ are positive constants that depend on ω and Ω only.

Figure: Eigenvalues decay rates for various approximation dimensions N.

É

 299

イロト イ部 トイミト イミト

Figure: Eigenvectors $\psi_k^{(100)}$ of the Gramian X_N (left) and their spectral decomposition (right), for $k = 1..5.$

 4 ロ \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

 290

Figure: Eigenvectors $\psi_k^{(100)}$ of the Gramian X_N (left) and their spectral decomposition (right), for $k = 51..55$.

4 ロト 4 何 ト 4

舌

 290

Theorem

Assume that the domain Ω is a rectangle in R^d . Let $\omega\subseteq\Omega$ be a control region of a positive measure. Then there exists a positive integer n $\geq \sqrt[d]{|\Omega|/|\omega|}$ such that the eigenvalues of the Gramian X_{ω} satisfy

$$
\frac{1}{2n^d\lambda_{kn}}\leq\mu_k\leq\frac{1}{2\lambda_k}.\tag{5}
$$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

 Ω

The smallest value of the constant n for which the lower estimate in [\(5\)](#page-17-0) holds depends in a non-increasing manner on the size of the control region $|\omega|$, and it equals to 1 when the latter coincides with the whole domain Ω .

Summary:

- **lower bounds on the eigenvalues of the Gramian**
- the obtained bounds are sharp
- the bounds are expressed in terms on eigenvalues of the Laplacian
- the results generalise to finite time Gramians
- the procedure does not apply in the context of boundary control or when the control acts in an arbitrary measurable subset of positive measure,

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Summary:

- **lower bounds on the eigenvalues of the Gramian**
- the obtained bounds are sharp
- the bounds are expressed in terms on eigenvalues of the Laplacian
- the results generalise to finite time Gramians
- the procedure does not apply in the context of boundary control or when the control acts in an arbitrary measurable subset of positive measure,

Extreme caution requirded when making statements on infinite dimensional problems based on finite dimensional approximations!

イロト イ押 トイヨト イヨ

 Ω

Summary:

- **lower bounds on the eigenvalues of the Gramian**
- the obtained bounds are sharp
- the bounds are expressed in terms on eigenvalues of the Laplacian
- the results generalise to finite time Gramians
- the procedure does not apply in the context of boundary control or when the control acts in an arbitrary measurable subset of positive measure,

Extreme caution requirded when making statements on infinite dimensional problems based on finite dimensional approximations!

Thanks for your attention!

 Ω

イロト イ押 トイヨト イヨ