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Initial motivation: optimal design of a grillage (OGP)

The (OGP) problem consists in finding a measure o : R? s S9*d
(symmetric tensor valued) solving

min {/po(a) : spt(o) € Q, divie = f}

M(Rd,SdXd)

where:
o Q C R? convex design domain (d = 2,3)

o f € M(R) a source term (distribution of order one)
o p9(S) = 27:1 I\i(S)| for all S € S9%9 (schatten norm)

fQ=R?and f a signed measure, existence of optimal o iff:

/f:o, [f]::/xf(dx):o.



Optimal grillage clamped on four collumns

o°Pt approximated by rank one measures (M. Gilbert, L He,
Rozvany)
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Q = the large square , ¥o = 4 small squares , f = £?L (Q\ Xo)




Important issues

@ dimension of the optimal measure o and justification of its
approximation by trusses of bars in bending regime (“grillage”)

@ how to relate the support of an optimal measure o to the
support of f when Q =RY ?

spt(o) C co(spt(f)) ?

@ relation with an OT problem 7

@ how to handle loads of 1st order like f = fy — div F where
fo € M(RY) and F € M(RY RY) (s. t. [fo] + [F=0)7



The Hessian constraint problem

Assume that f = v — y, where u, v € P>(Q) share the same
barycenter [u] = [v]. By standard convex analysis and duality:

min(OGP) = Z(f, Q)

e Z(f,Q) is the maximum of the Hessian constrained problem:

max{< f,u>: ue W>*(Q), p(V3(u)) <1 inQ}.

o p(A) = sup{|A\;(A)|} is the spectral norm related to p° through

#(S) = sup{(A. S) : p(A) < 1}.



Case Q = RY (or Q convex)

Z(f,Q) dv — dp : Lip(Vu) <1
( uerglafzm{/u v /u L ip(Vu) } J

o Generalizations to higher order derivatives haven been
considered in V.M. Zolotarev (Theory Prob. Appl. 1977) and
recently used by M. Fathi (arxiv)

@ Up to now no link with optimal transport was evidenced




Novelty: an unexpected link with convex order

Let u1, v in P2(RY) such that [u] = [v] and set:

V(u,v) =min{var(p) : p=cp, prcvt.

where =, denotes the convex order relation.

@ This problem enters in the larger class of stochastic optimization
problems under dominance constraints motivated by mathematical
finance, statistical decision theory, economics, see for instance:

D. Dentcheva and A. Ruszczynski, SIOPT (2003); A.Miiller and M.
Scarsini, SIOPT (2006); Johannes Wiesel and Erica Zhang (2023).

o Different objective functionals on P(R9) can be considered as for
instance F(p) = [ |x|P dp for p # 2
work in progress: KB, G. Carlier, F . Santambrogio, Q. Merigot



Connection of (OG) with optimal transport

We will construct a 3 marginals OT problem whose admissible
plans  have marginals (u, v, p) with p =c p, p =c v.
As a result, for p € argmin V(u, ), we have the following equality:

7(F,RY) = var(p) — var () —;— var(v)

Moreover:

@ optimal stress measures o for the (OG) problem can be
recovered from optimal plans

o v = u(x)= @ is optimal for Z(f)

(v=p & p=vsolves V(u,v) & I(f)= 3(var(v) — var(y))) .



Plan of the talk

=

Back to the first order gradient case ;
OT formulation in the Hessian case ;
Relation between (OT3) and martingale OT;

Explicit examples.



1- Back to the first order gradient case.

Let Q C R? a domain and f € M(Q) compactly supported such
that [ f =0. We set

Z(f,Q) = sup{(f,u) : |Vu| <1inQ}.

@ A classical duality scheme relates this to Beckmann problem

I(f,Q) = min Al © —divA = finRY
AEM(Q;RY)

e If Q is convex, the Euclidean distance do(x,y) =[x — y| is
involved in the equivalence:

[Vu| <Tlae inQ < |u(x)—u(y)| <da(x,y) in Q2

(otherwise dq is the geodesic distance in Q)



Connexion with Monge optimal transport

Def : Let u,v € M, (Q) such that 1(Q) = v(Q); the Monge
distance is given by

subadditive cost c(x, y)

. ——
W) i=mind [ KT () e M)
X

(Kantorovich relaxation of inf{ [ |x — Tx|u(dx) : T#(n) = v}).

