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Initial motivation: optimal design of a grillage (OGP)

The (OGP) problem consists in finding a measure σ : Rd 7→ Sd×d
(symmetric tensor valued) solving

min
M(Rd ,Sd×d )

{∫
ρ0(σ) : spt(σ) ⊂ Ω , div2 σ = f

}
where:

Ω ⊂ Rd convex design domain (d = 2, 3)
f ∈M(Ω) a source term (distribution of order one)
ρ0(S) :=

∑d
i=1 |λi (S)| for all S ∈ Sd×d (schatten norm)

If Ω = Rd and f a signed measure, existence of optimal σ iff:∫
f = 0 , [f ] :=

∫
x f (dx) = 0.



Optimal grillage clamped on four collumns

σopt approximated by rank one measures (M. Gilbert, L He,
Rozvany)

Ω = the large square , Σ0 = 4 small squares , f = L2 (Ω \ Σ0)



Important issues

dimension of the optimal measure σ and justification of its
approximation by trusses of bars in bending regime (“grillage”)

how to relate the support of an optimal measure σ to the
support of f when Ω = Rd ?

spt(σ) ⊂ co(spt(f )) ?

relation with an OT problem ?

how to handle loads of 1st order like f = f0 − div F where
f0 ∈M(Rd) and F ∈M(Rd ,Rd) (s. t. [f0] +

∫
F = 0) ?



The Hessian constraint problem

Assume that f = ν − µ, where µ, ν ∈ P2(Ω) share the same
barycenter [µ] = [ν]. By standard convex analysis and duality:

min(OGP) = I(f ,Ω)

I(f ,Ω) is the maximum of the Hessian constrained problem:

max
{
< f , u > : u ∈W 2,∞(Ω) , ρ(∇2(u)) ≤ 1 in Ω

}
.

ρ(A) = sup{|λi (A)|} is the spectral norm related to ρ0 through

ρ0(S) = sup{〈A,S〉 : ρ(A) ≤ 1}.



Case Ω = Rd (or Ω convex)

I(f ,Ω) = max
u∈C1,1(Ω)

{∫
udν −

∫
udµ : Lip(∇u) ≤ 1

}

Generalizations to higher order derivatives haven been
considered in V.M. Zolotarev (Theory Prob. Appl. 1977) and
recently used by M. Fathi (arxiv)
Up to now no link with optimal transport was evidenced



Novelty: an unexpected link with convex order

Let µ, ν in P2(Rd) such that [µ] = [ν] and set:

V(µ, ν) = min {var(ρ) : ρ �c µ , ρ �c ν} .

where �c denotes the convex order relation.

This problem enters in the larger class of stochastic optimization
problems under dominance constraints motivated by mathematical
finance, statistical decision theory, economics, see for instance:
D. Dentcheva and A. Ruszczynski, SIOPT (2003); A.Müller and M.
Scarsini, SIOPT (2006); Johannes Wiesel and Erica Zhang (2023).

Different objective functionals on P(Rd) can be considered as for
instance F (ρ) =

∫
|x |p dρ for p 6= 2

work in progress: KB, G. Carlier, F . Santambrogio, Q. Merigot



Connection of (OG) with optimal transport

We will construct a 3 marginals OT problem whose admissible
plans γ have marginals (µ, ν, ρ) with ρ �c µ , ρ �c ν.
As a result, for ρ ∈ argminV(µ, ν), we have the following equality:

I(f ,Rd) = var(ρ)− var(µ) + var(ν)

2

Moreover:
optimal stress measures σ for the (OG) problem can be
recovered from optimal plans γ

ν � µ ⇐⇒ u(x) = |x |2
2 is optimal for I(f )(

ν � µ ⇔ ρ = ν solves V(µ, ν) ⇔ I(f ) = 1
2(var(ν)− var(µ))

)
.



Plan of the talk

1. Back to the first order gradient case ;
2. OT formulation in the Hessian case ;
3. Relation between (OT3) and martingale OT;
4. Explicit examples.



1- Back to the first order gradient case.

Let Ω ⊂ Rd a domain and f ∈M(Ω) compactly supported such
that

∫
f = 0. We set

I(f ,Ω) = sup {〈f , u〉 : |∇u| ≤ 1 in Ω} .

