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RBM FOR THE HEAT EQUATION




Let T > O. Consider the heat equation

39/—-awy::f (X’O 6(071)X 037T%
Y0, =y(1)=0 te(0,T), <1>
y(x,0) = yo(x) x € (0,1),

with initial condition yo € L?(0,1) and source term f € L?(0, T; 0,1).
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FEM discretization

Consider the finite-dimensional space V), (with basis {oj}j’il).
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FEM discretization

Consider the finite-dimensional space V), (with basis {«y}j’il).

Semi-discrete problem: Find y, € C}(O, T; Vj,) such that

/&yhxtqu dx+/ OxYh (X, t)Oxgj(x dx_/fxtqu X) dx

[ 0000 = [ Beman Je 1 n,
(<))
Writing yu(x,t) = Zj’il V() (x) and y2(x) = ZJN:1 yP¢j(x).problem (3)
can be written as
EndkVi+RnVn=fn te(0,T) )
Vr(0) = V7,
where V(1) = (yi(1),...,yn(t)) and ?h is the vector with
coefficients (f, ¢;),2. Here Ex, Ry € RV*N are the so-called mass and
stiffness matrices, respectively.
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FEM discretization

Since Ey, is invertible, we can multiply the system

Endiyn+RnVh=fn te(0,T),
Yn(0)=y§,

by By := E; 1. We obtain
OVn+Anyn=Bnfn te (0, T7),
Vn(0) = Y75,

where A, = E; 'Ry,

(5)
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FEM discretization

Since Ey, is invertible, we can multiply the system

EndkVn+RnYh = fn te(0,T),
)_/)h(o) = 787
by By := E; 1. We obtain

NV h+ARY = Bh?hy te(0,T),
Vh(o) = 7!?’

where A, = Eh‘th. Using a random system, we aim to approximate

the system (5).
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Semi-discrete
system

Linear PDE



Random batch method

We need three ingredients:

e LetK e N. Consider ¢; = T/(K + 1) and I, = [6:(kR — 1), 6:K] for
everyke {1,...,K}.
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Random batch method

We need three ingredients
e LetK € N. Consider 6; = T/(K + 1) and I = [0:(k — 1), 6;R] for
everyke {1,...,K}.
e LetM e N. Consider S; € P({1,...,M}) fori e {1,...,2M}.

e Consider the family of i.i.d. random variables w = {w,}K_; with
values in {1,...,2"}. Denote by P[w, = i] = p; fori € {1,...,2M}
andk e {1,...,K}.
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Random system

We consider the matrices {AlL}M_, ¢ RV*N such that

M
An 21253’4%7
m=1
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Random system

We consider the matrices {AlL}M_, ¢ RV*N such that

M
An 21252’4%7
m=1

Thus, we introduce the random time-dependent matrix
h A
Aj(w,t) = > P tely.
meswk

where m, is a normalization constant given by

TTm = j{: Pi-

ie{je{1,....,2"} : meS;}

In particular, this construction ensures that E[AA(t)] = Ay, for each
te (0,7).
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Random system

Consider the random dynamical system

{at (0,8) + AR, 1) Vo, t) = BT ©

(0) =V}
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Random system

Consider the random dynamical system

0V (w, t) + Al(w, £)V o(w, t) = BF ,
Vi) (6)
(0) = yp.
In the following, we write
N
ya(x, 1) =Y (Va)i(x) %)

J=1

Theorem (1)

Let yr be as in (7) and let y be the solution of the heat equation with
initial condition y° € HY(O,L) and f € L2(0, T; H%(O,L)). Then,

0,
Ellye(. )~V Ol o] <€ (14 M) @

forevery t € (0, T), where C > O and C(M,w) > O are independent
of h and é;, with C(M, w) depending on the chosen decomposition.
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APPLICATION TO PDES ON
NETWORKS




Heat equation on networks

Let us consider a graph G = (&, V), bwhere V, denotes its interior
nodes, and V;, its boundary nodes.

Vo = {vi1,Vz,v3}

Vb = {V4, Vg, ..., Vll}
&={ey...,en}
S(V1) = {81,62783}.
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Heat equation on the network

On each e; withi € {1,...,10} we consider the heat equation

{afyef ~ 3oy =7, (6D € (0,L) x (0,T), ©

Yé(x,0) =yS(x), xe€(0,L).

System (9) is complemented with boundary and coupling conditions

yé(v,t) =0, VeV, eel(v),

ye(v, t) = y%2(v, 1), vV E Vo, 1,62 € E(V), (10)
> (v, ne(v) =0, ve o,

ecé(v)

over the time interval (O, T).

Let us introduce a semi-discrete system.
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FEM discretization

On each e; we define the basis functions {qu J-'il.

What about the interior vertices? 10,20



Semi-discrete equation

On each e; we define the basis functions {¢; J-'il.
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FEM discretization
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Semi-discrete equation

We can introduce the space V£ as the span of the functions

(U UL {af}) U {08, 68, ¢},
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Semi-discrete equation

We can introduce the space V£ as the span of the functions
(U,-lfl Uﬁl{aﬁj}) U{¢3, 68, ¢}, Find y, € CY(O, T; VE) such that

</ oy (x,1) QSJ X) + Oy (X, t)@xczﬁj dx) Z/ fe(x, t)tbj X) dx
/ yZ’ x,0 ¢1(X) :/ )/h,e, X ¢j (x) dx
o 0
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Semi-discrete equation

We can introduce the space V£ as the span of the functions
(U,-lfl Uﬁl{aﬁj}) U{¢3, 68, ¢}, Find y, € CY(O, T; VE) such that

