

Isothermal flow in gas networks: Synchronization of observer systems

Martin Gugat Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Chair for Dynamics, Control, Machine Learning and Numerics – Alexander von Humboldt Professorship.

Benasque, August 2024,

Outline

Why do we need observers?

Model for the flow in a natural gas pipe

The observer system and exponential synchronization: Also here the exponential weights as used by Jean-Michel Coron et al. are very useful!

What about mixtures (hydrogen)? The problem of embrittlement - what is rainflow counting?

Inhalt

Why do we need observers?

Model for the flow in a natural gas pipe

The observer system and exponential synchronization: Also here the exponential weights as used by Jean-Michel Coron et al. are very useful!

What about mixtures (hydrogen)? The problem of embrittlement - what is rainflow counting?

The control system

Control devices (=controllers)

See the results of DFG CRC 154-3

Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks

In the operation of gas networks,

the control acts at

1. compressor stations,

2. valves,

3. regulators (pressure reducers). Thus the control acts only in certain points (as in *boundary control*).

The control system

Control devices (=controllers)

See the results of DFG CRC 154-3

Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks

In the operation of gas networks,

the control acts at

- 1. compressor stations,
- 2. valves,

3. regulators (pressure reducers). Thus the control acts only in certain points (as in *boundary control*).

Pointwise Control: Nodal Control

We call this control action that is concentrated in a finite number of points in space **nodal control**.

The Stabilization problem seeks

nodal control laws

(feedback laws) that lead to exponential decay of the difference between the actual state and the desired stationary state!

The Stabilization problem seeks

nodal control laws

(feedback laws) that lead to exponential decay of the difference between the actual state and the desired stationary state!

 E.g. co-located feedback (i.e. co-located actuators and sensors) of the type

 $p_x(t,0) = k_0 p_t(t,0)$

see Limits of stabilizability for a semilinear model for gas pipeline flow, M. Gugat, M. Herty, 2022.

The Stabilization problem seeks

nodal control laws

(feedback laws) that lead to exponential decay of the difference between the actual state and the desired stationary state!

 E.g. co-located feedback (i.e. co-located actuators and sensors) of the type

 $p_x(t,0)=k_0p_t(t,0)$

see *Limits of stabilizability for a semilinear model for gas pipeline flow*, M. Gugat, M. Herty, 2022.

A full state feedback law

can be constructed in a more efficient and flexible way. But e.g. in the gas network, measurements only give **pointwise data!**

The Stabilization problem seeks

nodal control laws

(feedback laws) that lead to exponential decay of the difference between the actual state and the desired stationary state!

 E.g. co-located feedback (i.e. co-located actuators and sensors) of the type

 $p_x(t,0) = k_0 p_t(t,0)$

see *Limits of stabilizability for a semilinear model for gas pipeline flow*, M. Gugat, M. Herty, 2022.

A full state feedback law

can be constructed in a more efficient and flexible way. But e.g. in the gas network, measurements only give **pointwise data!**

Why do we need observers?

In order to obtain an approximation of the **full current state**, an **observer system** can be used.

Optimal Control

In the operation of gas networks, **pressure bounds** are essential state constraints!

Optimal Control

In the operation of gas networks, **pressure bounds** are essential state constraints!

The compressor cost is a generic objective functional in the mathematical literature:

$$\int_0^T \sum_{v \in V_c} A_v q^v(t) \left[\left(\frac{p_{out,v}(t)}{p_{in,v}(t)} \right)^{R_v} - 1 \right] dt$$

(see e.g. *mixed integer approach for time-dependent gas network optimization*, 2009).

Optimal Control

In the operation of gas networks, **pressure bounds** are essential state constraints!

The compressor cost is a generic objective functional in the mathematical literature:

$$\int_0^T \sum_{v \in V_c} A_v q^v(t) \left[\left(\frac{p_{out,v}(t)}{p_{in,v}(t)} \right)^{R_v} - 1 \right] dt$$

(see e.g. *mixed integer approach for time-dependent gas network optimization*, 2009).

The gas flow has to be sufficient to satisfy the (*uncertain*) customer demand!

Optimal Control

In the operation of gas networks, **pressure bounds** are essential state constraints!