A classical duality scheme relates this to Beckmann problem

I(f ,Ω) = min
λ∈M(Ω;Rd )

{∫
|λ| : − div λ = f in Rd

}
If Ω is convex, the Euclidean distance dΩ(x , y) = |x − y | is
involved in the equivalence:

|∇u| ≤ 1 a.e. in Ω ⇐⇒ |u(x)− u(y)| ≤ dΩ(x , y) in Ω2

(otherwise dΩ is the geodesic distance in Ω)



Connexion with Monge optimal transport

Def : Let µ, ν ∈M+(Ω) such that µ(Ω) = ν(Ω); the Monge
distance is given by

W1(µ, ν) := min


∫

Ω×Ω

subadditive cost c(x , y)︷ ︸︸ ︷
|x − y | γ(dxdy) : γ ∈ Π(µ, ν)


(Kantorovich relaxation of inf{

∫
Ω |x − Tx |µ(dx) : T ](µ) = ν}).

We set W1(µ, ν) = +∞ if µ(Ω) 6= ν(Ω)

THM ( Kantorovich-Rubintein duality) Let Ω be a convex domain,
f balanced compactly supported in Ω . Then

I(f ,Ω) = W1(f+, f−)



Remarks and variants

If Ω not convex, we need to define W1 with, as cost c(x , y),
the geodesic distance in Ω;
spt(f ) ⊂ Ω is necessary to have I(f ,Ω) < +∞.
The balance condition in I(f ,Ω) can be removed if we add a
Dirichlet constraint u = 0 is prescribed on a non void compact
subset Σ0. If, for instance, f ≥ 0, we get{

I (f ,Ω,Σ0) = min{W1(f , ν) ; spt(ν) ⊂ Σ0}
uopt = d(x ,Σ0)

G.Buttazzo, P. Seppecher, GB (1997), G.Buttazzo, GB: JEMS
(2001)



Recovering (uopt, σopt) from γopt

Let γopt ∈ Π(µ, ν) solving MK-problem. Then a solution λopt to
Beckmann problem is given by the vector measure:

λopt =

∫∫
λx,y γopt(dxdy) ,

where λx,y = H1 [x , y ]
y − x

|y − x |
(− div λx,y = δy − δx)

All solutions λ are associated to such an optimal γ (thanks to
Smirnov decomposition Thm)

Any optimal uopt satisfies

|uopt(y)− uopt(x)| = |x − y | γopta.e.

Hence uopt is affine with slope 1 on every [x , y ] such that
(x , y) ∈ spt(γopt).



Support of optimal measures λ

As a consequence of the representation through optimal plan γ
and whenever Ω is convex:

spt(λopt) ⊂ co(spt(f )).

the same inclusion holds if f belongs to the completion
M0,1(Ω) of balanced measures with respect to the MK norm
(f = f0 − div F , where F ∈M(Ω;Rd) is tangential).
T. Champion, Jimenez, GB, Revista Parma (2005) and A.
Arroyo-Rabasa, GB in progress

If Ω is not convex, the same inclusion holds with co(·) replaced
by the geodesic envelope.



2- OT formulation in the Hessian case

Recall that for f = ν − µ:

I(f ,Ω) = max
u∈C1,1(Ω)

{∫
udν −

∫
udµ : Lip(∇u) ≤ 1

}
.

The two-points cost is then: c(x , y) = I(δx − δy ) = δΩ(x , y).

Difficulties are two fold:

Need a counterpart for Lip(∇u) ≤ 1 of the two-point
condition: |∇u| ≤ 1 ⇐⇒ u(x)− u(y) ≤ |x − y |.

the barycenter condition [µ] = [ν] fails if µ = δx and ν = δy .

I(δx − δy ) = +∞ whenever x 6= y .



The three points alternative

Consider a third point z ∈ Rd and the cost c(x , y , z) = I(f x ,y ,z)
attached to the first order distribution:

f x ,y ,z := δx − δy − div
(
(z − x)δx − (z − y)δy

)
Note that spt(f x ,y ,z) = {x , y} and that 〈f x ,y ,z , u〉 = 0 for all affine
functions. Next we introduce Sd×d - valued measures:

σa,b = τa,b ⊗ τa,bH1 [a, b] , τa,b :=
b − a

|b − a|

σx ,y ,z(dξ) := |ξ − z | (σz,y (dξ)−σx ,z(dξ))

(affine stress density, ≤ 0 on [x , z ] and ≥ 0 on [z , y ])





Fundamental Lemma

σx ,y ,z satisfies div2 σ
x ,y ,z = f x ,y ,z .