. 10 L .
( / A5 (x, Di(x +axyzf(x,t)ax¢;(x>dx) = / £ (x, £)1(x) dlx
=1
/ Y2 (x, 0)gl(x) = / Y2 . ()1(x) dlx
(6] (0]

Since yy' can be written as yy/(x, t) = Zle Y7 ()¢i(x), we consider
the vector of coefficients Y, (t) = (V2 (t), ..., Yio(t )) . Then,

{Ehatvh +R,Y,=F, te(0,1), a

Yh(0) =
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Semi-discrete equation

Here we have that

R, Ry Ry  c} 0 0 0 0 0

ap a3 a3 4/h aj 0 0 0 0 0

0 &g RiRcf 0 0 0

R, = 0 0 a? a2 5/h al a$ a$ 0 0 0
0 0 0 Cg Ry Ry Ry Ry C}O 0

0 0 0 0 0 0 al al® 3/h al)

0 0 0 0 0 o’ R,

where R, € RV*N is the stiffness matrix of the 1 — d heat equation.
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Semi-discrete equation

Here we have that

[5’1 e €3 4] €4 €5 U €s €7 €3 €9 V10 810]

Ry Ry Ry ] 0 0 0 0 0

ai a3 aj 4/h aj 0 0 0 0 0

0 &5 RiR cf 0 0 0

Ry = 0 0 a? a2 5/h al a$ a$ 0 0 0

0 0 0 Cg Ry Ry Ry R, C%O 0

0 0 0 00 al al> 5,  alf

10
0 0 0 0 0 Ry

where R, € RN*N s the stiffness matrix of the 1 — d heat equation.
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Semi-discrete equation

Here we have that

[31 € €3 U1 €y €5 ) € €7 €3 €9 Y10 310]
Ry Ry Ry ] 0 0 0 0
at a3 a3 4/h ayl 0 0 9 0 0
0 cd [RfR g 0 0
Ry = 0 0 a} a3 5/h ag agi ag[ 0 0 0
0 0 0 Cg Ry Ry| Ryl Ry C%O 0
0 0 0 0 0 |2 ad® 3/h ald
0 0 0 0 0 a® Ry

where R, € RN*N s the stiffness matrix of the 1 — d heat equation.
Matrix Ej has a similar structure. Observe that
B, O O O O O O 0O O
Rh=10 O O|+|0 B, O|]+|0 O O| =R +R>+R3
O 0 O O 0 O O O B3
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Emergency of the domain decomposition

A different decomposition of Ry, induces a different domain
decomposition.

1) Overlapping decomposition:
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Emergency of the domain decomposition

2) Non-overlapping decomposition: A different election of By, B>
and Bz can introduce a non-overlapping decomposition.

14 /720



NUMERICAL IMPLEMENTATIONS



RBM and Numerical implementations

\¥e define
A, = (En)"'Ry
= (En) 'Ri+ (En) 'Rz + (En)'R3
A + AL+ A]

With the previous decomposition we can define a random matrix
Al(w). Then, the random system associated is given by

h _
{@Yp(w, t) + Ag(w, t)Yr(w,t) = F, (12)

Yr(0)=Y}.
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Numerical results

Thus, comparing the numerical solution of the heat and random
equations, we obtain (left overlapping, right non-overlapping).

Solution on each edge on x=L Solution on each edge on x=L
—y(t,L) Flys(0] w—y(t.L)  —— Elya(0)]
e & e e
012 0 o1 012 012
010 010
0.10 Z
4 010
0.08 0.08 0.08 008
0.06 0.06 0.06 0.06
0.0 05 10 0.0 05 10 0.0 05 10 0.0 05 10
e ey e e
010 0.06 T 010 0.06
0.05 ‘ 0.05
0.08 008 0.08 004
003 Y
0.06 0.03 0.06
0.0 05 10 0.0 05 10 0.0 05 10 00 05 10
es e es €
0.06 0.06 0.06 0.06
0.04 0.05 0.04 0.05
0.02 0.04 0.02 004
00 05 10 00 05 10 0.0 05 10 00 05 10
& e e e
0.08 0125 0.08 012
010
0100
0.07
007 - 0.08
0075
0.06
00 05 10 0o 05 10 0.0 05 10 0.0 05 10
eg ey e e
0.050 0.063 0.050 0.063
0.025 0062 0.025 0.062
0.000 0061 0.000 0.061

°
s
°
°
s
°
s
°
s
°

v v t ¢ 16/ 20



Comments and next steps

1. In this work, we have extend this results to the linear quadratic
regular for the heat equation.
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Comments and next steps

1. In this work, we have extend this results to the linear quadratic
regular for the heat equation.

2. Work with A. Dominguez-Corella "Mini-batch descent in
semiflows". Application of RBM to gradient flows.

3. We are working on introducing a "random" operator splitting
scheme of parabolic operators.
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Finally

Thanks for your attention.
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Main theorems used to prove Theorem 1

The proof is based on two crucial theorems.

Theorem 2 (FEM error): Let us assume that y° € H3(0,L) and

f € L?(0,T;L?(0,L)). Denote by y the solution of the heat equation
and y, the solution of the semi-discrete system. Then, there exists a
constant C > O, independent of h > O, such that

V() = va )20,y < CH*(IvolZs o0y + IF 120, miz0y)s 13)
forevery te (0,7)
Theorem 3 (RBM for ODEs): Denote by Y, and ¥ the solutions of
the semi-discrete and random equations, respectively. Then, for
everyte (0,T), we have
E[|Yn(t) = Yr®)IP] < (1A T? + 2T)IVRI + [1Bn f hllio, 7)) ?VarlARl AL,

where

2M 2
Var[Ag] := Z

i=1

h
Ah—Z':—m

meS; m

Pi
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