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e Moment method: the appropriate extension of biorthogonal families
@ General abstract setting
@ The moment method for a scalar control
@ Space-time biorthogonal families
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Goal of this first section

Let © C R™ be a smooth bounded domain and consider the heat equation
Oy — Ay = 1,u
y()joa =0
y(0) = yo

Goal : "prove" null controllability i.e. for any T' > 0 and yo there exists u such that y(7) =0
using the moment method.
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e Moment method: the appropriate extension of biorthogonal families
@ General abstract setting




Abstract linear control problem

{y’(t) + Ay(t) = Bu(t), t€(0,T),
y(0) = yo.

o —A generates a C%-semigroup on the Hilbert space (X, ||-||),
o The space of controls is the Hilbert space (U, ||-||;;)-

e The control operator B : U — D(A*)". Assume (for simplicity) that

Ll

* 2
BretA zHU dt < Cllz|2, V2 e D(AY).

Mo
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Notion of solution

Wellposedness theorem

Let T > 0. For any yo € X and any u € L?(0,T;U), there exists a unique solution
y € C°([0,T], X) characterized by

W(®).2) — (w,e=472) = [ (ur) Bre DAY ar,

for any ¢t € [0,7T], and any z € X.
Moreover, there exists C' > 0 such that for any such yo, u, the solution satisfies

ly@ll < € (llvoll + lull 20,701 » ¥ € [0,7T.
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e Moment method: the appropriate extension of biorthogonal families

@ The moment method for a scalar control
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Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (¢x)xeca the associated sequence of normalized eigenvectors and we
assume that it forms a Hilbert basis of X.
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Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (¢x)xeca the associated sequence of normalized eigenvectors and we
assume that it forms a Hilbert basis of X.

Definition of solutions: for all A € A,

T
(), 63) = (yo, e Tor) = /0 e AT (u(t), B )y dt.
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Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (¢x)xeca the associated sequence of normalized eigenvectors and we
assume that it forms a Hilbert basis of X.

Definition of solutions: for all A € A,

T
(), 63) = (yo, e Tor) = /0 e AT (u(t), B ¢) y dt.
Hilbert basis of eigenvectors (¢x)xena :

T
WD) =0 = [N (o), B o)y dt = — (e o) VA€ A
0
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Assumptions and moment problem

The setting
o Assume that the operator A* admits a sequence of positive eigenvalues A.

o We denote by (¢x)xeca the associated sequence of normalized eigenvectors and we
assume that it forms a Hilbert basis of X.

Definition of solutions: for all A € A,

T
(), 63) = (yo, e Tor) = /0 e AT (u(t), B ¢) y dt.
Hilbert basis of eigenvectors (¢x)xena :

T
WD) =0 = [N (o), B o)y dt = — (e o) VA€ A
0

T
= / e M (u(t), B*¢x)p dt = — <y0,e*AT¢A>, vieA
0

with v := (T — ).
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Reduction to a moment problem when dimU =1

o Scalar control (dim U = 1) with observable eigenvectors (B*¢y # 0)
T
y(T) =0 / e (u(t), B )y dt = = (yo,e T dr ), VAE A
0

T
<— B*¢>>\/ e_”v(t)dt =— <y0,e_)‘T¢>\> ,VAeEA
0

T
At _ AT (22N
<— [/0 e Mu(t)dt = —e <y0, N > , VA e A]

MORANCEY
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Resolution of the moment problem using a biorthogonal family

T
Find v such that / e Mo(t)dt = —e T <yo7 2\ > , VAEA
0 B*

Null controllability in time 7' = existence of a biorthogonal family (gx)xeca to the
exponentials associated with A in L2(0,T;R)

T
[ erama =0, vuea
0
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Resolution of the moment problem using a biorthogonal family

T
Find v such that / e Mo(t)dt = —e T <yo7 2\ > , VAEA
0 B*

Null controllability in time 7' = existence of a biorthogonal family (gx)xeca to the
exponentials associated with A in L2(0,T;R)

T
[ erama =0, vuea
0

T
/ e Mgy (t)dt = 1.
0

1
Existence of such biorthogonal family Schwarte Z — < +o0.

AEA A

u:te (0,T)— — Ze_’\T <yo,8f7;>\>%(T—t)

AEA

In this case,

formally solves the moment problem.

Question: estimate B*¢), and H‘D\”L?(O,T;R) to prove that the series converges in L2(0, T;R).
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Some estimates on biorthogonal families

Under the gap condition (|]A — | > p, VA # pu € A).
o H.O. Fattorini & D.L Russell (1974): |lgxll2(0,7;r) < Ce e,
Uniform estimates with respect to A in a certain class.
e A. Benabdallah, F. Boyer, M. Gonzalez Burgos & G. Olive (2014)
Sharper estimates + dependency /T [lqxll2(0,rir) < CeC/TeCVA,

o P. Cannarsa, P. Martinez & J. Vancostenoble (2020)
Optimal estimates + dealing with asymptotic gap.

