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Goal of this first section

Let Ω ⊂ Rn be a smooth bounded domain and consider the heat equation
∂ty −∆y = 1ωu

y(t)|∂Ω = 0

y(0) = y0

Goal : "prove" null controllability i.e. for any T > 0 and y0 there exists u such that y(T ) = 0
using the moment method.
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Abstract linear control problem

{
y′(t) +Ay(t) = Bu(t), t ∈ (0, T ),

y(0) = y0.
(S)

−A generates a C0-semigroup on the Hilbert space (X, ‖·‖),

The space of controls is the Hilbert space (U, ‖·‖U ).

The control operator B : U → D(A∗)′. Assume (for simplicity) that∫ T

0

∥∥∥B∗e−tA∗z∥∥∥2

U
dt ≤ C‖z‖2, ∀z ∈ D(A∗).
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Notion of solution

Wellposedness theorem
Let T > 0. For any y0 ∈ X and any u ∈ L2(0, T ;U), there exists a unique solution
y ∈ C0([0, T ], X) characterized by

〈y(t), z〉 −
〈
y0, e

−tA∗z
〉

=

∫ t

0

〈
u(τ),B∗e−(t−τ)A∗z

〉
U

dτ,

for any t ∈ [0, T ], and any z ∈ X.
Moreover, there exists C > 0 such that for any such y0, u, the solution satisfies

‖y(t)‖ ≤ C
(
‖y0‖+ ‖u‖L2(0,T ;U)

)
, ∀t ∈ [0, T ].
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Assumptions and moment problem

The setting
Assume that the operator A∗ admits a sequence of positive eigenvalues Λ.
We denote by (φλ)λ∈Λ the associated sequence of normalized eigenvectors and we
assume that it forms a Hilbert basis of X.

Definition of solutions: for all λ ∈ Λ,

〈y(T ), φλ〉 −
〈
y0, e

−λTφλ

〉
=

∫ T

0
e−λ(T−t) 〈u(t),B∗φλ〉U dt.

Hilbert basis of eigenvectors (φλ)λ∈Λ :

y(T ) = 0 ⇐⇒
∫ T

0
e−λ(T−t) 〈u(t),B∗φλ〉U dt = −

〈
y0, e

−λTφλ

〉
, ∀λ ∈ Λ

⇐⇒
∫ T

0
e−λt 〈v(t),B∗φλ〉U dt = −

〈
y0, e

−λTφλ

〉
, ∀λ ∈ Λ

with v := u(T − ·).
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Reduction to a moment problem when dimU = 1

Scalar control (dimU = 1) with observable eigenvectors (B∗φλ 6= 0)

y(T ) = 0 ⇐⇒
∫ T

0
e−λt 〈v(t),B∗φλ〉U dt = −

〈
y0, e

−λTφλ

〉
, ∀λ ∈ Λ

⇐⇒ B∗φλ
∫ T

0
e−λtv(t)dt = −

〈
y0, e

−λTφλ

〉
, ∀λ ∈ Λ

⇐⇒

�



�
	

∫ T

0
e−λtv(t)dt = −e−λT

〈
y0,

φλ

B∗φλ

〉
, ∀λ ∈ Λ
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Resolution of the moment problem using a biorthogonal family

Find v such that
∫ T

0
e−λtv(t)dt = −e−λT

〈
y0,

φλ

B∗φλ

〉
, ∀λ ∈ Λ

Null controllability in time T =⇒ existence of a biorthogonal family (qλ)λ∈Λ to the
exponentials associated with Λ in L2(0, T ;R)


∫ T

0
e−µtqλ(t)dt = 0, ∀µ ∈ Λ\{λ},∫ T

0
e−λtqλ(t)dt = 1.

Existence of such biorthogonal family Schwartz⇐⇒
∑
λ∈Λ

1

λ
< +∞.

In this case,

u : t ∈ (0, T ) 7→ −
∑
λ∈Λ

e−λT
〈
y0,

φλ

B∗φλ

〉
qλ(T − t)

formally solves the moment problem.

Question: estimate B∗φλ and ‖qλ‖L2(0,T ;R) to prove that the series converges in L2(0, T ;R).
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Some estimates on biorthogonal families

Under the gap condition (|λ− µ| > ρ, ∀λ 6= µ ∈ Λ).
H.O. Fattorini & D.L Russell (1974): ‖qλ‖L2(0,T ;R) ≤ Cε,T eελ.
Uniform estimates with respect to Λ in a certain class.
A. Benabdallah, F. Boyer, M. González Burgos & G. Olive (2014)
Sharper estimates + dependency /T : ‖qλ‖L2(0,T ;R) ≤ CeC/T eC

√
λ.

