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Introduction

Background

Shape Optimization is used in Solid and Fluid Mechanics:

Linear Elasticity
Navier-Stokes Equations

Mathematical results:

Existence of optimal shapes
The first order and the second order optimality conditions
Numerical methods of shape optimization and Applications

Geometric Analysis of Properties of Gradient Flow Dynamical System for
Shape Optimization
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Introduction

Geometric Aspects

Pavel I. Plotnikov and Jan Sokolowski:
Geometric Framework for Gradient Flow in Shape Optimization,
Springer Briefs, in preparation.
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Introduction

Structural Optimization

The compliance problem is one of the most important shape optimization
problems in the elasticity theory. In the simplest case, it can be formulated as
follows. It is assumed that the two-component material fills a domain Ω ⊂ R2,
which consists of two subdomains Ω+ and Ω− = Ω \ cl Ω+ occupied by different
components. The displacement field u(x) satisfies the equations of the elasticity
theory

div
(
a(∇u +∇u⊤) + bdiv u I

)
= 0 in Ω, (1)(

a(∇u +∇u⊤) + bdiv u I
)
· n+ g = 0 on ∂Ω.

Here, a = a± and b = b± in Ω± are the elasticity coefficients, g is a given
external force. The problem is to minimize the work of external force by optimally
chosen shape of the inclusion Ω+.
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Introduction

Compliance Problem

In this case, the cost function is determined by the expression

Jc =

∫
Ω

(
a(∇u +∇u⊤) + bdiv u I

)
: ∇u dx .

Note that Jc is a Kohn-Vogelius type functional and its Hadamard gradient
admits an effective integral representation. It seems interesting to extend the
results of the forthcoming book (P.I. Plotnikov, J.S., Geometric Framework for
Gradient Flow in Shape Optimization) to the case of the compliance problem.
The possibility of such a generalization is due to the fact that transmission
problem (1) is reduced to a boundary value problem for a pair of piece-wise
holomorphic functions using the Kolosov-Muskhelishvili formulae. Therefore, we
can apply the method developed in the book.
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Introduction

Shape Optimization

1 Direct method of calculus of variations: regularization and shape calculus;

2 State equation, cost functional, numerical method of solution: finite
elements;

3 Phase field method for problems depending on characteristic functions: a
possibility to use the homogenization method;

4 Level set method based on the shape gradent and/or on the topological
derivative concept.

Jan Sokolowski (IBS PAN, IECL) Shape Optimization Aug. 20, 2024 6 / 17



Introduction

Shape Optimization

1 The convergence of simple gradient method for numerical solution of shape
optimization problems is still not known.

2 We have a result on the convergence in two spatial dimensions for a model
problem.

The regularization of the cost is required in order to assure the
existence of an optimal shape.
The regularization term can be considered as a cost of manufacturing
so the parameter is not small.
in numerical methods of shape optimization the discretization of the
continuous gradient is exclusively used, the exact gradient is expensive.
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Model Problem

In the simplest case, the transmission single measurement identification problem
can be formulated as follows. Suppose that a material occupies the bounded
simple connected region Ω in the space of points x ∈ R2. Without loss of
generality, we can assume that the boundary of Ω is infinitely differentiable
Jordan curve. The inclusion, which is unknown and must be determined together
with the solution, occupies the simply connected subdomain Ω+ ⋐ Ω with the
Jordan boundary Γ. The equilibrium equations for the electric field potential
u : Ω → R can be written as

div (a0∇u) = 0 in Ω,

ν · ∇u = q on ∂Ω.
(2)

Here q is a given distribution of the voltage, ν is the outward normal to ∂Ω. We
will assume that

q ∈ L2(∂Ω),

∫
∂Ω

q ds = 0. (3)

The conductivity a0 is defined by the equalities

a0 = 1 in Ω− = Ω \ Ω+, a0 = a in Ω+, (4)

where a ̸= 1 is a given positive constant.
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Model Problem

For every q satisfying condition (3), problem (2) admits a unique solution
u ∈ W 1,2(Ω) satisfying the orthogonality condition∫

∂Ω

u ds = 0. (5)