Under a weak gap condition (gap between blocks of bounded cardinality)
e N. Cindea, S. Micu, I. Roventa & M.Tucsnak (2015)
Union of two sequences with gap condition plus a non-condensation assumption
o A. Benabdallah, F. Boyer & M. M. (2020)
e M. Gonzélez Burgos & L. Ouaili (2020)

Without any gap condition
e F. Ammar Khodja, A. Benabdallah, M. Gonzalez Burgos & L. de Teresa (2014)
Condensation index of the sequence.

e D. Allonsius, F. Boyer & M. Morancey (2021)
"Local" gap for each .
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e Moment method: the appropriate extension of biorthogonal families

@ Space-time biorthogonal families
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The moment problem for the heat equation

Hilbert basis (¢x)xea of eigenvectors + definition of solutions:
for any yo,

Y(T)=0 < /OT <v(t),8*e_’\tq5>\>U dt = — <y0,e—kT¢A> ,YAEA

— <v,ei>"¢)\> :—<y0,67>‘T¢,\>, VA eA

L2((0,T) xw)



The moment problem for the heat equation

Hilbert basis (¢x)xea of eigenvectors + definition of solutions:
for any yo,

Y(T)=0 < / u(t), B e *t¢A>Udt=—<yo,e—kT¢>A>,VAeA

<~ <v,ei>"¢,\> :—<y0,ef)‘T¢,\>, VA eA

L2((0,T) xw)

Natural notion of biorthogonal family

((t,:c) € (0,T) X wr gy (t,z)) e

such that -
/ / ax(t, z)e Mg, (z)dzdt = 0, Vu € A\{\},
0 w

'
/ o (t,z)e Moy (x)dzdt = 1.
0
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From biorthogonal families to controllability

With such a "space-time" biorthogonal family at hand, a formal solution of the control
problem is given by

w: (t,z) € (0,T) X wrs — Z e (yo, dx) ar (T — t, ).
AEA
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From biorthogonal families to controllability

With such a "space-time" biorthogonal family at hand, a formal solution of the control
problem is given by

w: (t,z) € (0,T) X wrs — Z e (yo, dx) ar (T — t, ).
AEA

Two very natural questions:
o why the hell should such a biorthogonal family exists 7?7

o and even if it exists, how can we estimate its norm to study convergence of the previous
series 77
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Existence of a space-time biorthogonal family (for the heat equation)

G. Lebeau & L. Robbiano (1995).
For any X € A, let yo = —e*T ¢y
Let ¢ (T — -) be the control of minimal L? norm such that y(7) = 0.

Then, by definition of solutions

(W(T).00) = (w0, o) = | @) BTN, vaea
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Existence of a space-time biorthogonal family (for the heat equation)

G. Lebeau & L. Robbiano (1995).
For any X € A, let yo = —e*T ¢y
Let ¢ (T — -) be the control of minimal L? norm such that y(7) = 0.

Then, by definition of solutions
T
WT),60) = (o™ 6,0) = [ {ar(T =6, 57T 04 6,) dt, vaea
0 U

T
= NI (G, pp) = / / ax(t,x)e g, (v)dadt, VYu e A
0 w
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Existence of a space-time biorthogonal family (for the heat equation)

G. Lebeau & L. Robbiano (1995).
For any X € A, let yo = —e*T ¢y
Let ¢ (T — -) be the control of minimal L? norm such that y(7) = 0.

Then, by definition of solutions
T
WD), 6) = (yo, e 4 ) = /0 (A@ =), BT g,) at, vuea
—)T _ [ ot A
= e (dx, Pu) = ar(t, z)e Mg, (x)dxdt, Vu €
0 w

T
= / / ax(t, x)e Ft g, (z)dxdt = Oxp-
0 w
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Existence of a space-time biorthogonal family (for the heat equation)

G. Lebeau & L. Robbiano (1995).
For any A € A, let yg = —e*T ¢y.
Let ¢ (T — -) be the control of minimal L? norm such that y(7) = 0.