P. Cannarsa, P. Martinez & J. Vancostenoble (2020)
Optimal estimates + dealing with asymptotic gap.

Under a weak gap condition (gap between blocks of bounded cardinality)
N. Cîndea, S. Micu, I. Roventa & M.Tucsnak (2015)
Union of two sequences with gap condition plus a non-condensation assumption
A. Benabdallah, F. Boyer & M. M. (2020)
M. González Burgos & L. Ouaili (2020)

Without any gap condition
F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014)
Condensation index of the sequence.
D. Allonsius, F. Boyer & M. Morancey (2021)
"Local" gap for each λ.
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The moment problem for the heat equation

Hilbert basis (φλ)λ∈Λ of eigenvectors + definition of solutions:
for any y0,

y(T ) = 0 ⇐⇒
∫ T

0

〈
v(t),B∗e−λtφλ

〉
U

dt = −
〈
y0, e

−λTφλ

〉
, ∀λ ∈ Λ

⇐⇒
〈
v, e−λ·φλ

〉
L2((0,T )×ω)

= −
〈
y0, e

−λTφλ

〉
, ∀λ ∈ Λ

Natural notion of biorthogonal family

(
(t, x) ∈ (0, T )× ω 7→ qλ(t, x)

)
λ∈Λ

such that 
∫ T

0

∫
ω
qλ(t, x)e−µtφµ(x)dxdt = 0, ∀µ ∈ Λ\{λ},∫ T

0

∫
ω
qλ(t, x)e−λtφλ(x)dxdt = 1.
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From biorthogonal families to controllability

With such a "space-time" biorthogonal family at hand, a formal solution of the control
problem is given by

u : (t, x) ∈ (0, T )× ω 7→ −
∑
λ∈Λ

e−λT 〈y0, φλ〉 qλ(T − t, x).

Two very natural questions:
why the hell should such a biorthogonal family exists ??
and even if it exists, how can we estimate its norm to study convergence of the previous
series ??
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Existence of a space-time biorthogonal family (for the heat equation)

G. Lebeau & L. Robbiano (1995).
For any λ ∈ Λ, let y0 = −eλTφλ.
Let qλ(T − ·) be the control of minimal L2 norm such that y(T ) = 0.

Then, by definition of solutions

〈y(T ), φµ〉 −
〈
y0, e

−TA∗φµ
〉

=

∫ T

0

〈
qλ(T − t, ·),B∗e−(T−t)A∗φµ

〉
U

dt, ∀µ ∈ Λ

⇐⇒ e(λ−µ)T 〈φλ, φµ〉 =

∫ T

0

∫
ω
qλ(t, x)e−µtφµ(x)dxdt, ∀µ ∈ Λ

⇐⇒
∫ T

0

∫
ω
qλ(t, x)e−µtφµ(x)dxdt = δλ,µ.

General "theorem":
Hilbert basis of eigenvectors + null controllability in time T0

=⇒

existence of a biorthogonal family to
(
e−λ·B∗φλ

)
λ∈Λ

in L2(0, T0;U)

biorthogonal element = control that drives eλT0φλ to 0 in time T0
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Estimates on biorthogonal families

Null controllability in time T0 with cost of controllability CT0
.

biorthogonal element qλ = control that drives eλT0φλ to 0

=⇒ ‖qλ‖L2(0,T0;U) ≤ CT0
‖y0‖ = CT0

eλT0

implies convergence of the series

u : (t, x) ∈ (0, T )× ω 7→ −
∑
λ∈Λ

e−λT 〈y0, φλ〉 qλ(T − t, x).

for any T > T0 : null controllability by the moment method in time T > T0.

Null controllability in arbitrary time. Let T > 0. For any ε ∈ (0, T ),

‖qλ‖L2(0,T ;U) ≤ Cεe
ελ

implies null controllability by the moment method in any time T > 0.

Null controllability in arbitrary time T > 0 with cost of controllability CeC/T (M.
González Burgos (private communication)). Let T > 0. Construction of qλ on a
time-interval depending on λ implies

‖qλ‖L2(0,T ;U) ≤ Ce
C/T eC

√
λ.
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The big question

How to prove existence of such "space-time" biorthogonal family and estimate it (without
using that the problem is null controllable) ??
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2D heat equation controlled from a hyperplane

Let Ω = (0, 1)× (0, 1).


