Thematic session Benasque 2024 Shape optimization problems in analysis and in mechanics Karol Bolbotowski (Paris Lagrange Center, France) and Maria del Mar Gonzalez (U. Autonoma Madrid, Spain)

Optimal design versus optimal transport

G. Bouchitté, Université de Toulon

Shape optimization in mechanical engineering

In many applications, the optimal shape is characterized as the support of an optimal stress measure $\sigma: \mathbb{R}^d \mapsto \mathcal{S}^{d \times d}$ (d=2,3). An important case is when the criterium to be minimized is the compliance:

- Michell's truss problem ($\sigma:\Omega\subset\mathbb{R}^2\mapsto\mathcal{S}^{2\times 2}$)
- Optimal grillage problem $(\sigma:\Omega\subset\mathbb{R}^2\mapsto\mathcal{S}^{2\times 2})$
- pre-stessed elastic membrane ($\sigma: \Omega \subset \mathbb{R}^2 \mapsto \mathcal{S}_+^{2\times 2}$)
 - ▶ Prager problem $(\sigma: \Omega \times (-h, h) \subset \mathbb{R}^3 \mapsto \mathcal{S}^{3 \times 3})$
 - optimal vault problem (parametrized surface z = u(x, y))

A general framework for the optimal compliance problem

- $\Omega \subset \mathbb{R}^d$ design domain (d=2,3)
- ullet $F\in \mathcal{M}(\overline{\Omega};\mathbb{R}^n)$ a source or a load
- Σ_0 a compact subset of $\overline{\Omega}$ (Dirichlet zone)
- $A: \mathcal{D}(\mathbb{R}^d; \mathbb{R}^n) \to \mathcal{D}(\mathbb{R}^d; Y)$ a linear differential operator
- $\rho: Y \to \mathbb{R}_+$ a norm on the finite dimentional Euclidean space Y.

Given $m_0 > 0$ and p > 1, we look for a measure μ solving :

$$\min_{\mu \in \mathcal{M}_{+}(\overline{\Omega})} \left\{ \mathcal{C}(\mu) : \mu(\overline{\Omega}) \le m_0 \right\} \tag{MOP}$$

where the compliance $C(\mu)$ is the convex, weak* l.s.c. functional:

$$\mathcal{C}(\mu) = \sup_{u \in \mathcal{D}(\mathbb{R}^d; \mathbb{R}^n)} \left\{ \langle F, u \rangle - \frac{1}{p} \int |\rho(Au)|^p \, d\mu : u = 0 \text{ in } \Sigma_0 \right\}$$

From (MOP) to a linear program

Let $\mathcal{I} = \mathcal{I}(F, \Omega, \Sigma_0)$ given by the linear constraint program:

Then by classical duality we get:

$$\min(MOP) = \frac{\mathcal{I}^{p'}}{p'} \frac{1}{m_0^{p'-1}}.$$

Proof:
$$\inf_{\mu(\overline{\Omega}) \le m_0} \sup_{u \mid_{\Sigma_0} = 0} = \sup_{u \mid_{\Sigma_0} = 0} \inf_{\mu(\overline{\Omega}) \le m} \left\{ \langle F, u \rangle - \frac{1}{p} \int (\rho(Au))^p d\mu \right\}$$
$$= \sup_{u \mid_{\Sigma_0} = 0} \left\{ \langle F, u \rangle - \frac{m_0}{p} (\sup_{\overline{\Omega}} \rho(Au))^p \right\}$$

Recovering optimal μ and stress measure σ (I. Fragala-GB , ARMA 2007)

• By dualizing (LCP) from $C^0(\overline{\Omega}; Y)$ to $\mathcal{M}(\overline{\Omega}; Y)$, we arrive to the so called *Beckman's* formulation:

$$\inf_{\sigma \in \mathcal{M}(\overline{\Omega}; M_{d,p})} \left\{ \int \rho^0(\sigma) : A^*(\sigma) = F \text{ in } \mathcal{D}'(\mathbb{R}^d \setminus \Sigma_0) \right\}$$

being ρ^0 the dual norm:

$$\rho^0(S) = \sup\{\langle S, M \rangle : \rho(M) \leq 1\}.$$

• The polar decomposition $\sigma = S \ \mu$ with the normalization $\rho^0(S) = k$ of any solution σ provides an optimal measure μ for (MOP); the constant k is tuned so that $\int \mu = m_0$.