Then, by definition of solutions
T
WD), 6) = (yo, e 4 ) = /0 (A@ =), BT g,) at, vuea
—)T _ [ ot A
= e (dx, Pu) = ar(t, z)e Mg, (x)dxdt, Vu €
0 w

T
= / / ax(t, x)e Ft g, (z)dxdt = Oxp-
0 w

General "theorem":
Hilbert basis of eigenvectors + null controllability in time Ty

existence of a biorthogonal family to (67%8*(]5)\))\ N in L2 (0,To;U)
€

biorthogonal element = control that drives o ¢ to 0 in time Ty
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Estimates on biorthogonal families

e Null controllability in time Tp with cost of controllability Cr,.
biorthogonal element gy = control that drives e*T0¢y to 0
= llaallz20,70:0) < Crollvoll = Cryer™
implies convergence of the series

u: (t7 :l?) € (07T) X W= — Z e_AT <y07¢>\>q)\(T - tim)'
AEA

for any T' > Tp : null controllability by the moment method in time 7" > Tp.
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Estimates on biorthogonal families

e Null controllability in time Tp with cost of controllability Cr,.
biorthogonal element gy = control that drives e*T0¢y to 0
AT
= |laxllz20,1;0) < Crpllyoll = Crye™™°

implies convergence of the series

u: (t7 :l?) € (07T) X W= — Z e_AT <y07¢>\>q)\(T - tim)'
AEA

for any T' > Tp : null controllability by the moment method in time 7" > Tp.
o Null controllability in arbitrary time. Let 7' > 0. For any € € (0,7T),
A
||q>\||L2(O,T;U) < Cee®

implies null controllability by the moment method in any time 7" > 0.
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Estimates on biorthogonal families

e Null controllability in time Tp with cost of controllability Cr,.
biorthogonal element gy = control that drives e*T0¢y to 0
= llaxlz20,10:0) < Crollwoll = Cryer™o
implies convergence of the series
u: (t7 :l?) € (07T) X W= — Z e_AT <y07¢)\> (I)‘(T - tim)'
AEA
for any T' > Tp : null controllability by the moment method in time 7" > Tp.

o Null controllability in arbitrary time. Let 7' > 0. For any € € (0,7T),

A
||q>\||L2(O,T;U) < Cee®
implies null controllability by the moment method in any time 7" > 0.
p

o Null controllability in arbitrary time T > 0 with cost of controllability Ce€/T (M.
Gonzalez Burgos (private communication)). Let T > 0. Construction of gy on a
time-interval depending on A implies

T
laxliz2 o,y < CeC/TeCVA,
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The big que

How to prove existence of such "space-time" biorthogonal family and estimate it (without
using that the problem is null controllable) 7?7
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e A direct construction in cylindrical geometries: heat equation controlled from a hyperplane
o Strategy of proof and related results
@ A nice biorthogonal family for the relaxed problem
@ The restriction operator

an MORANC



2D heat equation controlled from a hyperplane

Let Q = (0,1) x (0,1).

8ty - Ay = 610 l(a,b) (x,)u(tr x,x'), te (OvT)v (xvx,) €N
y(t’ )\BQ =0, t€(0,T),
y(0,z, ") = yo(z,z’), (z,2") € Q.

Goal : find w such that y(T) =0
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2D heat equation controlled from a hyperplane

Let Q = (0,1) x (0,1).

8ty - Ay = 610 1(a,b) (x,)u(tr a:,ar;,), te (OvT)v (xvx,) €N
y(t’ )\BQ =0, t€(0,T),
y(0,z, ") = yo(z,z’), (z,2") € Q.

Goal : find w such that y(T) =0
or rather design and estimate a biorthogonal family associated with this null controllability
problem.
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e A direct construction in cylindrical geometries: heat equation controlled from a hyperplane
o Strategy of proof and related results




Strategy of proof

The first idea is inspired by H.O. Fattorini & D.L Russell (1974): solve a "relaxed" simpler
problem and deduce the existence and estimates of biorthogonal families from an abstract
restriction argument.

x
Q=(0,1) x (0,1)
1
be
ae
0' To 1 z
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Strategy of proof

The first idea is inspired by H.O. Fattorini & D.L Russell (1974): solve a "relaxed" simpler
problem and deduce the existence and estimates of biorthogonal families from an abstract
restriction argument.

a,/,/
Q=(0,1) x (0,1)

1
0 Zo 1 z

o Here, "relaxed" problem = biorthogonal family associated with control on {zg} x (0,1).

o Then, use a restriction argument in the space variable z’.
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Previous results on this example

e The 1D case by S. Dolecki (1973).

Oty — Ozzy = Oz U,
y(t,0) = y(t,1) = 0.

Minimal null control time given by

. —In |sin(kmzg .
To(zo) = llimsup%, with Tp((0,1)) = [0, +o0].
—+oo

It is related to the competition between observation of eigenvectors (sin(kﬂxo)) and

dissipation (e‘k2 "2T) .
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Previous results on this example

o The 1D case by S. Dolecki (1973).
Oy — Ozay = 6zou7
y(¢,0) = y(¢t, 1) =0.

Minimal null control time given by

—In|sin(kmzo)|

To(xzo) = limsup

im s 52 . with Tp((0,1)) = [0, +o0).
— o0

It is related to the competition between observation of eigenvectors (sin(kmzo)) and
2.2
dissipation (e*k " T).

o The 2D case by E.H. Samb (2015).

x
Q=(0,1) x (0,1)
1
Minimal null control time given by Tp(zo).
0 To 1 T

Mo
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Previous results on this example

o The 1D case by S. Dolecki (1973).

