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Shape optimization in mechanical engineering

In many applications, the optimal shape is characterized as the
support of an optimal stress measure σ : Rd 7→ Sd×d (d=2,3). An
important case is when the criterium to be minimized is the
compliance:

- Michell’s truss problem ( σ : Ω ⊂ R2 7→ S2×2)

- Optimal grillage problem ( σ : Ω ⊂ R2 7→ S2×2)

- pre-stessed elastic membrane ( σ : Ω ⊂ R2 7→ S2×2
+ )

I Prager problem ( σ : Ω× (−h, h) ⊂ R3 7→ S3×3)
I optimal vault problem (parametrized surface z = u(x , y) )



A general framework for the optimal compliance problem

Ω ⊂ Rd design domain (d = 2, 3)

F ∈M(Ω;Rn) a source or a load

Σ0 a compact subset of Ω (Dirichlet zone)

A : D(Rd ;Rn)→ D(Rd ;Y ) a linear differential operator

ρ : Y → R+ a norm on the finite dimentional Euclidean space Y .

Given m0 > 0 and p > 1, we look for a measure µ solving :

min
µ∈M+(Ω)

{
C(µ) : µ(Ω) ≤ m0

}
(MOP)

where the compliance C(µ) is the convex, weak* l.s.c. functional:

C(µ) = sup
u∈D(Rd ;Rn)

{
< F , u > −1

p

∫
|ρ(Au)|p dµ : u = 0 in Σ0

}



From (MOP) to a linear program

Let I = I(F ,Ω,Σ0) given by the linear constraint program:

I := sup
ubΣ0=0

{
< F , u >: ρ(Au) ≤ 1 in Ω

}
(LCP)

Then by classical duality we get:

min(MOP) =
Ip′

p′
1

mp′−1
0

.

Proof: inf
µ(Ω)≤m0

sup
ubΣ0=0

= sup
ubΣ0=0

inf
µ(Ω)≤m

{
< F , u > −1

p

∫
(ρ(Au))p dµ

}

= sup
ubΣ0=0

{
< F , u > −m0

p
(sup

Ω

ρ(Au))p

}



Recovering optimal µ and stress measure σ
(I. Fragala-GB , ARMA 2007)

By dualizing (LCP) from C 0(Ω;Y ) toM(Ω;Y ), we arrive to
the so called Beckman’s formulation:

inf
σ∈M(Ω;Md,p)

{∫
ρ0(σ) : A∗(σ) = F in D′(Rd \ Σ0)

}
being ρ0 the dual norm:

ρ0(S) = sup{< S ,M >: ρ(M) ≤ 1} .

The polar decomposition σ = S µ with the normalization
ρ0(S) = k of any solution σ provides an optimal measure µ for
(MOP); the constant k is tuned so that

∫
µ = m0.



Two main questions related to the differentail operator A

Connection with Monge mass transport:  construction of
optimal measures µ as superposition of mass transport along
geodesic curves

Support of optimal measures: for given F and Σ0, we expect
that if the design domain Ω is all Rd or an open ball BR0 of
large radius, any optimal σ will be compactly supported in BR0 .

I In the first order gradient casesc, it can be proved that
spt(σ) ⊂ co(Σ0 ∪ spt(F )).

I In all the other cases, this is a quite challenging issue to obtain
an estimate of R0 (even the existence of R0 < +∞) . The
grail would be to determine a safety compact using a
geometric construction starting from data F and Σ0.



Important examples

1- The heat equation: A = ∇, ρ(z) = |z |

2- Michell’s problem: u : R2 → R2, Au = 1
2(Du + DuT ) and

ρ(M) = spectral norm of M ∈ S2×2

3- The optimal pre-stressed membrane Pb:
(u,w) : R2 → R× R2,A(u,w) = (∇u, e(w)) and
ρ = jC (z ,M) , C = {(z ,M) : 1

2 z ⊗ z + M ≤ Id}.
(v = id − w is a maximal monotone map which induces a
natural metric)

4- The optimal grillage problem: u : R2 → R, Au = ∇2u and
ρ the spectral norm.
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Notes on Michell’s problem

Originally: 2d -problem of finding trusses of elastic bars (in
compression or in tension) supporting a given load F : Ω→ R2

and with minimal volume (Michell -1920). It is a discrete
problem where many explicit solutions are known (see
Lewinsky book).

