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For a fixed bounded domain €2 and right-
hand side f let ug be the unique solution of
the elliptic PDE

—div(aVu) = f in Q
u=20 on 0f2.

Given a class A of admissible choices we
want to solve an optimization problem of the
form

min{/Qj(a:,ua)d:c : aeA}.

Joint work with M.S. Gelli and D. Lucic
(SIAM Math. Anal. 2023)



Thisis an optimal control problem, with state
variable w, control variable a, state equation

—div(aVu) = f in Q
u=20 on 0X2.

and cost functional

J(u) = /Qj(:c, u) dx.

The space of states is the Sobolev space
H&(Q) and the class of admissible controls
is A.



This is part of a larger research program,
with J. Casado-Diaz and F. Maestre (U. Sevilla),
concerning optimization problems for elliptic
PDEs, where one is interested in:

e optimal coefficients for — div (a(aj)Vu) = f;
e optimal potentials for —Au 4+ V(z)u = f;
e optimal right-hand side for —Au = f.

In this lecture we focus on the first problem.
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The simplest case is when j(xz,s) = f(x)s,
that is we want to minimize the quantity
(called compliance)

Cla) = /Q f(x)ug dz.

This corresponds to determine the density
of material producing the stiffest membrane
(for a given load f). By an integration by

parts we easily find that C(a) = —2&(a), where
£ is the energy

E(a) = inf { /Q (a(x)|Vu|2—f(a:)u) dr : u € C%(Q}}
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If the admissible class is of the form

A= {/Qw(a) dx = m},

with ¢ convex, by a Lagrange multiplier A
(no loss of generality for taking A = 1) we
are reduced to the problem

inf {C(a) +/Q7,b(a) de : a> O},
or equivalently (recall that C(a) = —2&(a))

Sup{g(a)—%/gw(a)dw : aZO}.



This is a max / min problem:

sup  _int [ (CalVuP—f@)u-Su(@) ) d
—a u| — r)u—— a X o.

azg u=0 on 9N JQ \2 2

Assume first ¢ is superlinear, that is:

im 208

s——+oo S

= +o0.

Theorem. In this case there exists an opti-
mal coefficient aoyt € L1(Q).

The proof easily follows by the direct meth-
ods of the calculus of variations.



Indeed, for every u € C3(Q2) the map

ars [ ( a(@)|Vul? - f(z)u — —w<a>)

is weakly L1(Q) upper semicontinuous. Then
E(a) (infimum of a family of upper semi-
continuous functions) is weakly L1(Q) up-
per semicontinuous too. In addition, testing
with v = 0, we have £(a) < 0 and we obtain

/Q@D(a) dx < C.

Then, by the superlinearity of ¢, the exis-
tence of an optimal coefficient ayp: € L1(Q)
IS easily established.



We want now to characterize the optimal
coefficients aqy by means of some suitable
auxiliary variational problem.

It is well known that in general sup4infg is
different from infgsup 4, but the case above
IS very particular, with the function of the
pair (a,u) convex with respect to the variable
u and concave with respect to the variable
a. Thanks to a result from min/max theory
[Ekeland 1975] we may exchange the order
of inf and sup.



We then obtain the optimization problem

inf {Sup (%a|Vu|2—f(a:)u—%¢(a)) da:}.

ueCH() | a>0/R

The supremum with respect to the variable
a can now be easily computed:

sup | (Se@ITul = f@)u - S6(@) ) d
—/ < |Vu|2) — f(ac)u) dx,

where 1* is the Legendre-Fenchel conjugate
function of v, given by

P*(t) = sup {st —(s) : s> O}.



T he auxiliary variational problem is then

. 1 .
ot (Go(9u) — s@u) e

We then proceed in the following way:

Step 1. Solve the auxiliary variational prob-
lem and get its solution uw, that belongs to
H(%(Q), since the coercivity comes from the
inequality

Pr(t) >t — (1)
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Step 2. Recover the optimal coefficient aqpt
by the necessary conditions of optimality

aopt| V% = (aopt) + ¥*(|Val?).