Oy — Ozay = 6zou7
y(t,0) = y(t,1) = 0.

Minimal null control time given by

—1 in(k
To(0) = lim sup — 2 SETZ0)|

im s o . with Tp((0,1)) = [0, +o0).
— o0

It is related to the competition between observation of eigenvectors (sin(kmzo)) and

L 2 2
dissipation (e*k " T).

o The 2D case by E.H. Samb (2015).

z/
Q=(0,1) x (0,1)
Under assumptions on xg that imply 1
o To(wo) =0
o the cost of controllability in small time
behaves like Ce€/T
null controllability in any time a
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Space restriction in a favorable case: a Lebeau-Robbiano type strateg

Q=(0,1) x (0,1)

X
Strategy of proof used in E.H. Samb (2015).
A. Benabdallah, Y. Dermenjian & J. Le Rousseau 1
(2007), b
K. Beauchard, P. Cannarsa & R. Guglielmi (2014),
A. Benabdallah, F. Boyer, M. Gonzalez-Burgos &
G. Olive (2014).

. as

See also L. Miller (2010).

0

The restriction in space strategy relies on

e null controllability of the 1D problem in arbitrary time and cost of controllability like

CeC/T

o spectral inequality in the other direction

The proof uses a Lebeau-Robbiano type strategy: succession of steps of control of low

frequencies and dissipation.
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Space restriction in a favorable case: a Lebeau-Robbiano type strateg

Q=(0,1) x (0,1)

X
Strategy of proof used in E.H. Samb (2015).
A. Benabdallah, Y. Dermenjian & J. Le Rousseau 1
(2007), b
K. Beauchard, P. Cannarsa & R. Guglielmi (2014),
A. Benabdallah, F. Boyer, M. Gonzalez-Burgos &
G. Olive (2014).

. as

See also L. Miller (2010).

0

The restriction in space strategy relies on

e null controllability of the 1D problem in arbitrary time and cost of controllability like

CeC/T

o spectral inequality in the other direction

The proof uses a Lebeau-Robbiano type strategy: succession of steps of control of low

frequencies and dissipation.

What if z¢ is such that Tp(zg) >0 7
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Goal of this section

In the rest, we focus on space-time biorthogonal families for any time T'.
Even if the problem is not null controllable in time T'!
We will use

@ a nice biorthogonal family for the 1D problem

o spectral inequality in the other direction
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Setting

o Eigenelements
Meym = k22 + mPn?, ®k,m(z,x") = sin(knz) sin(mmnz’).

(B* ¢r,m) (2') = sin(krao) 1 (4 p) (¢') sin(mra’).
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Setting

o Eigenelements
Meym = k22 + mPn?, ®k,m(z,x") = sin(knz) sin(mmnz’).
(B* ¢r,m) (2') = sin(krao) 1 (4 p) (¢') sin(mra’).
o Moment problem: find u € L%((0,T) x (a,b)) such that for all k,m > 1,

T b
sin(kmrzo) / / e~ Mem (T sin(mra Yu(t, 2’ )dz'dt = —e= T (yo, dp m ) .
0 a
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Setting

o Eigenelements
Meym = k22 + mPn?, ®k,m(z,x") = sin(knz) sin(mmnz’).
(B* ¢r,m) (2') = sin(krao) 1 (4 p) (¢') sin(mra’).
o Moment problem: find u € L%((0,T) x (a,b)) such that for all k,m > 1,

T rb
sin(kmzo) / / e em (T=8) sin(mrg’ Yu(t, 2’ )da'dt = —e~Mem T (Y0, Pr,m.) -
0 a

o Look for a biorthogonal family in L2((0,7T) x (a,b)) to

Fim : (t,2") — e Memt sin(mra’), Vk,m > 1. J

Mo
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e A direct construction in cylindrical geometries: heat equation controlled from a hyperplane

@ A nice biorthogonal family for the relaxed problem
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First step: a nice biorthogonal family in L?((0,7) x (0,1))

o As A\ = k%72 + m2x2, for any fixed m > 1, biorthogonal family (Qk,m) in L?(0,T;R)
to
te(0,T) — e Mmt  Ek>1,

with estimate
lgk,mll < CeC/TeV m  ,m > 1.

For instance, A. Benabdallah, F. Boyer & M. M. (2020) and refined estimates F. Boyer
& M. M. (2023).
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First step: a nice biorthogonal family in L?((0,7) x (0,1))

o As A\ = k%72 + m2x2, for any fixed m > 1, biorthogonal family (Qk,m) in L?(0,T;R)
to
te(0,T) — e Mmt  Ek>1,

with estimate
lgk,mll < CeC/TeV m  ,m > 1.