The compressor cost is a generic objective functional in the mathematical literature:

$$\int_0^T \sum_{v \in V_c} A_v q^v(t) \left[\left(\frac{p_{out,v}(t)}{p_{in,v}(t)} \right)^{R_v} - 1 \right] dt$$

(see e.g. *mixed integer approach for time-dependent gas network optimization*, 2009).

The gas flow has to be sufficient to satisfy the (*uncertain*) customer demand!

Why do we need observers?

For an optimal control problem, it is often assumed that the *initial state is known.*

This is usually not true!

Optimal Control

In the operation of gas networks, **pressure bounds** are essential state constraints!

The compressor cost is a generic objective functional in the mathematical literature:

$$\int_0^T \sum_{v \in V_c} A_v q^v(t) \left[\left(\frac{p_{out,v}(t)}{p_{in,v}(t)} \right)^{R_v} - 1 \right] dt$$

(see e.g. *mixed integer approach for time-dependent gas network optimization*, 2009).

The gas flow has to be sufficient to satisfy the (*uncertain*) customer demand!

Why do we need observers?

For an optimal control problem, it is often assumed that the *initial state is known.*

This is usually not true! In order to *approximate the initial state* **observers** are needed!

Inhalt

Why do we need observers?

Model for the flow in a natural gas pipe

The observer system and exponential synchronization: Also here the exponential weights as used by Jean-Michel Coron et al. are very useful!

What about mixtures (hydrogen)? The problem of embrittlement - what is rainflow counting?

Model for the flow in a single pipe

The isothermal Euler equations for ideal gas (see e.g. BANDA, HERTY, KLAR(2006) NHM)

For a horizontal pipe,

we have

$$\begin{pmatrix} \rho_t + \boldsymbol{q}_x = \boldsymbol{0} \\ \boldsymbol{q}_t + \left(\boldsymbol{c}^2 \,\rho + \frac{q^2}{\rho}\right)_x = -\frac{1}{2} \,\theta \, \frac{q \, |q|}{\rho}$$

- *ρ*: density
- q: flow rate
- c: sound speed

•
$$\theta = \frac{f_g}{D}$$

• f_g : friction, D: diameter

Model for the flow in a single pipe

The isothermal Euler equations for ideal gas (see e.g. BANDA, HERTY, KLAR(2006) NHM)

For a horizontal pipe,

we have

$$\begin{pmatrix} \rho_t + \boldsymbol{q}_x = \boldsymbol{0} \\ \boldsymbol{q}_t + \left(\boldsymbol{c}^2 \,\rho + \frac{q^2}{\rho}\right)_x = -\frac{1}{2} \,\theta \, \frac{q \, |q|}{\rho}$$

- *ρ*: density
- q: flow rate
- c: sound speed

•
$$\theta = \frac{f_g}{D}$$

• *f_g*: friction, *D*: diameter

Slow flow ($|q/\rho| \ll c$)

In the regular operation of gas pipelines, the flow is **subsonic**. See the results of DFG CRC 154-3

Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks

Riemann invariants - the system in diagonal form

For a general pressure law $p(\rho)$ the **Riemann invariants** are given by

$$R_{\pm}(\rho, q) = \tilde{R}(\rho) \pm rac{q}{
ho} ext{ with } \tilde{R}(\rho) = \int_{1}^{
ho} rac{\sqrt{p'(r)}}{r} dr.$$

The eigenvalues are

$$\lambda_{\pm} = rac{R_+ - R_-}{2} \pm \left(oldsymbol{p}' \left(ilde{R}^{-1} \left(rac{R_+ + R_-}{2}
ight)
ight)
ight)^{1/2}.$$

In terms of the Riemann invariants, for an edge $e \in E$ with

$$\sigma^{e}(R_{+}^{e}, R_{-}^{e}) = \nu^{e} \left| R_{+}^{e} - R_{-}^{e} \right| \left(R_{+}^{e} - R_{-}^{e} \right)$$

the PDE has the diagonal form

$$\partial_t \begin{pmatrix} R^e_+ \\ R^e_- \end{pmatrix} + \begin{pmatrix} \lambda^e_+ & 0 \\ 0 & \lambda^e_- \end{pmatrix} \partial_x \begin{pmatrix} R^e_+ \\ R^e_- \end{pmatrix} = \sigma^e(R^e_+, R^e_-) \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Node conditions

Our node conditions model 1. Conservation of mass

Node conditions

Our node conditions model

- 1. Conservation of mass
- 2. Continuity of the pressure

Continuity of the pressure

For all $v \in V$ and $e, f \in E_0(v)$ we have

 $\rho^e(x^e(v)) = \rho^f(x^f(v)).$

Also, *perfect mixing of the incoming entropies* has been suggested.

