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Overview

1. RBM for the heat equation

2. Application to PDEs on networks

3. Numerical implementations
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RBM FOR THE HEAT EQUATION



Model

Let T > 0. Consider the heat equation
∂ty − ∂xxy = f (x, t) ∈ (0, 1)× (0,T),
y(0, t) = y(1, t) = 0 t ∈ (0,T),
y(x,0) = y0(x) x ∈ (0, 1),

(1)

with initial condition y0 ∈ L2(0, 1) and source term f ∈ L2(0,T;0, 1).

Goal: Develop a randomized algorithm for (1) that reduces its
computational cost.
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FEM discretization

Consider the finite-dimensional space Vh (with basis {ϕj}Nj=1).

Semi-discrete problem: Find yh ∈ C1(0,T;Vh) such that
∫ L

0
∂tyh(x, t)ϕj(x)dx +

∫ L

0
∂xyh(x, t)∂xϕj(x)dx =

∫ L

0
f(x, t)ϕj(x)dx,∫ L

0
yh(x,0)ϕj(x) =

∫ L

0
y0h (x)ϕj(x)dx, j ∈ {1, . . . ,N}.

(3)

Writing yh(x, t) =
∑N

j=1 yj(t)ϕj(x) and y0h (x) =
∑N

j=1 y
0
j ϕj(x),problem (3)

can be written as{
Eh∂t

#»y h + Rh
#»y h =

#»

f h, t ∈ (0,T),
#»y h(0) =

#»y 0
h ,

(4)

where #»y h(t) = (y1(t), . . . , yN(t)) and
#»

f h is the vector with
coefficients (f , ϕj)L2 . Here Eh, Rh ∈ RN×N are the so-called mass and
stiffness matrices, respectively.
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FEM discretization

Since Eh is invertible, we can multiply the system{
Eh∂t

#»y h + Rh
#»y h =

#»

f h, t ∈ (0,T),
#»y h(0) =

#»y 0
h ,

by Bh := E−1
h . We obtain{

∂t
#»y h + Ah

#»y h = Bh
#»

f h, t ∈ (0,T),
#»y h(0) =

#»y 0
h ,

(5)

where Ah = E−1
h Rh.

Using a random system, we aim to approximate
the system (5).
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Random batch method

We need three ingredients:

• Let K ∈ N. Consider δt = T/(K + 1) and Ik = [δt(k− 1), δtk] for
every k ∈ {1, . . . ,K}.
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Random system

We consider the matrices {Ah
m}Mm=1 ⊂ RN×N such that

Ah =
M∑

m=1

Ah
m,

Thus, we introduce the random time-dependent matrix

Ah
R(ω, t) =

∑
m∈Sωk

Ah
m

πm
, t ∈ Ik.

where πm is a normalization constant given by

πm :=
∑

i∈{j∈{1,...,2M} :m∈Sj}

pi.

In particular, this construction ensures that E[Ah
R(t)] = Ah for each

t ∈ (0,T).
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Random system

Consider the random dynamical system{
∂t

#»y R(ω, t) + Ah
R(ω, t) #»y R(ω, t) = B

#»

f ,
#»y R(0) =

#»y 0
h .

(6)

In the following, we write

yR(x, t) =
N∑
j=1

( #»y R)jϕj(x) (7)

Theorem (1)

Let yR be as in (7) and let y be the solution of the heat equation with
initial condition y0 ∈ H1

0(0,L) and f ∈ L2(0,T;H1
0(0,L)). Then,

E[∥yR(·, t)− y(·, t)∥2L2(0,L)] ≤ C
(
h4 +

δt
h7

C(M,ω)

)
, (8)

for every t ∈ (0,T), where C > 0 and C(M,ω) > 0 are independent
of h and δt, with C(M,ω) depending on the chosen decomposition.
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APPLICATION TO PDES ON
NETWORKS



Heat equation on networks

Let us consider a graph G = (E ,V), bwhere V0 denotes its interior
nodes, and Vb its boundary nodes.

V0 = {v1, v2, v3}
Vb = {v4, v5, . . . , v11}
E = {e1, . . . , e10}
E(v1) = {e1, e2, e3}.
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Heat equation on the network

On each ei with i ∈ {1, . . . , 10} we consider the heat equation{
∂tyei − ∂xxyei = fei , (x, t) ∈ (0,L)× (0,T),
yei(x,0) = y0ei(x), x ∈ (0,L).