The problem on the identification of the inclusion Ω+ is formulated as follows.
For a given function P : ∂Ω → R, it is necessary to find an inclusion Ω+ such
that the solution to problem (2) satisfies the extra boundary condition

u = P on ∂Ω. (6)

More generally, the problem of identification is to determine the shape of the
inclusion by the additional boundary condition. This inverse problem is ill-posed
and in general case has no solution. In practice, its approximate solution can be
found by solving the variational problem

min
Ω+∈O

J (Ω+) , (7)

where the objective function J (Ω+) is a positive function that vanishes if and
only if a solution to problem (2) satisfies condition (6), O is some class of
admissible inclusions. Notice that the mapping Ω+ → u, where u is a weak
solution to problem (2), determines a nonlinear operator, which takes the set of
admissible shapes O into W 1,2(Ω).
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Model Problem

The most successful choice of the objective function is the Kohn-Vogelius energy
functional, which is defined by the equality,

J (Ω+) =

∫
Ω

a0∇(u − U) · ∇(u − U) dx . (8)

Here u,U : Ω → R satisfy the equations and boundary conditions

div (a0∇u) = 0, div (a0∇U) = 0 in Ω,

∇u · ν = q, U = P on ∂Ω. (9)

Unfortunately, the identification problems as stated with no additional geometric
constrains are ill-posed. Because in the absence of strong compactness of the
minimizing sequences of designs, the optimal state should be attained by a fine
mixture of different phases. The natural and widely used approach is to penalize
the cost functional. In order to describe the penalization procedure and explain
our strategy, it is convenient to introduce some standard notation, which will be
used throughout of the book.
Denote by S1 the unit circle supplemented with the angle variable θ. We will
consider 2π periodic functions f : R → Rd as mappings f : S1 → Rd . Hereinafter
we will use the notation ∂ ≡ ∂θ.
An immersion f : S1 → Rd is a C 1 mapping satisfying the condition

0 < f − ≤ |∂f (θ)| ≤ f + < ∞.
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Model Problem

If an immersion is bijection, then we will say that f is an embedding.
For a given f , denote by Γ ⊂ Rd the curve Γ = f (S1). The arc-length variable s
on Γ and the length element ds of Γ are functions of θ. They are defined by the
equalities

s(θ) =

∫ θ

0

√
g(σ) dσ, ds =

√
g(θ) dθ, g = |∂f |2. (10)

In this setting, the derivative ∂s = g−1/2∂ := g−1/2∂θ with respect to the
arc-length variable becomes a nonlinear differential operator.
The tangent vector τ to Γ and the curvature vector k are given by the equalities

τ (θ) = ∂s f (θ) := |∂f |−1 ∂θf (θ), k(θ) = ∂sτ (θ) = ∂2
s f (θ). (11)

Notice that k is orthogonal to τ . For every smooth vector field
ϕ : S1 × (0,T ) → Rd , the space and time normal connections ∇s and ∇t are
defined by the relations

∇s ϕ = ∂sϕ− (∂sϕ · τ ) τ , ∇t ϕ = ∂tϕ− (∂tϕ · τ ) τ , (12)

which can be written in the equivalent form

∇s ϕ = Π∂sϕ, ∇t ϕ = Π∂tϕ, Πϕ = ϕ− (ϕ · τ ) τ .
For planar curves, we assume that the point f (θ) moves around Γ in the positive
counterclockwise direction while the parameter θ increases. In this case, the
tangent vector τ and the normal vector n = (−τ2, τ1) form the positive
orthonormal frame moving along Γ.
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Model Problem

The Euler elastica energy Ee and the length P of Γ are determined by the formulae

Ee =
1

2

∫
Γ

|k|2 ds, P =

∫
Γ

ds. (13)

The total energy E of the curve Γ is given by the equality

E = Ee + P =

∫
Γ

(1
2
|k|2 + 1

)
ds. (14)

Assuming that the interface Γ = ∂Ω+, we can take the strong regularization of
the Kohn-Vogelius functional in the form E + J .
With this notation we may consider the cost function J , as a functional defined
on the set of smooth embeddings f : S1 → Ω. Recall the definition of the
Hadamard gradient of J (f ).