For instance, if ¥(s) = s2/2 we obtain the
auxiliary variational problem

1
min { /Q (Z|Vu|4 — f(:v)u) dr . u € H(%(Q)},
or equivalently the nonlinear PDE
_A4u — f7 (VS W(%A-(Q)a

whose unique solution u provides the optimal
coefficient agpt(x) = |[Va(x)|?.
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If Q is the unit disk in R? and f = 1 this
gives agpt(z) = (|x|/2)2/3

12



If Q is the unit disk in R? and f = §g this
gives aopt(x) = (27T|:L‘D_2/3.
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Another interesting case is when some a pri-
ori bounds on the admissible coefficients a
are imposed, that is

s if s € [a, ]
+o0c0 otherwise,

P(s) = {

with 0 < o < B. Computing the conju-
gate function * gives the auxiliary varia-
tional problem

. Vul? —1
we () U (5 8109us)

-+ 041{|Vu|§1}] — f(:c)u) d:v}.
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By strict convexity, the auxiliary variational
problem above admits a unique solution w.

We then obtain the necessary conditions of
optimality

(aopt = BB if |Va| > 1
S aopt = if |[Va| < 1
aopt € o, B] I |Va| = 1.
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The case when ¥ has only a linear growth:

im 20
s—+oo S8
is more delicate. In fact, denoting by M(£2)

the class of nonnegative measures in €2, the
existence result is the following.

=k > 0,

Theorem. In this case there exists an opti-
mal coefficient aopt € M(S2).

The proof is similar to the previous one, by
the direct methods of the calculus of vari-
ations with the weak convergence of mea-
sures.
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In some situations it is important to allow the
right-hand side f to be singular, for instance

with concentrations on regions of lower di-
mensions.

For a measure u the energy E(u) can be still
defined as an infimum:

E(p) = inf{%/|Vu|2du—/Qudf ue C(%(Q)}.

The definition of the convex term [(u), is
well-known and amounts to

[vw) = | w(u® do + ki,
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where u = uOdz + p* is the Radon-Nikodym
decomposition of p into absolutely continu-
ous and singular parts (with respect to the
Lebesgue measure), |u®| is the total varia-
tion of the singular measure p®, and k is the
so-called recession coefficient.

Therefore, if M is the class of nonnegative
measures, the compliance optimization prob-
lem has still the form

1 1
su inf ZIVul?dy — df — | = .
M@glue%(m/2| ulPdp— [udf - [ o)
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The question is to see what is the PDE cor-
responding to a measure u, or equivalently,
what is a more explicit way of writing the
energy £(un). This problem was considered
by [Bouchitté-B. 2001], where the notion of
tangential gradient V u was introduced.

This allows to define the Sobolev space H(%u
as the closure of C&(Q) with respect to the

norm
1/2
</|Vuu|2d,u—|—/9u2dx> / :
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The optimal compliance problem then takes
the form

max min /1|Vﬂu|2du— /udf — /lzp(,u,).
peM uEHol’/JJ 2 2

The most studied case is when 1 (s) is linear,
which corresponds to find the stiffest struc-
ture for the datum f, under a constraint on
the total mass of the measure pu, that we

take equal to 1 for simplicity. This give raise
to the PDE

— div(uVu) = f
|Vu| <1 and |Vyu| =1 p-a.e.
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where 1 is a probability measure on €2 and u
is a Lipschitz function vanishing on 92 (or
simply a Lipschitz function in the Neumann
case, when the right-hand side f has zero
average).

T his is exactly the Monge-Kantorovich equa-
tion that comes from optimal transport the-
ory; in other words, when 1/(s) = s the prob-
lem of optimal coefficients is equivalent to
an optimal transport problem.
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The optimal measure p is called in transport
theory transport density and describes the
density of transport trajectories that bring in
an optimal way, for the transport cost |z —y|,
the positive part f1T onto the negative part
f~ (in the Neumann case), or the source f
on 0%2 (in the Dirichlet case).

For instance, the following figure represents
the optimal mass density for the Neumann
problem, when the source f is a positive
Dirac mass at the point O and a negative
mass uniformly distributed on the curve S of
unitary length.
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There is a very wide literature on optimal
transport problems, we recall here the main
facts about the measure pgpt.

JfeM = popt € M possibly not unique,
fell(Q = Popt € LY(©) and is unique;
feELP(Q) = pop € LP(2) for every p € [1,4o0];
spt(f) (Neumann)

spt C convex envelope of
Pt(kopt) P {spt(f) U 82 (Dirichlet)

In addition, a mild BV and W1l regularity
for popt IS available in dimension two, in some
particular cases.
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More precisely, when d = 2, under some reg-
ularity assumptions on €2, and for some par-
ticular cases of f, we have ([Dweik 2024]):

FEBV(QNL®(Q) == oy € BV(Q),
Fewbl( )nL®(Q) = popc WHI(Q).