Assume that z ∈ B( x+y
2 , |x−y |2 ). Then σx ,y ,z is optimal for

I(f x ,y ,z) and

I(f x ,y ,z) = c(x , y , z) :=
1
2

(|x − z |2 + |y − z |2).

The idea is now to extend this result to any admissible measure f
searching for optimal σ in the form

σ =

∫
σx ,y ,z γ(dxdydz) ,

being γ a three marginals plan satisfying

f =

∫
f x ,y ,z γ(dxdydz).



Underlying mechanical intuition



The three points condition

We use the 3-points cost:

c(x , y , z) =
1
2

(|x − z |2 + |y − z |2)

Theorem((E. Le Gruyer (2009) Geom. Funct. Anal.)
For every ϕ ∈ C 1(Rd), the conditions (i)(ii)(iii) are equivalent:

(i) Lip(∇ϕ) ≤ 1

(ii) For all (x , y , z) ∈ (Rd)3, it holds:(
ϕ(x) + 〈∇ϕ(x), z − x〉

)
−
(
ϕ(y) + 〈∇ϕ(y), z − y〉

)
≤ c(x , y , z);

(iii) Forall (x , y) ∈ (Rd)2 and z ∈ B( x+y
2 , |x−y |2 ), it holds:(

ϕ(x) + 〈Φ(x), z − x〉
)
−
(
ϕ(y) + 〈Φ(y), z − y〉

)
≤ c(x , y , z) .

Moreover (iii) implies that Φ = ∇ϕ.



Extension à la “Kirschbaum”

Corollary 1: Let E ⊂ Rd and consider functions ϕ : E → R,
Φ : E → Rd such that for any (x , y) ∈ E × E × Rd :(

ϕ(x) + 〈Φ(x), z − x〉
)
−
(
ϕ(y) + 〈Φ(y), z − y〉

)
≤ c(x , y , z),

Then, it exists u ∈W 2,∞
loc (Rd) such that

(u,∇u) = (ϕ,Φ) in E , ρ(∇2u) ≤ 1 a.e. in Rd

An extension function is given by u = g∗∗ϕ,Φ(x)− |x |
2

2 where:

gϕ,Φ(x) := inf
ξ∈E

{
ϕ(ξ) + 〈Φ(ξ), x − ξ〉+

1
2
|x − ξ|2

}
+
|x |2

2



Reducing I(f ) to a three-points constrained problem

To any subset E ⊂ Rd , we associate its ball-extension defined by:

B(E ) :=
⋃

(x,y)∈E2

B(
x + y

2
,
x − y

2
).

Collorary 2: Assume that f = f0− div F is balanced. Then:

I(f ) = sup

{∫
ϕ df +

∫
Φ dF ,

where the supremum is taken over all pairs (ϕ,Φ) ∈ (C 0(Rd))1+d s. t.(
ϕ(x) + 〈Φ(x), z − x〉

)
−
(
ϕ(y) + 〈Φ(y), z − y〉

)
≤ c(x , y , z),

for all (x , y , z) ∈ spt f × spt f × B
(

spt f )

• Same statement for I(f ,Ω) provided B(spt f ) ⊂ Ω.
• From Corollary 1, can show that (OGP) admits a solution
σ ∈M(Rd ,Sd×d) supported in B

(
spt f

)
( sptσ ⊂ co(spt f ) is not true

in general)



The 3-points OT problem

Given γ ∈M+(Ω
3
) with bounded first moment, we denote:γ1 := Π1

](γ), M1(γ) := Π1
]

(
(z − x) γ

)
γ2 := Π2

](γ), M2(γ) := Π2
]

(
(z − y) γ

)
Let µ, ν ∈M+(Ω) such that

∫
dµ =

∫
dν ,

∫
x dµ =

∫
y dν. Then we

may associate the admissible family:

Σ(µ, ν) :=
{
γ ∈M+(Ω

3
) : γ1 = µ, γ2 = ν, M1(γ) = M2(γ) = 0

}
It is convex non empty and weakly* compact.