Continuity of the pressure

For all $v \in V$ and $e, f \in E_0(v)$ we have

 $\rho^e(x^e(v)) = \rho^f(x^f(v)).$

Also, *perfect mixing of the incoming entropies* has been suggested.

Notation: Outer normal $\mathbf{n}(e, v)$

Let G = (V, E). The pipes $e \in E$ correspond to intervals $[0, L^e]$. Define the 'outer normal'

$$\mathbf{n}(e,v) = \left\{egin{array}{ll} 0 & ext{if} \ e
ot\in E_0(v), \ -1 & ext{if} \ e \in E_0(v) ext{ and } x^e(v) = 0, \ 1 & ext{if} \ e \in E_0(v) ext{ and } x^e(v) = L^e. \end{array}
ight.$$

Continuity of the pressure

For all $v \in V$ and $e, f \in E_0(v)$ we have

 $\rho^e(x^e(v)) = \rho^f(x^f(v)).$

Also, *perfect mixing of the incoming entropies* has been suggested.

Notation: Outer normal $\mathbf{n}(e, v)$

Let G = (V, E). The pipes $e \in E$ correspond to intervals $[0, L^e]$. Define the 'outer normal'

$$\mathbf{n}(e,v) = \left\{egin{array}{ll} 0 & ext{if} \ e
ot\in E_0(v), \ -1 & ext{if} \ e \in E_0(v) ext{ and } x^e(v) = 0, \ 1 & ext{if} \ e \in E_0(v) ext{ and } x^e(v) = L^e. \end{array}
ight.$$

Conservation of mass

Define the mass flow $m^e = \frac{\pi}{4} (D^e)^2 q^e$. Define the **incidence matrix**

$$A = (\mathbf{n}(e, v))_{v \in V, e \in E}$$

The balance of mass is given by

Continuity of the pressure

For all $v \in V$ and $e, f \in E_0(v)$ we have

 $\rho^e(x^e(v)) = \rho^f(x^f(v)).$

Also, *perfect mixing of the incoming entropies* has been suggested.

Notation: Outer normal $\mathbf{n}(e, v)$

Let G = (V, E). The pipes $e \in E$ correspond to intervals $[0, L^e]$. Define the 'outer normal'

$$\mathbf{n}(e,v) = \left\{egin{array}{ll} 0 & ext{if} \ e
ot\in E_0(v), \ -1 & ext{if} \ e \in E_0(v) ext{ and } x^e(v) = 0, \ 1 & ext{if} \ e \in E_0(v) ext{ and } x^e(v) = L^e. \end{array}
ight.$$

Conservation of mass

Define the mass flow $m^e = \frac{\pi}{4} (D^e)^2 q^e$. Define the **incidence matrix**

$$A = (\mathbf{n}(e, v))_{v \in V, e \in E}$$

The balance of mass is given by

Am = 0.

Am = 0 (Conservation of mass).

See On the Cauchy Problem for the p-System at a Junction, COLOMBO GARAVELLO SIAM J. MATH. ANAL. 39 (2008), 1456-1471.

The system in diagonal form - (S)

G = (V, E): graph of a pipeline network

- $E_0(v)$ denotes the set of edges in the graph that are incident to a vertex $v \in V$.
- $x^e(v) \in \{0, L^e\}$ denotes the end of the interval $[0, L^e]$ corresponding to $e \in E_0(v)$.