∂ty −∆y = δx01(a,b)(x

′)u(t, x, x′), t ∈ (0, T ), (x, x′) ∈ Ω

y(t, ·)|∂Ω = 0, t ∈ (0, T ),

y(0, x, x′) = y0(x, x′), (x, x′) ∈ Ω.

Goal : find u such that y(T ) = 0

or rather design and estimate a biorthogonal family associated with this null controllability
problem.
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Strategy of proof

The first idea is inspired by H.O. Fattorini & D.L Russell (1974): solve a "relaxed" simpler
problem and deduce the existence and estimates of biorthogonal families from an abstract
restriction argument.

Here, "relaxed" problem = biorthogonal family associated with control on {x0} × (0, 1).
Then, use a restriction argument in the space variable x′.
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Previous results on this example

The 1D case by S. Dolecki (1973).{
∂ty − ∂xxy = δx0u,

y(t, 0) = y(t, 1) = 0.
(?)

Minimal null control time given by

T0(x0) = lim sup
k→+∞

− ln | sin(kπx0)|
k2π2

, with T0((0, 1)) = [0,+∞].

It is related to the competition between observation of eigenvectors
(
sin(kπx0)

)
and

dissipation
(
e−k

2π2T
)
.

The 2D case by E.H. Samb (2015).

Morgan MORANCEY Biorthogonal families and moment method in higher dimension 23



Previous results on this example

The 1D case by S. Dolecki (1973).{
∂ty − ∂xxy = δx0u,

y(t, 0) = y(t, 1) = 0.
(?)

Minimal null control time given by

T0(x0) = lim sup
k→+∞

− ln | sin(kπx0)|
k2π2

, with T0((0, 1)) = [0,+∞].

It is related to the competition between observation of eigenvectors
(
sin(kπx0)

)
and

dissipation
(
e−k

2π2T
)
.

The 2D case by E.H. Samb (2015).

Minimal null control time given by T0(x0).

Morgan MORANCEY Biorthogonal families and moment method in higher dimension 23



Previous results on this example

The 1D case by S. Dolecki (1973).{
∂ty − ∂xxy = δx0u,

y(t, 0) = y(t, 1) = 0.
(?)

Minimal null control time given by

T0(x0) = lim sup
k→+∞

− ln | sin(kπx0)|
k2π2

, with T0((0, 1)) = [0,+∞].

It is related to the competition between observation of eigenvectors
(
sin(kπx0)

)
and

dissipation
(
e−k

2π2T
)
.

The 2D case by E.H. Samb (2015).

Under assumptions on x0 that imply
T0(x0) = 0

the cost of controllability in small time
behaves like CeC/T

null controllability in any time
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Space restriction in a favorable case: a Lebeau-Robbiano type strategy

Strategy of proof used in E.H. Samb (2015).
A. Benabdallah, Y. Dermenjian & J. Le Rousseau
(2007),
K. Beauchard, P. Cannarsa & R. Guglielmi (2014),
A. Benabdallah, F. Boyer, M. González-Burgos &
G. Olive (2014).

See also L. Miller (2010).

The restriction in space strategy relies on
null controllability of the 1D problem in arbitrary time and cost of controllability like
CeC/T

spectral inequality in the other direction
The proof uses a Lebeau-Robbiano type strategy: succession of steps of control of low
frequencies and dissipation.

What if x0 is such that T0(x0) > 0 ?
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Goal of this section

In the rest, we focus on space-time biorthogonal families for any time T .
Even if the problem is not null controllable in time T !

We will use
a nice biorthogonal family for the 1D problem
spectral inequality in the other direction
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Setting

Eigenelements

λk,m = k2π2 +m2π2, φk,m(x, x′) = sin(kπx) sin(mπx′).(
B∗φk,m

)
(x′) = sin(kπx0) 1(a,b)(x

′) sin(mπx′).

Moment problem: find u ∈ L2((0, T )× (a, b)) such that for all k,m ≥ 1,

sin(kπx0)

∫ T

0

∫ b

a
e−λk,m(T−t) sin(mπx′)u(t, x′)dx′dt = −e−λk,mT

〈
y0, φk,m

〉
.

