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State estimation on networks using observers

▶ Estimate the current system state in gas/H2
networks (pressure, velocity in all pipes) to
improve control decisions

▶ The state can only be measured at a certain
number of points.

▶ Combine model/simulation and
measurements.

▶ Construct observer system, i.e. IBVP that
uses approximate initial data and nodal
measurements.

▶ How many measurement points are needed
so that we can guarantee synchronization for
long times?

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 2 Numerische
Mathematik



Setup

We consider the case
▶ Full state measurements on all boundary nodes (no inner nodes)
▶ No measurement errors
▶ Original system and observer system coincide
▶ Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads(
R+

R−

)
t

+
(

c 0
0 −c

)(
R+

R−

)
x

=
(

0
0

)
for some c > 0. Kirchhoff-type coupling conditions at inner nodes∑

e∈E(v )

(Re
out(t , v ) − Re

in(t , v )) = 0, Re
out(t , v ) + Re

in(t , v ) = Rf
out(t , v ) + Rf

in(t , v ) ∀e, f ∈ E(v )

where E(v ) is the set of edges adjacent to some node v . We prescribe Rout on each
boundary node.
We can think of R± as Riemann invariants of a linearized Euler equation.

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 3 Numerische
Mathematik



Setup

We consider the case
▶ Full state measurements on all boundary nodes (no inner nodes)
▶ No measurement errors
▶ Original system and observer system coincide
▶ Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads(
R+

R−

)
t

+
(

c 0
0 −c

)(
R+

R−

)
x

=
(

0
0

)
for some c > 0. Kirchhoff-type coupling conditions at inner nodes∑

e∈E(v )

(Re
out(t , v ) − Re

in(t , v )) = 0, Re
out(t , v ) + Re

in(t , v ) = Rf
out(t , v ) + Rf

in(t , v ) ∀e, f ∈ E(v )

where E(v ) is the set of edges adjacent to some node v . We prescribe Rout on each
boundary node.
We can think of R± as Riemann invariants of a linearized Euler equation.

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 3 Numerische
Mathematik



Setup

We consider the case
▶ Full state measurements on all boundary nodes (no inner nodes)
▶ No measurement errors
▶ Original system and observer system coincide
▶ Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads(
R+

R−

)
t

+
(

c 0
0 −c

)(
R+

R−

)
x

=
(

0
0

)
for some c > 0. Kirchhoff-type coupling conditions at inner nodes∑

e∈E(v )

(Re
out(t , v ) − Re

in(t , v )) = 0, Re
out(t , v ) + Re

in(t , v ) = Rf
out(t , v ) + Rf

in(t , v ) ∀e, f ∈ E(v )

where E(v ) is the set of edges adjacent to some node v . We prescribe Rout on each
boundary node.
We can think of R± as Riemann invariants of a linearized Euler equation.

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 3 Numerische
Mathematik



Setup

We consider the case
▶ Full state measurements on all boundary nodes (no inner nodes)
▶ No measurement errors
▶ Original system and observer system coincide
▶ Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads(
R+

R−

)
t

+
(

c 0
0 −c

)(
R+

R−

)
x

=
(

0
0

)
for some c > 0. Kirchhoff-type coupling conditions at inner nodes

Re
out(t , v ) = −Re

in(t , v ) + 2
|E(v )|

∑
g∈E(v )

Rg
in(t , v ), t ∈ (0, T ), v ∈ V \ V∂

where E(v ) is the set of edges adjacent to some node v . We prescribe Rout on each
boundary node.
We can think of R± as Riemann invariants of a linearized Euler equation.

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 3 Numerische
Mathematik



Setup

We consider the case
▶ Full state measurements on all boundary nodes (no inner nodes)
▶ No measurement errors
▶ Original system and observer system coincide
▶ Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads(
R+

R−

)
t

+
(

c 0
0 −c

)(
R+

R−

)
x

=
(

0
0

)
for some c > 0. Kirchhoff-type coupling conditions at inner nodes

Re
out(t , v ) = −Re

in(t , v ) + 2
|E(v )|

∑
g∈E(v )

Rg
in(t , v ), t ∈ (0, T ), v ∈ V \ V∂

where E(v ) is the set of edges adjacent to some node v . We prescribe Rout on each
boundary node.
We can think of R± as Riemann invariants of a linearized Euler equation.