• For
$$v \in V$$
, let $\omega_v := 2\left(\sum_{f \in E_0(v)} |D^f|^2\right)$

Let the diagonal matrix $diag(S^e)$ contain λ^e_{\pm} ; $\mu^{\nu} \in [-1, 1]$. The quasilinear system is

$$S^{e}_{+}(0, x) = y^{e}_{+}(x), x \in (0, L^{e}), e \in E, S^{e}_{-}(0, x) = y^{e}_{-}(x), x \in (0, L^{e}), e \in E,$$

 $S_{out}^{e}(t, x^{e}(v)) = (1 - \mu^{v}) u^{e}(t) + \mu^{v} S_{in}^{e}(t, L^{e}), \ t \in (0, T), \ \text{ if } |E_{0}(v)| = 1,$

$$S_{out}^{e}(t, x^{e}(v)) = -S_{in}^{e}(t, x^{e}(v)) + \omega_{v} \sum_{g \in E_{0}(v)} (D^{g})^{2} S_{in}^{g}(t, x^{g}(v)), \ t \in (0, T),$$

if $|F_{0}(v)| > 2$

$$\partial_t \begin{pmatrix} S^e_+ \\ S^e_- \end{pmatrix} + diag(S^e) \partial_x \begin{pmatrix} S^e_+ \\ S^e_- \end{pmatrix} = \sigma^e(S^e_+, S^e_-) \begin{pmatrix} -1 \\ 1 \end{pmatrix} \text{ on } [0, T] \times [0, L^e], \ e \in E.$$

Well–posedness of the system

Note that with **gas at rest**, we have a **steady state** with constant pressure and constant Riemann invariants

$$S^e_+ = S^e_- = J.$$

Semi-global classical solutions (TA-TSIEN LI,...)

Let T > 0 and a real number J be given. Then there exists $\varepsilon(T) > 0$ such that for **initial data** $y_{\pm}^e \in C^1(0, L^e)$ such that

$$\tilde{I} := \|\boldsymbol{y}_{\pm}^{\boldsymbol{e}} - \boldsymbol{J}\|_{\mathcal{C}^{1}(0, L^{\boldsymbol{e}})} \leq \varepsilon(T)$$

and control functions $u^e \in C^1(0, T)$ (e with $|E_0(v)| = 1$ for some $v \in V$) such that

$$\tilde{C} := \|u^e - J\|_{C^1(0,T)} \le \varepsilon(T)$$

that satisfy the C^1 -compatibility conditions for (S) there exists a

unique classical solution of (S) on [0, T].

There exists a constant $\hat{C}_T > 0$ such that the solution satisfies the **a priori bound**

$$\max_{e \in E} \left\{ \|S_{+}^{e} - J\|_{C^{1}((0, T) \times (0, L^{e}))}, \|S_{-}^{e} - J\|_{C^{1}((0, T) \times (0, L^{e}))} \right\} \leq \hat{C}_{T} \max\{\tilde{I}, \tilde{C}\}.$$
(1)

Inhalt

Why do we need observers?

Model for the flow in a natural gas pipe

The observer system and exponential synchronization: Also here the exponential weights as used by Jean-Michel Coron et al. are very useful!

What about mixtures (hydrogen)? The problem of embrittlement - what is rainflow counting?

The idea of the observer system is to replace the node conditions for (S) at $v \in V$ in the observer system (R) by a linear combination of two terms:

- the physical node conditions as in the original system (**S**): $S_{out} = F^{v}(S_{in})$;
- a nudging term of LUENBERGER type where the difference

$$\delta = \boldsymbol{R} - \boldsymbol{S}$$

between the observer state and the measured value is fed into the observer system (\mathbf{R}).

$$R_{out} = S_{out} + \mu^{V} [F^{v}(R_{in}) - F^{v}(S_{in})] = \mu^{V} F^{v}(R_{in}) + (1 - \mu^{v}) S_{out}.$$

The idea of the observer system is to replace the node conditions for (S) at $v \in V$ in the observer system (R) by a linear combination of two terms:

- the physical node conditions as in the original system (**S**): $S_{out} = F^{v}(S_{in})$;
- a nudging term of LUENBERGER type where the difference

$$\delta = \boldsymbol{R} - \boldsymbol{S}$$

between the observer state and the measured value is fed into the observer system (\mathbf{R}).

$$R_{out} = S_{out} + \mu^{V} [F^{v}(R_{in}) - F^{v}(S_{in})] = \mu^{V} F^{v}(R_{in}) + (1 - \mu^{v}) S_{out}.$$

The choice of the nodal parameter μ^{ν} allows to control the influence of the measured values that are prone to measurement errors.