Look for a biorthogonal family in L2((0, T )× (a, b)) to

Fk,m : (t, x′) 7→ e−λk,mt sin(mπx′), ∀k,m ≥ 1.
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1 Moment method: the appropriate extension of biorthogonal families

2 A direct construction in cylindrical geometries: heat equation controlled from a hyperplane
Strategy of proof and related results
A nice biorthogonal family for the relaxed problem
The restriction operator

3 A direct construction in cylindrical geometries: dealing with spectral condensation
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First step: a nice biorthogonal family in L2((0, T )× (0, 1))

As λk,m = k2π2 +m2π2, for any fixed m ≥ 1, biorthogonal family
(
qk,m

)
in L2(0, T ;R)

to
t ∈ (0, T ) 7→ e−λk,mt, k ≥ 1,

with estimate
‖qk,m‖ ≤ CeC/T eC

√
λk,m , ∀k,m ≥ 1.

For instance, A. Benabdallah, F. Boyer & M. M. (2020) and refined estimates F. Boyer
& M. M. (2023).

Orthogonality in L2((0, 1),R) of (sin(mπ·))m≥1 implies that

Qk,m : (t, x′) 7→ qk,m(t) sin(mπx′)

forms a biorthogonal family in L2((0, T )× (0, 1)) to

Fk,m : (t, x′) 7→ e−λk,mt sin(mπx′), ∀k,m ≥ 1

with estimate

‖Qk,m‖L2((0,T )×(0,1)) ≤ Ce
C/T eC

√
λk,m , ∀k,m ≥ 1.

Same construction as F. Boyer & G. Olive (2023).
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1 Moment method: the appropriate extension of biorthogonal families

2 A direct construction in cylindrical geometries: heat equation controlled from a hyperplane
Strategy of proof and related results
A nice biorthogonal family for the relaxed problem
The restriction operator

3 A direct construction in cylindrical geometries: dealing with spectral condensation

Morgan MORANCEY Biorthogonal families and moment method in higher dimension 29



From (0, 1) to (a, b)

Prove that the restriction in space operator

R : Span{Fk,m ; k,m ≥ 1}L
2((0,T )×(0,1)) → Span{Fk,m ; k,m ≥ 1}L

2((0,T )×(a,b))

F 7→ F|(a,b)

is an isomorphism where

Fk,m : (t, x′) 7→ e−λk,mt sin(mπx′), ∀k,m ≥ 1

Projection of the biorthogonal family Qk,m onto Span{Fk,m ; k,m ≥ 1}L
2((0,T )×(0,1))

then apply (R∗)−1

−→ family (Q̃k,m)k,m such that∫ T

0

∫ b

a
Q̃k,m(t, x′)Fj,l(t, x

′)dx′dt =

∫ T

0

∫ 1

0
Qk,m(t, x′)Fj,l(t, x

′)dx′dt.
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Properties of the restriction operator

To prove that the restriction operator is bi-continuous, the key point is

∫ T

0

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′dt ≤ C

∫ T

0

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′dt

for any

PN (t, x′) =
N∑
k=1

N∑
m=1

ak,mFk,m(t, x′).

Integrated observability inequality with constant cost: not much hope...

Morgan MORANCEY Biorthogonal families and moment method in higher dimension 31



Properties of the restriction operator: weighted spaces

We prove that, for α > 0 sufficiently large,

∫ T

0

∫ 1

0
e−

αβ
t
∣∣PN (t, x′)

∣∣2 dx′dt ≤ C
∫ T

0

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′dt (??)

for any

PN (t, x′) =
N∑
k=1

N∑
m=1

ak,mFk,m(t, x′)

where
Fk,m : (t, x′) 7→ e−λk,mt sin(mπx′), ∀k,m ≥ 1

and β > 0 is the constant appearing in the 1D spectral inequality

∫ 1

0

∣∣∣∣∣∣
∑
m≤λ

cm sin(mπx′)

∣∣∣∣∣∣
2

dx′ ≤ eβλ
∫ b

a

∣∣∣∣∣∣
∑
m≤λ

cm sin(mπx′)

∣∣∣∣∣∣
2

dx′.

Introduction of a weight function leads to some modifications in the announced strategy. For
instance, adapt the construction of Qk,m such that it vanishes near t = 0.
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Proof of (??): frequency cut-off and spectral inequality

PN (t, x′) =
N∑
k=1

N∑
m=1

ak,me
−λk,mt sin(mπx′)

We separate the study for t ∈
(
0, α
N

)
and t ∈

(
α
N
, T
)
.