For instance, A. Benabdallah, F. Boyer & M. M. (2020) and refined estimates F. Boyer
& M. M. (2023).

o Orthogonality in L2((0,1),R) of (sin(mm-))p,>1 implies that
Qk,m @ (t,2") = g m (t) sin(mmz’)
forms a biorthogonal family in L2((0,T) x (0, 1)) to
Fiom : (2, x') e Meymt sin(mma’), Vk,m>1
with estimate
1QkmllL2((0,7)x (0,1)) < CeC/TeCV hm ik m > 1.

Same construction as F. Boyer & G. Olive (2023).
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e A direct construction in cylindrical geometries: heat equation controlled from a hyperplane

@ The restriction operator




From (0,1) to (a,b)

@ Prove that the restriction in space operator

L?((0,7)x(0,1)) L?((0,T)x(a,b))

R : Span{Fj , ; k,m > 1} — Span{Fy, , ; k,m > 1}

Foooem Flay
is an isomorphism where

Fhom : (t,2') = e~ Meomt sin(maa’), Vk,m >1
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From (0,1) to (a,b)

@ Prove that the restriction in space operator

L?((0,7)x(0,1)) L?((0,T)x(a,b))

R : Span{Fj , ; k,m > 1} — Span{Fy, , ; k,m > 1}

Foooem Flay
is an isomorphism where

Fhom : (t,2') = e~ Meomt sin(maa’), Vk,m >1

2
o Projection of the biorthogonal family Q ., onto Span{F} ., ; k,m > l}L (0.1)x(0,1))
then apply (R*)~1

— family (Qk,m)hm such that

T b _ T 1
/ / Gk b,V Fy (1, 27) ' dt = / / Qi (6,2 Fy (1, 2/) ' .
0 a 0 0
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Properties of the restriction operator

To prove that the restriction operator is bi-continuous, the key point is

T 1 9 T b 9
/ / | Py (t, )| dz’dth/ / | Py (t,2")|” da’dt
0 0 0 a

N N
Py(t,a) =D ) armFrm(t ).
k=1m=1

for any

Integrated observability inequality with constant cost: not much hope...

1 MORANCEY Biorthogonal fam nd moment method in dimension



Properties of the restriction operator: weighted spaces

We prove that, for a > 0 sufficiently large,

T 1 s ) T b )
/ / e ¢ |Pn(t,2))] dx'dtSC/ / |Pr (¢, 2")|” dz’dt (%)
0 0 0 a
for any
N N
PN(tax/) = Z Z ak,ka,m(tax/)
k=1m=1
where

Fim @ (t,2") — e Mk,mt sin(mmz’), Vk,m > 1

and S > 0 is the constant appearing in the 1D spectral inequality

2 2

1 b
/ Z emsin(mrz’)| dz’ < em‘/ Z cm sin(mnrz’)| da’.
0 a

m<A m<A

Introduction of a weight function leads to some modifications in the announced strategy. For
instance, adapt the construction of Qj, ,, such that it vanishes near ¢t = 0.
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Proof of (xx): frequency cut-off and spectral inequality

N N
Pyn(t,z') = Z Z ak,me_Akvmt sin(mmz’)

We separate the study for ¢ € (0, &) and t € (&, 7).
Inspired by Miller (2010).

Let t € (07 %) <= N < 7. Then, the spectral inequality implies

1 1 N N 2
/ |PN(t,x/)|2dx':/ Z <Z ak,me_Akvmt> sin(mmz’)| da’
0 0 |m=1 \k=1
b| N N 2
< eBN/ Z < ak’mekkvmt> sin(mmz’)| dz’
2 |Im=1 \k=1
ap [P 2
<et / |PN(t,x/)| dz’
a

which gives (+x) when T’ < .
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Proof of (xx): dissipation wins over cost of biorthogonal family

N N
Let t € (§,T). Recall that Py(t,z') = Z Z ag,me” kmt sin(mra’)

N 2
E ak,me_kk’mt> sin(mma’)| da’
k=1

2

N
AL . ’ ’
E ap.me Mem? | sin(mra’)| da

nd moment method in h r dimension
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Proof of (xx): dissipation wins over cost of biorthogonal family

N N
Let t € (%,T). Recall that Py (t,z') = Z Z ak,me_’\kv’"t sin(mmz’)
k=1m=1

1 1
[ pwtearpe =[] 5 (
0 0 m< ¢ \k

1| N
—I—/ | E E ap e kmt sin(mnz’)| da’
Jo |

lm>< o=
m> g k=1

2

N
ak’me)‘k,mt> sin(mmz’)| dz’