If $|1 - \mu^{v}|$ (i.e. the weight of the Luenberger term) is small, the influence of these errors is damped.

Then the synchronization has the tendency to be slower.

For $v \in V$ let $\mu^{v} \in [0, 1]$ control the coupling of the original system to the observer system ($\mu^{v} = 1$: (**R**) decouples from (**S**); $\mu^{v} = 0$: full flow of information from (**S**)).

For $v \in V$ let $\mu^v \in [0, 1]$ control the coupling of the original system to the observer system ($\mu^v = 1$: (**R**) decouples from (**S**); $\mu^v = 0$: full flow of information from (**S**)).

The observer system has a similar structure as (S):

$$\begin{cases} R_{+}^{e}(0,x) = z_{+}^{e}(x), \ x \in (0, L^{e}), \ e \in E, \\ R_{-}^{e}(0,x) = z_{-}^{e}(x), \ x \in (0, L^{e}), \ e \in E, \\ R_{out}^{e}(t,x^{e}(v)) = (1 - \mu^{v}) \ u^{e}(t) + \mu^{v} R_{in}^{e}(t,x^{e}(v)), \ t \in (0,T), \ \text{if} \ |E_{0}(v)| = 1, \\ R_{out}^{e}(t,x^{e}(v)) = S_{out}^{e}(t,x^{e}(v)) - \mu^{v} \left[R_{in}^{e}(t,x^{e}(v)) - S_{in}^{e}(t,x^{e}(v)) \right] \\ + \mu^{v} \omega_{v} \sum_{g \in E_{0}(v)} (D^{g})^{2} \left[R_{in}^{g}(t,x^{g}(v)) - S_{in}^{g}(t,x^{g}(v)) \right], \\ t \in (0,T), \ \text{if} \ |E_{0}(v)| \ge 2, \end{cases}$$

$$\partial_t \left(\begin{array}{c} R^e_+ \\ R^e_- \end{array} \right) + diag(R^e) \, \partial_x \left(\begin{array}{c} R^e_+ \\ R^e_- \end{array} \right) = \sigma^e(R^e_+, R^e_-) \left(\begin{array}{c} -1 \\ 1 \end{array} \right) \text{on } [0, T] \times [0, L^e], \ e \in E.$$

The initial state (z_{+}^{e}, z_{-}^{e}) is an estimation of the initial state of the original system.

(R)

The difference system between (R) and (S)

For the proof of synchronization, we show that the solution of the difference system decays exponentially fast.

Let $\delta = \mathbf{R} - \mathbf{S}$. For the difference δ we obtain the system

 $\delta^{e}_{+}(0,x) = z^{e}_{+}(x) - y^{e}_{+}(x), x \in (0, L^{e}), e \in E, \ \delta^{e}_{-}(0,x) = z^{e}_{-}(x) - y^{e}_{-}(x), x \in (0, L^{e}), e \in E,$

 $\delta_{out}^{e}(t, x^{e}(v)) = \mu^{v} \delta_{in}^{e}(t, x^{e}(v)), \ t \in (0, T), \ \text{if} \ |E_{0}(v)| = 1,$

 $({\rm Diff})$

$$\begin{split} \delta^{e}_{out}(t, x^{e}(v)) &= \mu^{v} \left[-\delta^{e}_{in}(t, x^{e}(v)) + \omega_{v} \sum_{g \in E_{0}(v)} (D^{g})^{2} \delta^{g}_{in}(t, x^{g}(v)) \right], \\ &\quad t \in (0, T), \text{ if } |E_{0}(v)| \geq 2, \\ \partial_{t} \left(\frac{\delta^{e}_{+}}{\delta^{e}_{-}} \right) + diag(S^{e} + \delta^{e}) \partial_{x} \left(\frac{\delta^{e}_{+}}{\delta^{e}_{-}} \right) + \left[diag(S^{e} + \delta^{e}) - diag(S^{e}) \right] \partial_{x} \left(\frac{S^{e}_{+}}{S^{e}_{-}} \right) \\ &= \left[\sigma^{e} (\delta^{e}_{+} + S^{e}_{+}, \delta^{e}_{-} + S^{e}_{-}) - \sigma^{e} (S^{e}_{+}, S^{e}_{-}) \right] \left(\begin{array}{c} -1 \\ 1 \end{array} \right) \\ \text{ on } [0, T] \times [0, L^{e}], \ e \in E. \end{split}$$