Inspired by Miller (2010).
Let t ∈

(
0, α
N

)
⇐⇒ N < α

t
. Then, the spectral inequality implies

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′ =

∫ 1

0

∣∣∣∣∣
N∑
m=1

(
N∑
k=1

ak,me
−λk,mt

)
sin(mπx′)

∣∣∣∣∣
2

dx′

≤ eβN
∫ b

a

∣∣∣∣∣
N∑
m=1

(
N∑
k=1

ak,me
−λk,mt

)
sin(mπx′)

∣∣∣∣∣
2

dx′

≤ e
αβ
t

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′

which gives (??) when T < α
N
.
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Proof of (??): dissipation wins over cost of biorthogonal family

Let t ∈
(
α
N
, T
)
. Recall that PN (t, x′) =

N∑
k=1

N∑
m=1

ak,me
−λk,mt sin(mπx′)

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′ =

∫ 1

0

∣∣∣∣∣∣
∑
m≤α

t

(
N∑
k=1

ak,me
−λk,mt

)
sin(mπx′)

∣∣∣∣∣∣
2

dx′

+

∫ 1

0

∣∣∣∣∣∣
∑
m>α

t

(
N∑
k=1

ak,me
−λk,mt

)
sin(mπx′)

∣∣∣∣∣∣
2

dx′
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Proof of (??): dissipation wins over cost of biorthogonal family

Let t ∈
(
α
N
, T
)
. Recall that PN (t, x′) =

N∑
k=1

N∑
m=1

ak,me
−λk,mt sin(mπx′)

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′ =

∫ 1

0

∣∣∣∣∣∣
∑
m≤α

t

(
N∑
k=1

ak,me
−λk,mt

)
sin(mπx′)

∣∣∣∣∣∣
2

dx′

+

∫ 1

0

∣∣∣∣∣∣
∑
m>α

t

(
N∑
k=1

ak,me
−λk,mt

)
sin(mπx′)

∣∣∣∣∣∣
2

dx′

Spectral inequality

∫ 1

0

∣∣∣∣∣∣
∑
m≤α

t

. . .

∣∣∣∣∣∣
2

dx′ ≤ e
αβ
t

∫ b

a

∣∣∣∣∣∣
∑
m≤α

t

. . .

∣∣∣∣∣∣
2

dx′ = e
αβ
t

∫ b

a

∣∣∣∣∣∣
 ∑
m≤N

−
∑
m>α

t

 . . .

∣∣∣∣∣∣
2

dx′

≤ 2e
αβ
t

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′ + 2e

αβ
t

∫ 1

0

∣∣∣∣∣∣
∑
m>α

t

. . .

∣∣∣∣∣∣
2

dx′
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Proof of (??): dissipation wins over cost of biorthogonal family

Let t ∈
(
α
N
, T
)
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ak,me
−λk,mt sin(mπx′)
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∣∣∣∣∣∣
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m≤α

t

(
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ak,me
−λk,mt
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sin(mπx′)

∣∣∣∣∣∣
2

dx′

+

∫ 1

0

∣∣∣∣∣∣
∑
m>α

t

(
N∑
k=1

ak,me
−λk,mt

)
sin(mπx′)

∣∣∣∣∣∣
2

dx′

Thus,

e−
αβ
t

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′ ≤ 2

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′ + 3

∑
m>α

t

∣∣∣∣∣
(

N∑
k=1

ak,me
−λk,mt

)∣∣∣∣∣
2
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Proof of (??): dissipation wins over cost of biorthogonal family

e−
αβ
t

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′ ≤ 2

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′ + 3

∑
m>α

t

∣∣∣∣∣
(

N∑
k=1

ak,me
−k2π2t

)
e−m

2π2t

∣∣∣∣∣
2

Estimate of the coefficients ak,m

|ak,m| ≤ CeC/T e
αβ
2ε eCπ

√
k2+m2

eε(k
2+m2)π2

(∫ T

0

∫ 1

0
e−

αβ
t
∣∣PN (t, x′)

∣∣2 dx′dt

)1/2

.

Use

eCπ
√
k2+m2 ≤ exp

(
C

2t

)
exp

(
t

2
(k2 +m2)π2

)
,

choice of ε depending on t and estimate of the rest of the series∑
m>α

t

e−m
2τ ≤

C
√
τ
e
−α

2

t2
τ

imply ∑
m>α

t

|. . . |2 ≤
CT

t3
exp

(
C + αβ − α2

t

)∫ T

0

∫ 1

0
e−

αβ
t
∣∣PN (t, x′)

∣∣2 dx′dt.