We set Wi(u,v) = +oo if u(Q) # v(Q)

THM ( Kantorovich-Rubintein duality) Let Q2 be a convex domain,
f balanced compactly supported in Q . Then

I(£, Q) = Wi(Fe, £.)




Remarks and variants

e If Q not convex, we need to define Wi with, as cost ¢(x,y),
the geodesic distance in Q;

o spt(f) C Qis necessary to have Z(f,Q) < +oo.

@ The balance condition in Z(f,£2) can be removed if we add a
Dirichlet constraint u = 0 is prescribed on a non void compact
subset Y. If, for instance, f > 0, we get

{ I(f,Q, %) = min{WA(f,v) ; spt(v) C o}
Uopt = d(X, Zo)

G.Buttazzo, P. Seppecher, GB (1997), G.Buttazzo, GB: JEMS
(2001)



Recovering (Uopt; Topt) from Yopt

@ Let 7opt, € M(p, v) solving MK-problem. Then a solution Aoy to
Beckmann problem is given by the vector measure:

)\opt - // A ’Vopt(dXdy) )

where | XY = 1L [x, ] |y - X‘ (— div A\ =5, — 6,
y—Xx

@ All solutions X are associated to such an optimal 7 (thanks to
Smirnov decomposition Thm)

@ Any optimal ugp satisfies
|Uopt (¥) — topt (X)| = X —y[  7opta.e.

Hence ugpy is affine with slope 1 on every [x, y] such that
(%) € spt(Yopt)-



Support of optimal measures A

@ As a consequence of the representation through optimal plan v
and whenever Q is convex:

spt(Aopt) C co(spt(f)).

@ the same inclusion holds if f belongs to the completion
My 1(Q) of balanced measures with respect to the MK norm
(f = fy — div F, where F € M(Q;R?) is tangential).
T. Champion, Jimenez, GB, Revista Parma (2005) and A.
Arroyo-Rabasa, GB in progress

e If Q is not convex, the same inclusion holds with co(-) replaced
by the geodesic envelope.



2- OT formulation in the Hessian case

Recall that for f = v —

Z(f,Q) max {/udv—/udu . Lip(Vu) < } .
uEC11

The two-points cost is then: c(x,y) = Z(dx — d,) = da(x, y).

Difficulties are two fold:

@ Need a counterpart for Lip(Vu) < 1 of the two-point
condition: |Vu| <1 <= u(x)—u(y) <|x—yl|.

o the barycenter condition [u] = [v] fails if 4 = 05 and v =§,,.

Z(6x — 0y) = +00 whenever x # y.



The three points alternative

Consider a third point z € R9 and the cost c(x, y,z) = Z(f*¥?)
attached to the first order distribution:

FYE = 5, — 6, — div ((z — x)dx — (z — y)dy)

Note that spt(f*¥*) = {x, y} and that (f*¥* u) = 0 for all affine
functions. Next we introduce S9%9- valued measures:
b—a

odb = Tab & Tab HL [a,b] , Tap = m

[ 2(de) = |¢ — 2| (o (de)—o"(dE)]

(affine stress density, < 0 on [x, z] and > 0 on [z, y])




Density of 0% wrt. H! L ([z, 2] U [2,1])

X




Fundamental Lemma

@ 0X¥:% satisfies divy X2 = FXY:Z,

o Assume that z € B(*}Y, IX;—y') Then 0% is optimal for
Z(f*¥*) and

X z 1
I(Fr?) = clxy,2) = S(Ix = 2 + Iy = 2°).

The idea is now to extend this result to any admissible measure f
searching for optimal o in the form

o= / 0™V % ~v(dxdydz) ,

being v a three marginals plan satisfying

f:/ Y% ~(dxdydz).



Underlying mechanical intuition
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The three points condition

We use the 3-points cost:

1
c(.y,2) = 5(x - Z? +y — z%)

Theorem((E. Le Gruyer (2009) Geom. Funct. Anal.)
For every p € C}(RY), the conditions (i)(ii)(iii) are equivalent:

(i) Lip(Vy) <1
(i) For all (x,y,z) € (RY)3, it holds:

(p(x) + (Vo(x),z = x)) = (2(¥) + (Ve(y), 2 — ¥)) < c(x,y,2);

(iii) Forall (x,y) € (RY)? and z € B(*%¥, 2221) it holds:

(0(x) +(@(x), 2 = x)) = (e(y) + (®(y). 2= y)) < c(x,y.2) -

Moreover (iii) implies that ® = V.