Two main questions related to the differential operator A

- Connection with Monge mass transport: \leadsto construction of optimal measures μ as superposition of mass transport along geodesic curves
- Support of optimal measures: for given F and Σ_0 , we expect that if the design domain Ω is all \mathbb{R}^d or an open ball B_{R_0} of large radius, any optimal σ will be compactly supported in B_{R_0} .
 - ▶ In the first order gradient casesc, it can be proved that $\operatorname{spt}(\sigma) \subset \operatorname{co}(\Sigma_0 \cup \operatorname{spt}(F))$.
 - In all the other cases, this is a quite challenging issue to obtain an estimate of R_0 (even the existence of $R_0 < +\infty$). The grail would be to determine a safety compact using a geometric construction starting from data F and Σ_0 .

Important examples

- **1-** The heat equation: $A = \nabla$, $\rho(z) = |z|$
- 2- Michell's problem: $u : \mathbb{R}^2 \to \mathbb{R}^2$, $Au = \frac{1}{2}(Du + Du^T)$ and $\rho(M) = \text{spectral norm of } M \in S^{2 \times 2}$
- 3- The optimal pre-stressed membrane Pb: $(u,w): \mathbb{R}^2 \to \mathbb{R} \times \mathbb{R}^2, A(u,w) = (\nabla u, e(w))$ and $\rho = j_C(z,M)$, $C = \{(z,M): \frac{1}{2}z \otimes z + M \leq I_d\}$. (v = id w is a maximal monotone map which induces a natural metric)
- 4- The optimal grillage problem: $u : \mathbb{R}^2 \to \mathbb{R}, \ Au = \nabla^2 u$ and ρ the spectral norm.

Some references

Old:

- G.Buttazzo, GB, P.Seppecher: Characterization of optimal shapes and masses through Monge-Kantorovich equation., CRAS(1997), JEMS (2001)
- ► I. Fragala, GB, *ARMA* (2007)
- ► W.Gangbo, P.Seppecher, GB, M3AS (2008)
- ► I.Fragala, P.Seppecher, GB ARMA (2011)
- ► I.Fragala, I.Lucardesi, P. Seppecher GB, SIMA (2012)

New:

- K. Bolbotwski, GB: Optimal design versus maximal Monge-Kantorovich metrics, Arch. Ration. Mech. Anal. 243 (2022), no. 3, 1449-1524.
- Karol Bolbotowski: Optimal vault problem form finding through 2D convex program, Comp. and Math. with Appli., (2022)
- K. Bolbotwski, GB:Kantorovich-Rubinstein duality theory for the Hessian, Forthcoming.

Notes on Michell's problem

- Originally: 2d -problem of finding trusses of elastic bars (in compression or in tension) supporting a given load $F:\overline{\Omega}\to\mathbb{R}^2$ and with minimal volume (Michell -1920). It is a discrete problem where many explicit solutions are known (see Lewinsky book).
- Nowadays: Optimal compliance of elastic structure of infinitesimal volume Kohn-Allaire (1993), Gangbo Seppecher-GB (2008), Olberman, Babadjian-Rindler-Urlano (2020-2023), GB -vanishing mass conj (2001)

Classical duality

• Strain problem We assume that F is compactly supported and orthogonal to rigid motions $\int F = 0$ and $\int (x_1 F_2 - x_2 F_1) = 0$. Then $\exists u \in \cap_{p < \infty} W^{1,p}(\Omega)$ solving:

$$\mathcal{I}(F,\Omega) := \sup\{\langle F, u \rangle : \rho(e(u) \leq 1 \text{ a.e.in } \Omega\}$$
 (LCP)

where ρ is the spectral norm. The contraint on u can be recast by a two-point condition:

$$| \langle u(x) - u(y), x - y \rangle | \le |x - y|^2 \quad \forall (x, y) \in \overline{\Omega}^2$$