Second order version of Kantorovich-Rubinstein

Theorem Let f ∈M(Ω;R) be an admissible measure such that
B(spt f ) ⊂ Ω. Then:

(i) We have the no-gap equality I(f ,Ω) = inf(OT3) where:

(OT3) min

{∫
c(x , y , z) γ(dxdydz) : γ ∈ Σ(f+, f−)

}
(ii) There exists an optimal plan γ for (OT3) supported in
(spt(f )2 × B(spt(f )), thus a solution to (OGP)

σ =

∫
σx ,y ,z γ(dxdydz)

satisfying spt(σ) ⊂ B(spt(f )).



Proof: the inequality I(f ) ≤ inf(OT3) is easy.

• From classical convex analysis and duality, we find that
inf(OT3) = sup(OT3)? where:

sup

{∫
ϕ dµ+

∫
ψ dν, (OT3)?

where the supremum is taken over all pairs (ϕ,ψ) ∈ (C 0(Rd))2

such that, for suitable Φ,Ψ ∈ (C 0(Rd))d , it holds :(
ϕ(x) + 〈Φ(x), z − x〉

)
+
(
ψ(y) + 〈Ψ(y), z − y〉

)
≤ c(x , y , z)

• By restricting to pairs (ϕ,ψ) and (Φ,Ψ) such that ψ = −ϕ and
Ψ = −Φ and in virtue of Corollary 1 that we apply to f = ν − µ
and F = 0, we get:

inf(OT3) = sup(OT3)? ≥ I(f ).



Proof of the no-gap equality I(f ) = inf(OT3)

We need a second order version of the c-transform
c-transform: when c(x , y) = |x − y |, the c-transform of ϕ is
ϕc(y) := inf

y
{|x − y | −ϕ(x)}. It satisfies lipϕc ≤ 1 while ϕc = −ϕ

if ϕ is 1-Lipschitz.

�-tranform: Let c(x , y , z) = 1
2(|x − z |2 + (y − z |2).

ϕ ∈ C 0,1 7→ ϕ�(y) := g∗∗ϕ,∇ϕ(y)− |y |
2

2
,

gϕ,Φ(y) := inf
ξ∈Rd

{
ϕ(ξ) + 〈Φ(ξ), y − ξ〉+

1
2
|y − ξ|2

}
+
|y |2

2

Lemma [Azagra, Legruyer, Mudarra (2018)]: ϕ� is C 1,1 and
lip(∇ϕ�) ≤ 1. Moreover:

lip(∇ϕ) ≤ 1 =⇒ ϕ� = −ϕ.



From admissible (ϕ,Φ) to (ϕ�, ϕ��)

The pairs (ϕ,Φ) and (ϕ�,∇ϕ�) are also admissible while∫
ϕdµ+

∫
ϕ�dν ≥

∫
ϕdµ+

∫
Φdν.

The pairs (ϕ��,∇ϕ��) and (ϕ�,∇ϕ�) are also admissible while∫
ϕ��dµ+

∫
ϕ�dν ≥

∫
ϕdµ+

∫
ϕ�dν.

Thus as ϕ�� = −ϕ� is admissible for I(f ), we get

I(f ) ≥
∫
ϕ�d(ν−µ) =

∫
ϕ��dµ+

∫
ϕ�dν ≥

∫
ϕdµ+

∫
Φdν.



Optimality conditions

An admissible pair (u, π) for I(f ) and (OT3) respectively is
optimal iff the equality below holds π-a.e. (x , y , z):

u(x) + 〈∇u(x), z − x〉 − (u(y) + 〈∇u(y), z − y〉 =
|x − z |2 + |y − z |2

2

Remark: The equality above needs to be checked only for

z(x , y , u) =
1
2

(x + y +∇u(x)−∇u(y))

Furhermore π solving (OT3) must be of the form

〈π, ϕ(x , y , z)〉 =

∫∫
ϕ(x , y , z(x , y , u)) γ(dxdy),

being u optimal for I(f ) and γ ∈ Π(µ, ν).



3- Connection with stochastic optimization under convex
order constraint

Background: Given two probability measures µ, ν ∈ P1(Rd), we
say that ν �c µ if

∫
f dν ≥

∫
f dµ for every convex function

f : Rd → R.
ν �c µ =⇒ [µ] = [ν] ; ν �c δ[ν] (Jensen inequality);

Strassen Theorem: ν �c µ iff there exits a µ− measurable
map x 7→ px ∈ P(Rd) such that:
1. [px ] = x µ−a.e.
2. ν(B) =

∫
px(B)µ(dx) for any Borel set B ⊂ Rd .

a martingale transport from µ to ν is a pairing measure
γ ∈ Π(µ, ν) of the form

〈γ, ϕ〉 =

∫ (∫
ϕ(x , y) px(dy)

)
µ(dx) ,

where [px ] = x µ−a.e.