Choice of α sufficiently large and integration in the variable t gives the estimate (??).
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0
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0
e−

αβ
t
∣∣PN (t, x′)

∣∣2 dx′dt

)1/2

.

Proof: for any ε > 0, the biorthogonal family Qεk,m to Fk,m in L2((0, T )× (0, 1)) such that
Qεk,m(t, ·) = 0 for t ∈ (0, ε) satisfies

‖Qεk,m‖L2((0,T )×(0,1)) ≤ Ce
C/T eC

√
λk,meελk,m

and
ak,m =

〈
Qεk,m, PN

〉
=
〈
e
αβ
2· Qεk,m, e

−αβ
2· PN

〉
.

Key point: the estimate of ak,m is not exponential.

Use

eCπ
√
k2+m2 ≤ exp

(
C

2t

)
exp

(
t

2
(k2 +m2)π2

)
,
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t
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√
τ
e
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2
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τ
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Choice of α sufficiently large and integration in the variable t gives the estimate (??).

Morgan MORANCEY Biorthogonal families and moment method in higher dimension 35



Proof of (??): dissipation wins over cost of biorthogonal family

e−
αβ
t

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′ ≤ 2

∫ b

a

∣∣PN (t, x′)
∣∣2 dx′ + 3

∑
m>α

t

∣∣∣∣∣
(

N∑
k=1

ak,me
−k2π2t

)
e−m

2π2t

∣∣∣∣∣
2

Estimate of the coefficients ak,m

|ak,m| ≤ CeC/T e
αβ
2ε eCπ

√
k2+m2

eε(k
2+m2)π2

(∫ T

0

∫ 1

0
e−

αβ
t
∣∣PN (t, x′)

∣∣2 dx′dt

)1/2

.
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eCπ
√
k2+m2 ≤ exp

(
C

2t

)
exp

(
t

2
(k2 +m2)π2

)
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τ
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Summary of the construction of a biorthogonal family

We have used
a nice biorthogonal family in L2((0, T )× (0, 1)) to

Fk,m : (t, x′) 7→ e−λk,mt sin(mπx′), ∀k,m ≥ 1.

It mostly comes from the biorthogonal family (qk,m) to the time exponentials(
t 7→ e−λk,mt

)
k≥1

and orthogonality of
(

sin(mπ·)
)
m≥1

on (0, 1).

The isomorphism property of the restriction operator from (0, 1) to (a, b) in the x′
variable between appropriate (weighted) spaces.
It mostly comes from the non-exponential estimate of qk,m and the spectral inequality

∫ 1

0

∣∣∣∣∣∣
∑
m≤λ

cm sin(mπx′)

∣∣∣∣∣∣
2

dx′ ≤ eβλ
∫ b

a

∣∣∣∣∣∣
∑
m≤λ

cm sin(mπx′)

∣∣∣∣∣∣
2

dx′.

This gives a biorthogonal family Gk,m to Fk,m in L2((0, T )× (a, b)) satisfying

‖Gk,m‖L2((0,T )×(a,b)) ≤ Ce
C/T eC

√
λk,m .
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Application to the study of null controllability

We have a biorthogonal family Gk,m to Fk,m in L2((0, T )× (a, b)) satisfying

‖Gk,m‖L2((0,T )×(a,b)) ≤ Ce
C/T eC

√
λk,m .

Moment problem: find u ∈ L2((0, T )× (a, b)) such that for all k,m ≥ 1,

sin(kπx0)

∫ T

0

∫ b

a
e−λk,m(T−t) sin(mπy)u(t, x′)dx′dt = −e−λk,mT

〈
y0, φk,m

〉
.

2D heat equation controlled on {x0} × (a, b) has minimal null control time

T0(x0) = lim sup
k→+∞

− ln | sin(kπx0)|
k2π2

.

When T > T0(x0), null controllability follows from the convergence of the series

u(t, x′) =

+∞∑
k=1

+∞∑
m=1

e−λk,mT

sin(kπx0)

〈
y0, φk,m

〉
Gk,m(T − t, x′).