=1

Spectral inequality

2 2 2

1 ws [0 ws [0
/ Z de’ <et dx’:eT/ - .| da!
0 a

m<e a m< e m<N  m>%

afB b af 1 |
3267/ |PN(t,x')}2dx'+2eT/ S|
a JO |
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Proof of (xx): dissipation wins over cost of biorthogonal family

Let t € (&,

Thus,

_QB

MORANCEY

N
T). Recall that Py (t,a) = Z
=

ag,me " Fmt sin(mra’)

i

2

1 N
/ |PN(t,ac')|2 dz’ :/ (Z akymeAkvmt> sin(mnz’)| da’
0 0 e

m<e

2

—|—/ < (7;_,“f/\""”f> sin(mnz’)| da’
|m>< \k=1

t
. .
E (]]\,./71,({7)\/""”/
k=1

b
|PN (t,2")|? da’ < 2/ |Py(t,a")?da’ +3

m/\f

nd moment method in h r dimension




Proof of (xx): dissipation wins over cost of biorthogonal family

N 5 « o «
—k2n2t —m2m2t
g ap.me €
k=1

[e3 1 b
e_Tﬂ/ |PN(t,x’)|2daz/ < 2/ |PN(t,x’)|2dx/+3 Z
0 a Y

S &
m> 3
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Proof of (xx): dissipation wins over cost of biorthogonal family

N 5 « o «
E —k2n2t —m2m2t
Al m€ €
k=1

T 1 1/2
lak,m| < CeC/T 58 (OnVE24m? e (k?+m?)x? (/ / % | Py (t,2")|? dx/dt) ’
o Jo

[e3 1 b
e_Tﬂ/ |PN(t,x’)|2daz/ < 2/ |PN(t,x’)|2dx/+3 Z
0 a m/\%

Estimate of the coefficients aj, ,
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Proof of (xx): dissipation wins over cost of biorthogonal family

o b
e~ of |PN(t T )|2dx/ < 2/ |PN(t,:E
a

Estimate of the coefficients ay, »,
1/2
ap 2 ﬁ
lagm| < CeC/Te 3 OV m? e (k2 +m?) (/ / |PN(t,x’)|2dx’dt) _

Proof: for any & > 0, the biorthogonal family Q% , to F , in L?((0,T) x (0,1)) such that
¢ (t,-) =0 for t € (0,¢) satisfies

k,m

Q% mll L2 (0.7 x (0,1)) < CeC/TeCV ki eEXkm

and

= Qs Py ) = (% Qe ¥ Py

Key point: the estimate of ay ,, is not exponential.
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Proof of (xx): dissipation wins over cost of biorthogonal family

e_Tﬂ/ |Px(t,2")|* da’ < 2/ |Pw (¢, 2)|? da’ + 3 >
0 a

S &
m> 3

Estimate of the coefficients aj, ,

Use

t
eCﬂ'\/k2+m2 < exp (%) exp (§(k2 + m2)7r2) ,

choice of £ depending on ¢ and estimate of the rest of the series

2
S it St
<=

o
m>g
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E —k2n2t —m?m
Al m€ €
k=1

T 1 1/2
lak,m| < CeC/T 58 (OnVE24m? e (k?+m?)x? (/ / % | Py (t,2")|? dx/dt) ’
o Jo




Proof of (xx): dissipation wins over cost of biorthogonal family

_*/ |PN(tw)| da’ <2/ |PN(tw)| da’ +3Z

m> ¢

\' b b - 5
(E /("n"/) —m2n2t
Al m€ €
k=1
Estimate of the coefficients aj, ,

T 1 1/2
lak,m| < CeC/T 58 (OnVE24m? e (k?+m?)x? (/ / % | Py (t,2")|? dx/dt) ’
o Jo
Use

/ t
eC‘rr k24+m? < exp (%) exp (5

choice of £ depending on ¢ and estimate of the rest of the series

2
S it St
<=

o
m>g

N C C A2 T 1 «
ST 373T exp (#)/ / e~ | Py (t,2)|? da'dt.
0 0

Choice of « sufficiently large and integration in the variable ¢ gives the estimate (x).

(K + m2>7r2) ,

imply
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Summary of the construction of a biorthogonal family

We have used
o a nice biorthogonal family in L2((0,T) x (0, 1)) to

Fim : (t,a3") — e~ Memt sin(mra’), Vk,m > 1.