Extension a la “Kirschbaum”

Corollary 1: Let E C R? and consider functions ¢ : E — R,
® : E — R such that for any (x,y) € E x E x R:

(0(x) +(0(x), 2 = x)) = (p(y) + (®(y), 2= ) < c(x.y,2),
Then, it exists u € W2 °(R?) such that
(u,Vu) = (p,®) in E, p(V2u) <1 ae inRY
|x[?

An extension function is given by u = g:;fkq)(x) — 5~ where:

2
£o0) 1= jnf {(€) + (0@ x~ &+ 5 k= f + I

inf
¢cE 2



Reducing Z(f) to a three-points constrained problem

To any subset E C RY, we associate its ball-extension defined by:

BE):= B(X;Y,X;y).

(x.y)eE?

Collorary 2: Assume that f = fu— div F is balanced. Then:

Z(f) :sup{/godf —5—/CI>dF7

where the supremum is taken over all pairs (¢, ®) € (CO(R9))}* s, t.
() + ((x), 2 = x)) = (2(¥) + (®(¥). 2= y)) < clx,y,2),

for all (x,y,z) € sptf x sptf x B(sptf)

e Same statement for Z(f, Q) provided B(spt f) C Q.

e From Corollary 1, can show that (OGP) admits a solution

7 € M(R9, S9%9) supported in B(spt f) ('spta C co(sptf) is not true
in general)



The 3-points OT problem

Given v € M+(§3) with bounded first moment, we denote:
()

=), Mi(y) =M ((z2—x)y

Y2 =TME(), Ma(v) :=NF((z—y)7
Let p,v € M (Q) such that [du= [dv, [xdu= [ydv. Then we
may associate the admissible family:

Y (p,v) = {'y € M+(§3) Cy =, 2 = v, Mi(y) = Ma(y) = 0}

It is convex non empty and weakly* compact.



Second order version of Kantorovich-Rubinstein

Theorem Let f € M(Q;R) be an admissible measure such that
B(spt f) € Q. Then:

(i) We have the no-gap equality Z(f, ) = inf(OT3) where:

(0T3) min {/c(x,y,z) ~v(dxdydz) : v € Z(f+,f_)}

(ii) There exists an optimal plan 7 for (OT3) supported in
(spt(f)? x B(spt(f)), thus a solution to (OGP)

a:/ax’y’zfy(dxdydz)

satisfying spt(a) C B(spt(f)).



Proof: the inequality Z(f) < inf(OT3) is easy.

e From classical convex analysis and duality, we find that
inf(OT3) = sup(OT3)* where:

sup{/cpdu+/1/1dv, (0T3)*

where the supremum is taken over all pairs (¢, ) € (C°(R9))?
such that, for suitable ®, W € (CO(R?))9, it holds :

(p(x) +((x),z = x)) + (¥(y) + (V(y), 2= y)) < c(x,y,2)

e By restricting to pairs (¢, 1) and (¥, V) such that ¢y = —¢ and
V = —® and in virtue of Corollary 1 that we apply to f =v —
and F =0, we get:

inf(OT3) = sup(OT3)* > Z(f).



Proof of the no-gap equality Z(f) = inf(OT3)

We need a second order version of the c-transform

c-transform: when c¢(x, y) = |x — y|, the c-transform of ¢ is
©°(y) == inf{|x — y| — p(x)}. It satisfies lip ¢ < 1 while p© =
y

if ¢ is 1-Lipschitz.

o-tranform: Let c(x,y,z) = 3(|x — z]> + (y — 2|?).

ly|?

e COl s o(y) i=giv, (y) — R

ggosb()/) = Inf {gp +(P(E),y — &) + \y {, }+ M

Lemma [Azagra, Legruyer, Mudarra (2018)]: ¢° is C*! and

lip(V®) < 1. Moreover:

lip(Vp) <1 = ¢° = —¢.

—¥



From admissible (0, ®) to (¢°, )

@ The pairs (¢, ®) and (¢°, V¢°) are also admissible while

/@d,tH—/goodu > /«pdu+/¢du.

@ The pairs (¢°°, V) and (¢°, V°) are also admissible while

/cp%du+/<p°d1/ > /gadu+/g0°du.

Thus as p® = —¢° is admissible for Z(f), we get

Z(f) > /gOOd(y—u) :/<p°°du+/g0°d1/2 /gpdu—l—/CDdy.