 Stress problem The unknown is a tensor measure $\sigma \in \mathcal{M}(\overline{\Omega}, S^{2\times 2})$ minimizing Beckman's problem:

$$\min\left\{\int
ho^0(\sigma) \ : \ \operatorname{spt}(\sigma) \subset \overline{\Omega} \ , \ -\operatorname{div}\sigma = F
ight\} = \mathcal{I}(F,\Omega),$$

where
$$\rho^0(S)=|\lambda_1(S)|+|\lambda_2(S)|$$
 (the Schatten norm).

Looking for optimal truss-like structures

If *F* is discrete, a natural approach consists in searching a minimum among finite trusses:

$$\sigma(\gamma) = \iint \sigma^{x,y} \, \gamma(\text{d}x\text{d}y) \;,\; \sigma^{x,y} = \tau_{x,y} \otimes \tau_{x,y} \, \mathcal{H}^1 \, \lfloor [x,y] \;,\; \tau_{x,y} := \frac{y-x}{|y-x|}$$

where $\gamma \in \mathcal{M}(\overline{\Omega}^2)$ is finitely supported. If the number N of bars is fixed, we obtain a linear program:

$$\min_{\sharp(\operatorname{spt}(\gamma))\leq N}\left\{\int_{\overline{\Omega}^2}|x-y|\,|\gamma|\big(\mathrm{d}x\mathrm{d}y\big)\ :\ \int_{\overline{\Omega}^2}(\delta_y-\delta_x)\tau_{x,y}\mathrm{d}\gamma=F\right\}.$$

As $N \to \infty$, we expect a generalized optimal stress $\sigma(\gamma)$ to come out.

Existence of an optimal truss measure?

Bad new! A control of the cost $\int_{\overline{\Omega}^2} |x-y| |\gamma_N|$ along a minimizing sequence (γ_N) does not prevent $\int \int |\gamma_N| \to +\infty$. In fact curved bars may appear in the limit!

In the paper [Gangbo-Seppecher-GB (M3AS, 2008)], the class of bar stresses $\sigma^{x,y}$ is enlarged to $\{\sigma_C:C\in\mathcal{F}\}$ being \mathcal{F} a class of Lipschitz curves with bounded curvature. This allowed to prove the optimality of some of these *generalized truss* measures γ supporting curves.

Remark In this representation, the curves in tension are associated with γ_+ and the ones in compression with γ_- . So we obtain two families of curves/bars which can only intersect orthogonally (in the principal directions of e(u) for any u solving $\mathcal{I}(F,\Omega)$).

Open issues

- Connection with Monge OT? might be possible using OT for currents (see recent papers by B.Dacorogna and W.Gangbo) but, up to now...?
- Geometrical bounds on $\operatorname{spt}(\gamma)$? Clearly the inclusion $\operatorname{spt}(\gamma) \subset \operatorname{co}(\Sigma_0 \cup \operatorname{spt}(f))$ is false in the case of the bridge problem; A hope inspired from this example and from the forthcoming grillage problem would be that $\operatorname{spt}(\gamma) \subset \mathcal{B}(\Sigma_0 \cup \operatorname{spt}(f))$ where , for every $E \subset \mathbb{R}^2$:

$$\mathcal{B}(E) := \bigcup_{(x,y)\in E^2} B(\frac{x+y}{2}, \frac{x-y}{2}).$$

Unfortunately this enlarged set is still to small!

Bridge problem and minimizing sequence (N = 5, 6, 10, 22, ...)

Four points variants, $\Omega = \mathbb{R}^2$ (T.Lewinski's book)

 $\operatorname{spt}(\sigma) \subset \mathcal{B}(\Sigma_0 \cup \operatorname{spt}(f))$ is OK

An example with $\operatorname{spt}(\sigma)$ larger than $\mathcal{B}(\Sigma_0 \cup \operatorname{spt}(f))$

In red, the Dirichet zone and the load F