Nowadays: Optimal compliance of elastic structure of
infinitesimal volume Kohn-Allaire (1993), Gangbo
Seppecher-GB (2008), Olberman, Babadjian-Rindler-Urlano
(2020-2023), GB -vanishing mass conj (2001)



Classical duality

Strain problem We assume that F is compactly supported
and orthogonal to rigid motions

∫
F = 0 and∫

(x1 F2 − x2F1) = 0. Then ∃u ∈ ∩p<∞W 1,p(Ω) solving:

I(F ,Ω) := sup{< F , u > : ρ(e(u) ≤ 1 a.e.in Ω} (LCP)

where ρ is the spectral norm. The contraint on u can be
recast by a two-point condition:

| < u(x)− u(y), x − y > | ≤ |x − y |2 ∀(x , y) ∈ Ω
2

Stress problem The unknown is a tensor measure
σ ∈M(Ω,S2×2) minimizing Beckman’s problem:

min

{∫
ρ0(σ) : spt(σ) ⊂ Ω , − div σ = F

}
= I(F ,Ω),

where ρ0(S) = |λ1(S)|+ |λ2(S)| (the Schatten norm).



Looking for optimal truss-like structures

If F is discrete, a natural approach consists in searching a minimum
among finite trusses:

σ(γ) =

∫∫
σx,y γ(dxdy) , σx,y = τx,y ⊗ τx,y H1 [x , y ] , τx,y :=

y − x

|y − x |

where γ ∈M(Ω
2
) is finitely supported. If the number N of bars is fixed,

we obtain a linear program:

min
](spt(γ))≤N

{∫
Ω

2
|x − y | |γ|(dxdy) :

∫
Ω

2
(δy − δx)τx,ydγ = F

}
.

As N →∞, we expect a generalized optimal stress σ(γ) to come out.



Existence of an optimal truss measure ?

Bad new ! A control of the cost
∫

Ω
2 |x − y | |γN | along a

minimizing sequence (γN) does not prevent
∫∫
|γN | → +∞.

In fact curved bars may appear in the limit !

In the paper [Gangbo-Seppecher-GB (M3AS, 2008)|, the class of
bar stresses σx ,y is enlarged to {σC : C ∈ F} being F a class of
Lipschitz curves with bounded curvature. This allowed to prove the
optimality of some of these generalized truss measures γ supporting
curves.

Remark In this representation, the curves in tension are associated
with γ+ and the ones in compression with γ−. So we obtain two
families of curves/bars which can only intersect orthogonally (in the
principal directions of e(u) for any u solving I(F ,Ω)).



Open issues

Connection with Monge OT ? might be possible using OT for
currents (see recent papers by B.Dacorogna and W.Gangbo)
but, up to now...?

Geometrical bounds on spt(γ) ? Clearly the inclusion
spt(γ) ⊂ co(Σ0 ∪ spt(f )) is false in the case of the bridge
problem; A hope inspired from this example and from the
forthcoming grillage problem would be that
spt(γ) ⊂ B(Σ0 ∪ spt(f ) where , for every E ⊂ R2:

B(E ) :=
⋃

(x ,y)∈E2

B(
x + y

2
,
x − y

2
).

Unfortunately this enlarged set is still to small !



Bridge problem and minimizing sequence
(N = 5, 6, 10, 22, . . . )
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Four points variants, Ω = R2 (T.Lewinski’s book)

spt(σ) ⊂ B(Σ0 ∪ spt(f )) is OK



An example with spt(σ) larger than B(Σ0 ∪ spt(f ))

In red, the Dirichet zone and the load F