As far as we know, no regularity results are
available in higher dimension.

Furthermore, the correspondence between the
optimization and transport problems is un-
clear when the function i is nonlinear.
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An optimization problem more general than
the minimal compliance is the one written in
a control form:

min { /Q (j(x,ua,) + w(a)) de : a> O},
where u, solves the PDE
— div (a(a:)Vu) = f, u =0 on 0.

In this case the equivalence with an optimal
transport problem is lost and the existence
of an optimal coefficient fails in general.
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Some counterexamples are available:

- [Murat 1977] with j(z,s) = |s — ug(2)|?,
f =0, but with a boundary datum u = g on
0S2.

- [B.-Casado Diaz-Maestre 2024] with j(xz,s) =
h(x)s, f =1, and u = 0 on 0X2.

In these cases we need to relax the problem
in order to study the asymptotic behavior of
minimizing sequences.
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It is known [Murat-Tartar 1985] that a se-
quence an oOf coefficients between two pos-
itive constants o and 8 may tend (in the
sense of convergence of the corresponding
solutions, the (G-convergence introduced in
1973 by De Giorgi and Spagnolo) to a sym-
metric d x d matrix A(x).

The set M(«, 8) of all the matrices A attain-
able in this way is completely characterized
in terms of some inequalities that have to be
satisfied by their eigenvalues.
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For instance, when d = 2, the set above is
given by the symmetric 2 x 2 matrices A(x)

whose eigenvalues Aq(x) and A\>(x) are be-
tween a and 8 and satisfy the inequalities

af af
A — )
o F B =@ s et fmres

In the following figure we plot the set of at-
tainable symmetric matrices A, in the plane

(A1, A\>) of eigenvalues, when
a=1, 8= 2.
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The relaxation of the control problem above
has been studied when the penalization func-
tion 1 is linear [Cabib-Dal Maso 1988]. The
optimal control problem

min{ [ (i(z,ua) +a)de : a<a<p)
admits the relaxed formulation
min{ [ (i(z.un)+ra(A@) ) do : A€ M(a, )],

where A\ j(A) is the largest eigenvalue of A.

NoO regularity results, similar to the compli-
ance case, are available.
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In order to illustrate numerically the nonex-
iIstence example above, we take in R2 the
unitary ball B and the PDE

— div (a(m)Vu) —1 inB
u € H(%(B)

The coefficient a(x) has to be chosen to min-
imize the cost

/B(l + exq)udx + %/B a(x) dx

under the constraint a(x) € [1,2]. If e = 0 we
have the minimal compliance problem, that
admits an optimal coefficient a(x).
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When ¢ > 0 on the contrary we have seen
that no optimal coefficient exists and the
problem has to be relaxed obtaining 2 x 2
symmetric matrices A(x) that optimize the
cost

1
/B(l + ex1)udr + 5 /B Amaz(x) dx,

where \mqz is the largest eigenvalue of A(x)
and u solves

—div (A(a:)Vu) —1 inB
u € Hé(B).

We plot below the two cases.
34



For e = 0 the optimal coefficient a(x) exists and is represented above.
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For e = 0.5 we plot the ratio A\naz/Amin Of the optimal matrix A(z).
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In structural mechanics problems one looks
for the stiffest elastic structure, the appropri-
ate framework is linear elasticity; the func-
tion u : © — RY is vector valued, the load
f is a vector measure in €2, and the energy
E(a) is

£(a) = inf { A (%a(m)j(Vu) _ f(:z:)u) dm}

with u € H3(Q2; RY) in the Dirichlet case, or
v € HY(Q) in the Neumann case, where j
IS the quadratic form of linear elasticity on
symmetric d x d matrices, involving the Lamé

constants of the material.
37



The minimal compliance problem is then sim-
ilarly written as before, with C(a) = —2&(a),
but the connection with some form of trans-
port problem is missed and some differences
with respect to the scalar case are known.
The existence of an optimal measure popt
can still be obtained in a similar way as be-
fore, but the property that

spt(uopt) C convex envelope of spt(f)

IS no longer true as the two-dimensional ex-
ample below shows.
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The force field f (left) and the optimal density uop (right).
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sent 1n an optimal design.







This conjecture, 1t



T hanks for your attention
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