Result on Exponential Synchronization

Result on Exponential Synchronization Let T > 0 be given.

- Assume that for each node $v \in V$, $|\mu^v|$ is sufficiently small.
- Assume that on [0, T] there exists a classical solution of (**Diff**) that satisfies a priori bounds for the C^1 -norm and hence for the eigenvalues.
- Assume that the solution of (S) and the initial state of (R) satisfy appropriate smallness conditions in C^1 .

Then the solution of (**Diff**) decays **exponentially fast** in the sense that

there exist constants $C_1 > 0$ and $\chi > 0$ (indep. of T) such that for all $t \in [0, T]$ we have $\sum_{e \in E} \int_{0}^{L^e} |\delta_+^e(t, x)|^2 + |\delta_-^e(t, x)|^2 dx \le C_1 e^{-\chi t} \sum_{e \in E} \int_{0}^{L^e} |\delta_+^e(0, x)|^2 + |\delta_-^e(0, x)|^2 dx.$

Discussion

 Due to the a priori bound, the smallness condition can be achieved for sufficiently small (in C¹) initial and boundary data for (S) and for initial data for (R) that are sufficiently close to the initial data of (S).

Discussion

 Due to the a priori bound, the smallness condition can be achieved for sufficiently small (in C¹) initial and boundary data for (S) and for initial data for (R) that are sufficiently close to the initial data of (S).

For the proof we use **exponential** weights

$$h_{\pm}(\mathbf{x}) = \exp(\mp \psi \, \mathbf{x})$$

(e.g. CORON, BASTIN, D'ANDREA-NOVEL, HAYAT and for boundary observers CASTILLO, WITRANT, PRIEUR, DUGARD)

in the Lyapunov function

$$\mathcal{E}_0^e(t) = \int_0^{L^e} h_+(x) \, |\delta_+^e(t, \, x)|^2 + h_-(x) \, |\delta_-^e(t, \, x)|^2 \, dx.$$

We show that

$$\frac{d}{dt}\mathcal{E}_0(t) \leq -\chi \, \mathcal{E}_0(t) - Q$$

with a positive real number $\chi > 0$ and

$$Q = \sum_{e \in E} h_+(x) \, \lambda_+^e(S + \delta) \, |\delta_+^e|^2(t, x)$$

$$+h_{-}(x)\,\lambda_{-}^{e}(S+\delta)\,|\delta_{-}^{e}|^{2}(t,\,x)|_{x=0}^{L^{e}}.$$

The proofs

For the proof, it suffices to show that for $|\mu^{\nu}|$ sufficiently small, we have $Q = \sum_{\nu \in V} Q^{\nu} \ge 0$,

where Q_v contains the terms in Q that correspond to a vertex $v \in V$. Then **Gronwall's Lemma** implies

 $\mathcal{E}_0(t) \leq \exp(-\chi t) \mathcal{E}_0(0)$

and the result follows.

The proofs

For the proof, it suffices to show that for $|\mu^{\nu}|$ sufficiently small, we have $Q = \sum_{\nu \in V} Q^{\nu} \ge 0$,

where Q_v contains the terms in Q that correspond to a vertex $v \in V$. Then **Gronwall's Lemma** implies

 $\mathcal{E}_0(t) \leq \exp(-\chi t) \mathcal{E}_0(0)$

and the result follows.

- Similarly, an *H*¹-Lyapunov function can be found (ongoing research).
- For an H²-Lyapunov function, we need additional assumptions since in the source term we have r → r|r| which is C¹ but not C².
 If the flow direction is fixed, there is no problem!