It mostly comes from the biorthogonal family (gx ) to the time exponentials

(t— e_’\k’mt) and orthogonality of (sin(mmn-)) on (0,1).

k>1 m2>1

o The isomorphism property of the restriction operator from (0, 1) to (a,b) in the z’
variable between appropriate (weighted) spaces.
It mostly comes from the non-exponential estimate of gy ,, and the spectral inequality

2 2

1 b
/ Z cm sin(mrz’)| da’ < e’w/ Z cm sin(mmz’)| da’.
0

m<A @ Im<

This gives a biorthogonal family Gy m to Fj m in L2((0,T) X (a, b)) satisfying

Gk, mllL2((0,7)x (b)) < Ce/ TV em,
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Application to the study of null controllability

We have a biorthogonal family Gy, », to Fi p, in L%((0,T) x (a,b)) satisfying

Gl 22 ((0,7) x (a,)) < CeC/T eV rm,

o Moment problem: find u € L2((0,T) x (a,b)) such that for all k,m > 1,

T b
sin(kmzo) / / e~ Mhm (T=) sin(may)u(t, 2/ )da'dt = —e~ MoomT (Y0, Pr,m) -
0 a
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Application to the study of null controllability

We have a biorthogonal family Gy, », to Fi p, in L%((0,T) x (a,b)) satisfying

C/T O\ R

1Gk,mll2((0,1)x (a,p)) < Ce
o Moment problem: find u € L2((0,T) x (a,b)) such that for all k,m > 1,

T b
sin(kmzo) / / e~ Mhm (T=) sin(may)u(t, 2/ )da'dt = —e~ MoomT (Y0, Pr,m) -
0 a

2D heat equation controlled on {zo} X (a,b) has minimal null control time

— In|sin(k
To(zo) = limsupin | 51211(27rm0)|.
k—+oo k2

o When T > Ty(zo), null controllability follows from the convergence of the series

+o00 +oo —

tm)—zz

k=1m=1

, G T —t2).
sin(kmx ) yO ¢k’m> ko )

o Lack of null controllability when T' < Ty (zo): tensorization of the 1D counterexample.
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e A direct construction in cylindrical geometries: dealing with spectral condensation
@ An example with condensation of eigenvalues
@ General result
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@ An example with condensation of eigenvalues




A different example

Simultaneous controllability on Q = (0,1) x (0, 1).

—A 0
8ty+(0 —A—i—p(:r))y_o’

1ru
Yoo = (1FU> .

The function p satisfies 9,/p = 0.

o L. Ouaili (2019). 1D setting: minimal null control time (Dirichlet boundary condition at
z = 0) given by the condensation index of the eigenvalues

. —1In|k272 — M\ (p
To(p) = gmiup%~
—+00

o 2D setting: same minimal time with I' = {0} X (a,b).
Eigenvalues

A= {k*r* + m?n?; k,m > 1} U {Mp(p) + m?n? 5 k,m > 1}
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ying the previous strategy does not work well

(21m2\ .2
(ak,m,le (S rmB st +

N
PN(t,(IZ Z

HMZ

2 2
ak,m’gef()‘k(m“n i )t) sin(mma’)

o Spectral condensation = biorthogonal family to the time exponentials

2 24,2
llax,mll L2 0,1;r) = e(k"4+m=)m=To (p)

F. Ammar Khodja, A. Benabdallah, M. Gonzélez Burgos & L. de Teresa (2014)
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ying the previous strategy does not work well...

(21m2\ .2
(ak,m,le (S rmB st +

N
PN(t,(IZ Z

HMZ

2 2
ak,m’gef()‘k(m“n i )t) sin(mma’)

o Spectral condensation = biorthogonal family to the time exponentials
2 24,2
llax,mll L2 0,1;r) = e(k"4+m=)m=To (p)

F. Ammar Khodja, A. Benabdallah, M. Gonzélez Burgos & L. de Teresa (2014)

o estimate of |ay,m, ;| will be of exponential-type
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ying the previous strategy does not work well...

HMZ

N
PN(t,(IZ Z

2. 2y 2 2 2
(ak,m,lei(k A +ak,m,267()‘k(p)+m i )t) sin(mmz’)

o Spectral condensation = biorthogonal family to the time exponentials

2 24,2
llax,mll L2 0,1;r) = e(k"4+m=)m=To (p)

F. Ammar Khodja, A. Benabdallah, M. Gonzélez Burgos & L. de Teresa (2014)

o estimate of |ay,m, ;| will be of exponential-type

o and thus is not sufficient to prove convergence of the series

2 2 2 2_2
Z (dk,m,le_(lc FmIT Ly, ge” Qr(P)FMIT )t) sin(mmz’).

k,m
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A (not only) commercial break: block moment problems

e A. Benabdallah, F. Boyer & M. M. (2020)
Scalar control, complete family of observable eigenvectors, weak-gap condition,
Z)\EA % < +oo0.