Optimality conditions

An admissible pair (u, 7) for Z(f) and (OT3) respectively is
optimal iff the equality below holds 7-a.e. (x,y, z):

x =z + |y — 2]

u(x) + (Vu(x),z = x) = (u(y) + (Vuly),z - y) = 5

Remark: The equality above needs to be checked only for

Lty 4 Vul) — Vu(y))

Z(x,y,u) = 5(

Furhermore 7 solving (OT3) must be of the form

(Too(x,y. 2 // x,¥,Z(x, y, u))v(dxdy),

being u optimal for Z(f) and v € M(y,v).



3- Connection with stochastic optimization under convex
order constraint

Background: Given two probability measures u, v € P1(RY), we
say that v =, p if f fdv > f f du for every convex function
f:RY = R.
o viep = [p]=[v]; vi=cdp) (Jensen inequality);
o Strassen Theorem: v =, u iff there exits a u— measurable
map x — p* € P(R?) such that:

1. [pP]=x p—ae.
2. v(B) = [ p*(B) u(dx) for any Borel set B C RY.

@ a martingale transport from p to v is a pairing measure
v € M(p,v) of the form

(v 0) = / </ o(x,y) px(dy)) p(dx)

where [p*] = x p—a.e.



How (OT3) is related to martingale OT 7

Let (i, v, p) denote the marginals of an admissible v € X (i, v). We
claim that:

Mi(y)=0 = p=cpp , M(7)=0 = p>cv

Indeed M (v) = 0 implies that, for every 1 € Co(RY; R9):
/// z — x,(x)) y(dxdydz) = // z — x,9(x)) 71,3(dxdz) = 0.
Since (u, p) € N(713), it exists a family {p*} in P(R?)) such that:

nalded) = [ b0 p*(dz) () . o) = [ p(aule).

Then (x) implies that [ ([p*] — x, ) du = 0, thus [p*] = x p- a.e.



The set of admissible p

Lemma: Let pu,v € P2(RY) and
A:={pe PR : Iy e X(u,v) such that I'Ig('y) = p}.

Then:
) A={pePa(R) :p=p, p=v}
i) VR >0, {p € A:var(p) <R} is weakly* compact.

Moreover

Proof.
The inclusion C is already proved. The converse is obtained by
constructing martingale pairings v1.3 € M(u, p), 2.3 € N(v, p)
(exists by Strassen Theorem), and then by gluing 1 3 to 735.

L]



Looking for optimal p

For every v € X (u,v) with third marginal p, one has:

/c(x,y,z) dry = (/’)(Id;mL/y2|2d1/)+/|z|2dp—/<x+y,z> dv

1
= [1zdp = 5[ IxP dt [ Iy )

where in the last line we used that M;(y) = Mx(v) = 0. Thus, by
minimizing over A with the heelp of previous Lemma, we infer that

Z(f) = min(OT3) = V(u,v) — %(var(,u) + var(v)) ,

where:

V(p.v) = min{var(p) : p=cp, p=cv} |




Q>



Example 1: from 2 Dirac masses to 2 Dirac masses

1 = equi-distributed on 2 points in black , v equi-distributed on 2 points

red= positive oope ,  blue= negative opt



The third marginal p

p equi-distributed on the 4 points in pink

N

N

Remark: spt(a) and spt(p) are subsets of B(spt(f)).



Example 2: from a gaussian to a gaussian
Let u, v two centered gaussian laws with correlation matrices M, N:
M = | xixj p(dx) , Ny = /y,-yj v(dx).

As convex order for gaussians is equivalent to order between
correlation tensors (as quadratic forms)

V(u,v) = min{Tr(X) : XS X>M, X >N}

which is reached for ’ R=M+(N—-M); ‘
where for a of spectral decomposition N — M = Zf-j:l Ajaji ® aj, we
set (N — M), =39 (\)yai ® aj. Thus:

o p solving V(u,v) is the gaussian with correlation matrice R;

@ An optimal potential for Z(v — p) is given by

ngn )(x|ai)?



Example 3: case sptpu L sptu.

Assume that MN = NM = 0. Then no need that p and v are
gaussians !

o R=MVN=M+N,

@ p=p*U;
@ Same formula for the optimal potential v with

MQ

d
N—M:=> Na®a ,
i=1 i=1

sgn(Ai)(x|a;)

2



Example 4: from Lebesgue to several Dirac masses

Optimal measures p consist of parts of dimension 0, 1,2

See forthcoming talk by Karol !



Thank you for listening