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 3 Numerische
Mathematik



Evolution equation of difference system

The difference δ± between the solutions of original system and observer system satisfies

∂t

(
δe

+

δe
−

)
+
(

c 0
0 −c

)
∂x

(
δe

+

δe
−

)
= 0, e ∈ E ,

δe
±(0, x) = ye

±(x) − ze
±(x), x ∈ (0, ℓe), e ∈ E ,

δe
out(t , v ) = 0, t ∈ (0, T ), v ∈ V∂ , e ∈ E(v ),

δe
out(t , v ) = −δe

in(t , v ) + 2
|E(v )|

∑
g∈E(v )

δg
in(t , v ), t ∈ (0, T ), v ∈ V \ V∂ .

where V∂ is the set of boundary nodes and ye
± and ze

± are initial data of original system and
observer system, respectively.
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No synchronization for networks with inner
cycles

Lemma
If the graph G = (V , E) contains a cycle consisting of inner points then synchronization
cannot be guaranteed, i.e. there exist initial data y±, z± such that

lim
t→∞

∥(δ+(t), δ−(t))∥L2(E) ̸= 0.

Proof.
We consider an example. The general case can be handled analogously.

v1 v2

v3

v4

1

2
3

4
For any a ∈ R
δ1
± = 0, δj

+ = a, δj
− = −a for j ∈ 2, 3, 4

is a stationary solution.
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Observability inequality

Lemma
Let G = (V , E) be a tree-shaped network with N inner nodes. Let ℓm denote the maximal
length of a pipe in G. Then there exists a constant C > 0 such that for T ≥ N ℓm

c and t > T
we have

∥(δ+, δ−)(t , ·)∥2
L2(E) ≤ C

∑
v∈V∂

∥(δ+, δ−)(·, v )∥2
L2([t−T ,t+T ]), (1)

Proof.

By induction in N
Full graph G in gray and black
Reduced graph G1 in black

v1
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Observability inequality: induction step

For N = 1 the graph is star shaped and the result is known.

For N > 1 there exists an inner node v1 that has only one edge connected to another inner
node. Let G1 be the sub-graph obtained by removing from G all edges connecting v1 to
boundary nodes =⇒ observation inequality holds on G1.

Note V∂ (G1) ⊂ {v1} ∪ V∂ (G). Thus, we need to control

∥(δ+, δ−)(·, v1)∥L2(t−T ,t+T ) ≤ C
∑

v∈V∂ (G)

∥(δ+, δ−)(·, v )∥L2(t−T−c,t+T+c)

In a next step, we control the L2-in-space norm on the ’removed’ edges by∑
v∈V∂ (G) ∥(δ+, δ−)(·, v )∥L2(t−T−c,t+T +c).
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Synchronization

Theorem
Let G = (V , E) be a tree-shaped network. Then there exist constants µ > 0, C1 > 0 such
that

∥(δ+, δ−)(t , ·)∥2
L2(E) ≤ C1 exp(−µt) ∀t > 0.

Sketch of Proof:

∥(δ+, δ−)(t + t̃ , ·)∥2
L2(E) − ∥(δ+, δ−)(t − t̃ , ·)∥2

L2(E)

≤ (−c)
∫ t+t̃

t−t̃

∑
v∈V∂

∑
e∈E(v )

(
|δe

out(s, v )|2 + |δe
in(s, v )|2

)
ds

= (−c)
∑

v∈V∂

∥(δ+, δ−)(·, v )∥2
L2([t−t̃ ,t+t̃ ]).

Apply observability and modified Gronwall lemma.
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What to do about general networks?

The effect of inserting a full state measurement in a pipe (edge) on the observer
corresponds to splitting that edge and adding a boundary node for each half. If we add one
measurement per cycle, we end up with a tree shaped graph.
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What about finite time synchronization?

For start shaped networks without friction there is finite time synchronization.

If there is one inner pipe whose end-nodes have more than two adjacent pipes this is no
longer true, due to reflection at nodes with more than two adjacent pipes:

e

If we start with δe
±(t = 0) = 1 and δ± = 0 on all other edges then for any n ∈ N

δe
±(t = n

|e|
c

) =
1
3n

, δf
−(t = n

|e|
c

) =
2
3n

for f ̸= e.

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 10 Numerische
Mathematik



Summary

▶ Exponential synchronization of boundary observers for linear wave equations with full
state measurements for networks without cycles. (This is different from measuring
amplitudes only in string networks)

▶ This is optimal in the sense that finite time synchronization does not hold in general.

▶ in general, there is no synchronization for networks with cycles −→ one needs to add
one measurement per cycle to ensure synchronization.

▶ Analogous results hold in the case with linear friction. Technical challenge: Riemann
invariants are no longer constant along characteristics and interact constantly.

▶ We conjecture that analogous results also hold for non-linear friction – as long as the
friction law is Lipschitz, and non-linear wave equations as long as solutions are
subsonic.
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Thank you for your attention!
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