Definition 1

A vector field dJ (f ) = Bn : S1 → R2, B ∈ L1(S1) is said to be the Hadamard
gradient of J at the point f , if the integral identity

lim
t→0

1

t

(
J (f + tδf )− J (f )

)
=

∫
Γ

Bn · δf ds ≡
∫ 2π

0

√
g Bn · δf dθ (15)

holds for every smooth vector field δf : S1 → R2.
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Model Problem

The explicit formulae for the Hadamard gradients of the Kohn-Vogelius type
functionals are well known in literature. In particular, the Hadamard gradient of
the Kohn-Vogelius functional (8) is given by

dJ = 2
(
a0∂nu

[
∂nu

]
− a0∂nU

[
∂nU

]
)n (16)

−
[
a0∇u · ∇u − a0∇U · ∇U

]
n,

where n is the inward normal to ∂Ω+ = Γ,
[
·
]
denotes the jump across Γ in the

normal direction from Ω− towards Ω+, u and U are solutions to equations (9).
The gradient of the cost functional can be regarded as a nonlinear operator acting
on the periodic mapping f : S1 → R2. We will denote this operator by

B(f ) := dJ (f ) = Bn.
It is a classic result that the Hadamard gradients dEe and dP are defined by the
equalities

dEe(f ) = ∇s∇s k+
1

2
|k|2 k, dP = −k,

In particular, we have

dE(f ) = ∇s∇s k+
1

2
|k|2 k− k ≡ A(f ). (17)

Note that A(f ) is a quasilinear fourth order differential operator.
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Model Problem

We split it into the elastic part Ae and the perimeter part Ap,

A = Ae +Ap, Ae = ∇s∇s k+
1

2
|k|2 k, Ap = −k.

The most important question of the theory is the construction of a robust
algorithm for the numerical study of shape optimization problems. The standard
approach is to use the steepest descent method which can be described as
follows. The Hadamard shape gradient dJ = B can be regarded as a normal
vector field on Γ parallel to the normal vector field n. If f is sufficiently smooth,
for example f ∈ C 2+α, then the mapping f + σdJ (f ) defines an immersion of S1
into R2 for all sufficiently small σ > 0. In the steepest descent method, the
optimal immersion f and the corresponding shape Γ = f (S1) are determined as a
limit of the sequence of immersions

fn+1 = fn − σ dJ (fn), n ≥ 0, (18)

and the corresponding sequence of curves Γn = fn(S1). The steepest descent
method for our problem have been investigated by many authors. Recurrent
relation (18) can be regarded as the time discretization of the evolution problem

∂t f + B(f ) = 0 in S1 × [0,T ), f
∣∣∣
t=0

= f0 (19)

with a quasi-time t. This equation is nothing else but the gradient flow of the
Kohn-Vogelius functional.
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Model Problem

Similarly, the gradient flow of the regularized Kohn-Vogelius functional is defined
by the equations

∂t f +A(f ) + B(f ) = 0 in S1 × [0,T ), f
∣∣∣
t=0

= f0. (20)

It can be regarded as a perturbation of a well-known geometric equation

∂t f +A(f ) = 0 in S1 × [0,T ), f
∣∣∣
t=0

= f0 (21)

called the straightening equation or one-dimensional Willmore flow. In this case,
it is not necessary to consider Γ as boundary of some planar domain. Therefore,
we will consider the straightening equation in the space of multidimensional
immersions f : S1 × (0,T ) → Rd , d ≥ 2. The straightening equation can be
written in the form of the evolutionary nonlinear partial differential equation

∂t f +∇2
sk+

1

2
|k|2k− k = 0, f (0) = f0. (22)
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Model Problem

Results

1 The local solvability of equations (20) and (21) is shown.

2 The equations (20) and (21) (like e.g., the reaction-diffusion equations)
have no type. The type is identified after linearization at a given solution.
The tangential component of the equations is a nonlinear ODE.

3 The Nash-Moser type Newton method with smoothing is used for the proof.
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Model Problem
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