How (OT3) is related to martingale OT ?

Let (µ, ν, ρ) denote the marginals of an admissible γ ∈ Σ(µ, ν). We
claim that:

M1(γ) = 0 =⇒ ρ �c µ , M2(γ) = 0 =⇒ ρ �c ν

Indeed M1(γ) = 0 implies that, for every ψ ∈ C0(Rd ;Rd):
(∗)∫∫∫

〈z − x , ψ(x)〉 γ(dxdydz) =

∫∫
〈z − x , ψ(x)〉 γ1,3(dxdz) = 0.

Since (µ, ρ) ∈ Π(γ1,3), it exists a family {px} in P(Rd)) such that:

γ1,3(dxdz) =

∫
δx ⊗ px(dz)µ(dx) , ρ(dz) =

∫
px(dz)µ(dx).

Then (∗) implies that
∫
〈[px ]− x , ψ〉 dµ = 0, thus [px ] = x µ- a.e.

.



The set of admissible ρ

Lemma: Let µ, ν ∈ P2(Rd) and

A := {ρ ∈ P2(Rd) : ∃γ ∈ Σ(µ, ν) such that Π]
3(γ) = ρ}.

Then:
i) A = {ρ ∈ P2(Rd) : ρ � µ , ρ � ν}.
ii) ∀R > 0, {ρ ∈ A : var(ρ) ≤ R} is weakly* compact.

Moreover

Proof.
The inclusion ⊂ is already proved. The converse is obtained by
constructing martingale pairings γ1,3 ∈ Π(µ, ρ), γ2,3 ∈ Π(ν, ρ)
(exists by Strassen Theorem), and then by gluing γ1,3 to γ3,2.



Looking for optimal ρ

For every γ ∈ Σ(µ, ν) with third marginal ρ, one has:∫
c(x , y , z) dγ = (

∫
|x |2

2
dµ+

∫
|y |2

2
dν) +

∫
|z |2dρ−

∫
〈x + y , z〉 dγ

=

∫
|z |2dρ− 1

2
(

∫
|x |2 dµ+

∫
|y |2 dν),

where in the last line we used that M1(γ) = M2(γ) = 0. Thus, by
minimizing over A with the heelp of previous Lemma, we infer that

I(f ) = min(OT3) = V(µ, ν)− 1
2

(var(µ) + var(ν)) ,

where:

V(µ, ν) = min {var(ρ) : ρ �c µ , ρ �c ν}



4. Explicit examples



Example 1: from 2 Dirac masses to 2 Dirac masses

µ = equi-distributed on 2 points in black , ν equi-distributed on 2 points in grey

red= positive σopt , blue= negative σopt



The third marginal ρ

ρ equi-distributed on the 4 points in pink

Remark: spt(σ) and spt(ρ) are subsets of B(spt(f )).



Example 2: from a gaussian to a gaussian

Let µ, ν two centered gaussian laws with correlation matrices M,N:

Mij =

∫
xixj µ(dx) , Nij =

∫
yiyj ν(dx).

As convex order for gaussians is equivalent to order between
correlation tensors (as quadratic forms)

V(µ, ν) = min{Tr(X ) : X ∈ Sd×d , X ≥ M , X ≥ N}

which is reached for R = M + (N −M)+ ,

where for a of spectral decomposition N −M =
∑d

i=1 λi ai ⊗ ai , we
set (N −M)+ :=

∑d
i=1(λi )+ ai ⊗ ai . Thus:

ρ solving V(µ, ν) is the gaussian with correlation matrice R ;
An optimal potential for I(ν − µ) is given by

u(x) =
d∑

i=1

sgn(λi )(x |ai )2.



Example 3: case sptµ ⊥ spt ν.

Assume that MN = NM = 0. Then no need that µ and ν are
gaussians !

R = M ∨ N = M + N;
ρ = µ ∗ ν;
Same formula for the optimal potential u with

N −M :=
d∑

i=1

λi ai ⊗ ai , u(x) =
d∑

i=1

sgn(λi )(x |ai )2.



Example 4: from Lebesgue to several Dirac masses

Optimal measures ρ consist of parts of dimension 0, 1, 2

See forthcoming talk by Karol !



Thank you for listening