Resolution and study of the cost of resolution of block moment problems

T
/ e ity (t)dt = wy 4, V1 <j < gk,
0
T
/ e My, (t)dt = 0, VA € A\Gy.
0

Application to the characterization of the minimal null control time

e F. Boyer & M. M. (2023)
Generalization to any admissible control operator.
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Patch the proof (inspired by A. Benabdallah, F. Boyer & M. M. (2020))

N N
2., 2y 2 2 2
Py (t,z') = E E (¢1k,m71(—3_(’c HmS) T +ak7m726_(>‘k(p)+m 4 )t) sin(mmz’)
k=1m=1

Let t € (0,T) and qz m be the solution for m > 1 fixed of the block moment problem
T
0

T
/ q}tcym(s)e_(kk(l’)+m27r2)sds _ e_(Ak(pHmzﬂQ)t’

T 2_2
/O G (s)e” ITmT%ds =0, vy € {5777 N (p)}, 5 > 1

Then,
—(k?+m?)r>t + 26_(>\k(1’)+m27"2)t

+ .
<qk:,m Sln(mﬂ—')va> = Qk,m,1€ Ak,m
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Patch the proof (inspired by A. Benabdallah, F. Boyer & M. M. (2020))

N N
2., 2y 2 2 2
Py (t,z') = E E (¢1k,m71(—3_(’c HmS) T +ak7m726_(>‘k(p)+m 4 )t) sin(mmz’)
k=1m=1

Let t € (0,T) and qz m be the solution for m > 1 fixed of the block moment problem
T
0

T
/ q}tcym(s)e_(kk(l’)+m27r2)sds _ e_(Ak(pHmzﬂQ)t’

T 2_2
/O G (s)e” ITmT%ds =0, vy € {5777 N (p)}, 5 > 1

Then,

. 2.2y 2 _ 2 2
<qi,m 51n(m7r~),PN> = ak,m,1€ (kZ+m5)m=t 2€ A (p)+m=m=)t

and (see A. Benabdallah, F. Boyer & M. M. (2020))
)< CeC/TGC'\/k2+m2e—(k2+m2)7r2t

Ak m

||QItc,m||L2(O,T;R
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Patch the proof (inspired by A. Benabdallah, F. Boyer & M. M. (202

M=

N
Py(t,a') ="

k=1m

2 2 2 2_2
(ak:,m,le_(k FmOTE 4 g pe” QR @) EMIT )t) sin(mmnz")

1

Then,

RHmD)7>t | g e O (@) Fm? )t

t . —
<qk,m Sln(mﬂ-')v‘PN> = Qk,m,1€ Ak,m

and (see A. Benabdallah, F. Boyer & M. M. (2020))

/1.2 2 _ (1.2 2 2
g mllL2(0,7:r) < CeC/TCV R Am? o= (R mT)m=t

This implies

—(k24m?)x2t ta

Ak m,1€

. 2e—<xk(p)+m2w2)t’

T pl 1/2
cosrmesem (7 'y oocs)”
o Jo

The rest of the proof follows as previously using estimates of such blocks instead of estimates
of ag m,i-
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e A direct construction in cylindrical geometries: dealing with spectral condensation

@ General result




A general result

"Theorem"

o Cylindrical geometry and tensorized operators
° A:{)\kJr,um; k,mzl}

@ On the direction associated with Ag: nice 1D assumptions (to solve block moment
problems) on the eigenvalues. Allow geometrically multiple eigenvalues.

@ On the direction associated with p,,: asymptotic of p,, + Riesz-basis property for the
eigenvectors + spectral inequality for the eigenvectors.

—> construction and estimate of a space-time biorthogonal family for any time 7" > 0.
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A general result

"Theorem"

o Cylindrical geometry and tensorized operators
° A:{/\kJr,um; k,mzl}

@ On the direction associated with Ag: nice 1D assumptions (to solve block moment
problems) on the eigenvalues. Allow geometrically multiple eigenvalues.

@ On the direction associated with p,,: asymptotic of p,, + Riesz-basis property for the
eigenvectors + spectral inequality for the eigenvectors.

—> construction and estimate of a space-time biorthogonal family for any time 7" > 0.

Conclusion:

o this construction of space-time biorthogonal families allows to study controllability in
some cylindrical geometric configurations even in the presence of a positive minimal null
control time ;

o the moment method can be applied in much more general geometric settings but a lot
remains to be done...
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A general result

"Theorem"

o Cylindrical geometry and tensorized operators
° A:{/\kJr,um; k,mzl}

@ On the direction associated with Ag: nice 1D assumptions (to solve block moment
problems) on the eigenvalues. Allow geometrically multiple eigenvalues.

@ On the direction associated with p,,: asymptotic of p,, + Riesz-basis property for the
eigenvectors + spectral inequality for the eigenvectors.

—> construction and estimate of a space-time biorthogonal family for any time 7" > 0.

Conclusion:

o this construction of space-time biorthogonal families allows to study controllability in
some cylindrical geometric configurations even in the presence of a positive minimal null
control time ;

o the moment method can be applied in much more general geometric settings but a lot
remains to be done...

Thank you for your attention
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