Lack of null controllability when T < T0(x0): tensorization of the 1D counterexample.
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3 A direct construction in cylindrical geometries: dealing with spectral condensation
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A different example

Simultaneous controllability on Ω = (0, 1)× (0, 1).
∂ty +

(
−∆ 0
0 −∆ + p(x)

)
y = 0,

y|∂Ω =

(
1Γu
1Γu

)
.

The function p satisfies ∂x′p = 0.
L. Ouaili (2019). 1D setting: minimal null control time (Dirichlet boundary condition at
x = 0) given by the condensation index of the eigenvalues

T0(p) = lim sup
k→+∞

− ln |k2π2 − λk(p)|
k2π2

.

2D setting: same minimal time with Γ = {0} × (a, b).
Eigenvalues

Λ =
{
k2π2 +m2π2 ; k,m ≥ 1

}
∪
{
λk(p) +m2π2 ; k,m ≥ 1

}
.
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Applying the previous strategy does not work well...

PN (t, x′) =
N∑
k=1

N∑
m=1

(
ak,m,1e

−(k2+m2)π2t + ak,m,2e
−(λk(p)+m2π2)t

)
sin(mπx′)

Spectral condensation =⇒ biorthogonal family to the time exponentials

‖qk,m‖L2(0,T ;R) ' e
(k2+m2)π2T0(p)

F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014)

estimate of |ak,m,i| will be of exponential-type
and thus is not sufficient to prove convergence of the series∑

k,m

(
ak,m,1e

−(k2+m2)π2t + ak,m,2e
−(λk(p)+m2π2)t

)
sin(mπx′).
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A (not only) commercial break: block moment problems

A. Benabdallah, F. Boyer & M. M. (2020)
Scalar control, complete family of observable eigenvectors, weak-gap condition,∑
λ∈Λ

1
λ
< +∞.

Resolution and study of the cost of resolution of block moment problems
∫ T

0
e−λk,jtvk(t)dt = ωk,j , ∀1 ≤ j ≤ gk,∫ T

0
e−λtvk(t)dt = 0, ∀λ ∈ Λ\Gk.

Application to the characterization of the minimal null control time

F. Boyer & M. M. (2023)
Generalization to any admissible control operator.
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Patch the proof (inspired by A. Benabdallah, F. Boyer & M. M. (2020))

PN (t, x′) =
N∑
k=1

N∑
m=1

(
ak,m,1e

−(k2+m2)π2t + ak,m,2e
−(λk(p)+m2π2)t

)
sin(mπx′)

Let t ∈ (0, T ) and qtk,m be the solution for m ≥ 1 fixed of the block moment problem

∫ T

0
qtk,m(s)e−(k2+m2)π2sds = e−(k2+m2)π2t,∫ T

0
qtk,m(s)e−(λk(p)+m2π2)sds = e−(λk(p)+m2π2)t,∫ T

0
qtk,m(s)e−(νj+m

2π2)sds = 0, νj ∈ {j2π2, λj(p)}, j ≥ 1.

Then, 〈
qtk,m sin(mπ·), PN

〉
= ak,m,1e

−(k2+m2)π2t + ak,m,2e
−(λk(p)+m2π2)t

and (see A. Benabdallah, F. Boyer & M. M. (2020))

‖qtk,m‖L2(0,T ;R) ≤ Ce
C/T eC

√
k2+m2

e−(k2+m2)π2t

This implies ∣∣∣ak,m,1e−(k2+m2)π2t + ak,m,2e
−(λk(p)+m2π2)t

∣∣∣
≤ CeC/T eC

√
k2+m2

e−(k2+m2)π2t

(∫ T

0

∫ 1

0

∣∣PN (t, x′)
∣∣2 dx′dt

)1/2

.

The rest of the proof follows as previously using estimates of such blocks instead of estimates
of ak,m,i.
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A general result

"Theorem"
Cylindrical geometry and tensorized operators

Λ =
{
λk + µm ; k,m ≥ 1

}
On the direction associated with λk: nice 1D assumptions (to solve block moment
problems) on the eigenvalues. Allow geometrically multiple eigenvalues.
On the direction associated with µm: asymptotic of µm + Riesz-basis property for the
eigenvectors + spectral inequality for the eigenvectors.

=⇒ construction and estimate of a space-time biorthogonal family for any time T > 0.

Conclusion:
this construction of space-time biorthogonal families allows to study controllability in
some cylindrical geometric configurations even in the presence of a positive minimal null
control time ;
the moment method can be applied in much more general geometric settings but a lot
remains to be done...

Thank you for your attention
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