The proofs

For the proof, it suffices to show that for $|\mu^{\nu}|$ sufficiently small, we have $Q = \sum_{\nu \in V} Q^{\nu} \ge 0$,

where Q_v contains the terms in Q that correspond to a vertex $v \in V$. Then **Gronwall's Lemma** implies

 $\mathcal{E}_0(t) \leq \exp(-\chi t) \mathcal{E}_0(0)$

and the result follows.

- Similarly, an *H*¹-Lyapunov function can be found (ongoing research).
- For an H²-Lyapunov function, we need additional assumptions since in the source term we have r → r|r| which is C¹ but not C².
 If the flow direction is fixed, there is no problem!

The exponential synchronization of *an Observer for Pipeline Flow with Hydrogen Blending in Gas Networks*

has been studied by GUGAT, GIESSELMANN IN *SIAM Journal on Control and OptimizationVol. 62, Iss. 4 (2024)10.1137/23M1563840*. TO MODEL THE FLOW OF THE MIXTURE, WE NEED A 3×3 SYSTEM.

Exponential decay of the C^1 -norm can also be analyzed in the spirit of **geometric** optics:

Keep track of the evolution of the Riemann invariants along the characteristic curves!

Exponential decay of the C^1 -norm can also be analyzed in the spirit of **geometric** optics:

- Keep track of the evolution of the Riemann invariants along the characteristic curves!
- Define a time t₀ that is sufficiently large such that each characteristic curves passes at least once trough a 'damping node' where the factor μ^ν decreases the C¹-norm.
- Show that after the time t₀, the C¹-norm is decreased by a certain fixed factor! It is given as the product of μ^ν and an upper bound for the **possible** amplification.

Exponential decay of the C^1 -norm can also be analyzed in the spirit of **geometric** optics:

- Keep track of the evolution of the Riemann invariants along the characteristic curves!
- Define a time t₀ that is sufficiently large such that each characteristic curves passes at least once trough a 'damping node' where the factor μ^ν decreases the C¹-norm.
- Show that after the time t₀, the C¹-norm is decreased by a certain fixed factor! It is given as the product of μ^ν and an upper bound for the **possible** amplification.
- This yields the desired result, similar as in GUGAT, M., WEILAND, S. (2021). *Nodal Stabilization of the Flow in a Network with a Cycle*. JODEA 29(2), 1-23.

Exponential decay of the C^1 -norm can also be analyzed in the spirit of **geometric** optics:

- Keep track of the evolution of the Riemann invariants along the characteristic curves!
- Define a time t₀ that is sufficiently large such that each characteristic curves passes at least once trough a 'damping node' where the factor μ^ν decreases the C¹-norm.
- Show that after the time t₀, the C¹-norm is decreased by a certain fixed factor! It is given as the product of μ^ν and an upper bound for the **possible** amplification.
- This yields the desired result, similar as in GUGAT, M., WEILAND, S. (2021). *Nodal Stabilization of the Flow in a Network with a Cycle*. JODEA 29(2), 1-23.
- However: In the control literature, LYAPUNOV FUNCTIONS are a preferred tool, even for finite-time stabilization!

• We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.

- We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.
- We have shown that for arbitrarily large time intervals, under C¹-smallness conditions on the initial data, the L²-norm of the observer error decays exponentially fast.

- We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.
- We have shown that for arbitrarily large time intervals, under C¹-smallness conditions on the initial data, the L²-norm of the observer error decays exponentially fast.
- This implies that the observer *synchronizes* rapidly with the system state.

- We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.
- We have shown that for arbitrarily large time intervals, under C¹-smallness conditions on the initial data, the L²-norm of the observer error decays exponentially fast.
- This implies that the observer *synchronizes* rapidly with the system state.
- For an implementation of the observer *numerical methods* are mandatory.

- We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.
- We have shown that for arbitrarily large time intervals, under C¹-smallness conditions on the initial data, the L²-norm of the observer error decays exponentially fast.
- This implies that the observer *synchronizes* rapidly with the system state.
- For an implementation of the observer *numerical methods* are mandatory.
- The analysis is based upon a differential inequality for a **Lyapunov** function with exponential weights.