(9)

System (9) is complemented with boundary and coupling conditions
ye(v, t) = 0, v ∈ Vb, e ∈ E(v),
ye1(v, t) = ye2(v, t), v ∈ V0, e1, e2 ∈ E(v),∑
e∈E(v)

∂xye(v, t)ne(v) = 0, v ∈ V0,
(10)

over the time interval (0,T).

Let us introduce a semi-discrete system.
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FEM discretization

On each ei we define the basis functions {ϕi
j}Nj=1.

What about the interior vertices? 10/20



Semi-discrete equation

On each ei we define the basis functions {ϕj}Nj=1.
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Semi-discrete equation

We can introduce the space VE
h as the span of the functions(⋃10

i=1

⋃N
j=1{ϕi

j}
)
∪ {ϕ40, ϕ60, ϕ100 }.

Find yh ∈ C1(0,T;VE
h ) such that


10∑
i=1

(∫ L

0
∂ty

ei
h (x, t)ϕ

i
j(x) + ∂xy

ei
h (x, t)∂xϕ

i
j(x)dx

)
=

10∑
i=1

∫ L

0
fei(x, t)ϕi

j(x)dx∫ L

0
yeih (x,0)ϕ

i
j(x) =

∫ L

0
y0h,ei(x)ϕ

i
j(x)dx,

Since yeih can be written as yeih (x, t) =
∑N

j=1 y
ei
j (t)ϕ

i
j(x), we consider

the vector of coefficients Yh(t) =
(

#»y e1
h (t), . . . ,

#»y e10
h (t)

)⊤
. Then,{

Eh∂tYh + RhYh = Fh, t ∈ (0, 1),
Yh(0) = Y0

h .
(11)
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Semi-discrete equation

Here we have that

where Rh ∈ RN×N is the stiffness matrix of the 1− d heat equation.
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Matrix Eh has a similar structure. Observe that

Rh =

B1 0 0
0 0 0
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0 0 0
0 0 0
0 0 B3

 = R1 + R2 + R3
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Emergency of the domain decomposition

A different decomposition of Rh induces a different domain
decomposition.

1) Overlapping decomposition:
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Emergency of the domain decomposition

2) Non-overlapping decomposition: A different election of B1, B2

and B3 can introduce a non-overlapping decomposition.
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NUMERICAL IMPLEMENTATIONS



RBM and Numerical implementations

We define

Ah = (Eh)−1Rh

= (Eh)−1R1 + (Eh)−1R2 + (Eh)−1R3

= Ah
1 + Ah

2 + Ah
3

With the previous decomposition we can define a random matrix
Ah
R(ω). Then, the random system associated is given by{

∂tYR(ω, t) + Ah
R(ω, t)YR(ω, t) = F,

YR(0) = Y0
h .

(12)
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Numerical results

Thus, comparing the numerical solution of the heat and random
equations, we obtain (left overlapping, right non-overlapping).
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Comments and next steps

1. In this work, we have extend this results to the linear quadratic
regular for the heat equation.

2. Work with A. Dominguez-Corella "Mini-batch descent in
semiflows". Application of RBM to gradient flows.

3. We are working on introducing a "random" operator splitting
scheme of parabolic operators.
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Finally

Thanks for your attention.
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Main theorems used to prove Theorem 1

The proof is based on two crucial theorems.

Theorem 2 (FEM error): Let us assume that y0 ∈ H1
0(0,L) and

f ∈ L2(0,T;L2(0,L)). Denote by y the solution of the heat equation
and yh the solution of the semi-discrete system. Then, there exists a
constant C > 0, independent of h > 0, such that

∥y(t)− yh(t)∥2L2(0,L) ≤ Ch4(∥y0∥2H1
0(0,L)

+ ∥f∥2L2(0,T;L2(0,L))), (13)

for every t ∈ (0,T)

Theorem 3 (RBM for ODEs): Denote by #»y h and
#»y R the solutions of

the semi-discrete and random equations, respectively. Then, for
every t ∈ (0,T), we have

E[∥ #»y h(t)− #»y R(t)∥2] ≤ (∥Ah∥T2 + 2T)(∥ #»y 0
h∥+ ∥Bh

#»

f h∥L1(0,T;RN))
2Var[AR]∆t,

where

Var[AR] :=
2M∑
i=1


∥∥∥∥∥∥Ah −

∑
m∈Si

Ah
m

πm

∥∥∥∥∥∥
2

pi

 .

20/20


	Overview
	RBM for the heat equation
	Application to PDEs on networks
	Numerical implementations