- We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.
- We have shown that for arbitrarily large time intervals, under C¹-smallness conditions on the initial data, the L²-norm of the observer error decays exponentially fast.
- This implies that the observer *synchronizes* rapidly with the system state.
- For an implementation of the observer *numerical methods* are mandatory.
- The analysis is based upon a differential inequality for a **Lyapunov** function with exponential weights.

Many questions remain:

- We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.
- We have shown that for arbitrarily large time intervals, under C¹-smallness conditions on the initial data, the L²-norm of the observer error decays exponentially fast.
- This implies that the observer *synchronizes* rapidly with the system state.
- For an implementation of the observer *numerical methods* are mandatory.
- The analysis is based upon a differential inequality for a **Lyapunov** function with exponential weights.

Many questions remain:

 Is it possible to achieve exponential synchronization with *fewer measurements*? Trees: *Do measurements at boundary nodes suffice*? For stars: *Yes*! Graphs with **cycles**: *Do we need measurements in the cycle*?

- We have presented an **observer** for a **quasilinear** model of flow in pipeline networks.
- We have shown that for arbitrarily large time intervals, under C¹-smallness conditions on the initial data, the L²-norm of the observer error decays exponentially fast.
- This implies that the observer *synchronizes* rapidly with the system state.
- For an implementation of the observer *numerical methods* are mandatory.
- The analysis is based upon a differential inequality for a **Lyapunov** function with exponential weights.

Many questions remain:

 Is it possible to achieve exponential synchronization with *fewer measurements*? Trees: *Do measurements at boundary nodes suffice*? For stars: *Yes*! Graphs with **cycles**: *Do we need measurements in the cycle*?

We expect that it works if the sensors are placed in such a way that if the graph is cut at all the sensors, only trees remain!

Inhalt

Why do we need observers?

Model for the flow in a natural gas pipe

The observer system and exponential synchronization: Also here the exponential weights as used by Jean-Michel Coron et al. are very useful!

What about mixtures (hydrogen)? The problem of embrittlement - what is rainflow counting?

We extended the observer to a model for a **mixture** of **natural gas and hydrogen**.

 We have chosen a 3 × 3 model with an additional continuity equation (see BANDA, HERTY, NGNOTCHOUYE, Coupling Drift-Flux Models with Unequal Sonic Speeds).

- We have chosen a 3 × 3 model with an additional continuity equation (see BANDA, HERTY, NGNOTCHOUYE, Coupling Drift-Flux Models with Unequal Sonic Speeds).
- At the nodes *perfect mixing* is required, that is the outgoing concentrations are the same (see COLOMBO, MAURI 2008).

- We have chosen a 3 × 3 model with an additional continuity equation (see BANDA, HERTY, NGNOTCHOUYE, Coupling Drift-Flux Models with Unequal Sonic Speeds).
- At the nodes *perfect mixing* is required, that is the outgoing concentrations are the same (see COLOMBO, MAURI 2008).
- The third eigenvalue is the *velocity* of the gas mixture.

- We have chosen a 3 × 3 model with an additional continuity equation (see BANDA, HERTY, NGNOTCHOUYE, Coupling Drift-Flux Models with Unequal Sonic Speeds).
- At the nodes *perfect mixing* is required, that is the outgoing concentrations are the same (see COLOMBO, MAURI 2008).
- The third eigenvalue is the *velocity* of the gas mixture.
- If the hydrogen has the same average velocity as the mixture, we can still obtain Riemann invariants. The new third Riemann invariant is the concentration.
- In general *Riemann invariants do not exist*. Instead we use *characteristic variables*.

- We have chosen a 3 × 3 model with an additional continuity equation (see BANDA, HERTY, NGNOTCHOUYE, Coupling Drift-Flux Models with Unequal Sonic Speeds).
- At the nodes *perfect mixing* is required, that is the outgoing concentrations are the same (see COLOMBO, MAURI 2008).
- The third eigenvalue is the *velocity* of the gas mixture.
- If the hydrogen has the same average velocity as the mixture, we can still obtain Riemann invariants. The new third Riemann invariant is the concentration.
- In general *Riemann invariants do not exist*. Instead we use *characteristic variables*.
- There are two time-scales: Pressure waves are fast and concentration travels much more slowly.

