(Non)-synchronization of boundary observers for wave equations

Jan Giesselmann, Teresa Kunkel (Darmstadt)

State estimation on networks using observers

- \blacktriangleright Estimate the current system state in gas/H2 networks (pressure, velocity in all pipes) to improve control decisions
- \blacktriangleright The state can only be measured at a certain number of points.
- Combine model/simulation and measurements.
- ▶ Construct observer system, i.e. IBVP that uses approximate initial data and nodal measurements.
- ▶ How many measurement points are needed so that we can guarantee synchronization for long times?

We consider the case

- ▶ Full state measurements on all boundary nodes (no inner nodes)
- No measurement errors
- ▶ Original system and observer system coincide
- Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads

$$
\begin{pmatrix} R_+ \\ R_- \end{pmatrix}_t + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_+ \\ R_- \end{pmatrix}_x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

for some *c* > 0. Kirchhoff-type coupling conditions at inner nodes

 $\sum \ (R_{\text{out}}^e(t,\,v)-R_{\text{in}}^e(t,\,v))=0, \quad R_{\text{out}}^e(t,\,v)+R_{\text{in}}^e(t,\,v)=R_{\text{out}}^f(t,\,v)+R_{\text{in}}^f(t,\,v) \ \forall e, f \in \mathcal{E}(v)$

where $\mathcal{E}(v)$ is the set of edges adjacent to some node *v*. We prescribe R_{out} on each boundary node.

We can think of *R*[±] as Riemann invariants of a linearized Euler equation.

We consider the case

- ▶ Full state measurements on all boundary nodes (no inner nodes)
- No measurement errors
- ▶ Original system and observer system coincide
- \blacktriangleright Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads

$$
\begin{pmatrix} R_+ \\ R_- \end{pmatrix}_t + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_+ \\ R_- \end{pmatrix}_x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

for some $c > 0$ **.** Kirchhoff-type coupling conditions at inner nodes

 $\sum \ (R_{\text{out}}^e(t,\,v)-R_{\text{in}}^e(t,\,v))=0, \quad R_{\text{out}}^e(t,\,v)+R_{\text{in}}^e(t,\,v)=R_{\text{out}}^f(t,\,v)+R_{\text{in}}^f(t,\,v) \ \forall e, f \in \mathcal{E}(v)$

where $\mathcal{E}(v)$ is the set of edges adjacent to some node *v*. We prescribe R_{out} on each boundary node.

We can think of *R*[±] as Riemann invariants of a linearized Euler equation.

We consider the case

- ▶ Full state measurements on all boundary nodes (no inner nodes)
- No measurement errors
- ▶ Original system and observer system coincide
- \blacktriangleright Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads

$$
\begin{pmatrix} R_+ \\ R_- \end{pmatrix}_t + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_+ \\ R_- \end{pmatrix}_x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

for some *c* > 0. Kirchhoff-type coupling conditions at inner nodes

 $\sum_{\alpha} \left(R_{\text{out}}^e(t, v) - R_{\text{in}}^e(t, v) \right) = 0, \quad R_{\text{out}}^e(t, v) + R_{\text{in}}^e(t, v) = R_{\text{out}}^f(t, v) + R_{\text{in}}^f(t, v) \; \forall e, f \in \mathcal{E}(v)$ *e*∈E(*v*)

where $\mathcal{E}(v)$ is the set of edges adjacent to some node v . We prescribe R_{out} on each boundary node.

We can think of R_{\pm} as Riemann invariants of a linearized Euler equation.

We consider the case

- ▶ Full state measurements on all boundary nodes (no inner nodes)
- No measurement errors
- ▶ Original system and observer system coincide
- \blacktriangleright Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads

$$
\begin{pmatrix} R_+ \\ R_- \end{pmatrix}_t + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_+ \\ R_- \end{pmatrix}_x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

for some *c* > 0. Kirchhoff-type coupling conditions at inner nodes

$$
R_{\text{out}}^{e}(t, v) = -R_{\text{in}}^{e}(t, v) + \frac{2}{|\mathcal{E}(v)|} \sum_{g \in \mathcal{E}(v)} R_{\text{in}}^{g}(t, v), \quad t \in (0, T), v \in \mathcal{V} \setminus \mathcal{V}_{\partial}
$$

where $\mathcal{E}(v)$ is the set of edges adjacent to some node v . We prescribe R_{out} on each boundary node.

We can think of R_{+} as Riemann invariants of a linearized Euler equation.

We consider the case

- ▶ Full state measurements on all boundary nodes (no inner nodes)
- No measurement errors
- ▶ Original system and observer system coincide
- \blacktriangleright Linear model: wave equation (without fricton)

On each pipe (edge on the graph) the model reads

$$
\begin{pmatrix} R_+ \\ R_- \end{pmatrix}_t + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_+ \\ R_- \end{pmatrix}_x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

for some *c* > 0. Kirchhoff-type coupling conditions at inner nodes

$$
R_{\text{out}}^{e}(t, v) = -R_{\text{in}}^{e}(t, v) + \frac{2}{|\mathcal{E}(v)|} \sum_{g \in \mathcal{E}(v)} R_{\text{in}}^{g}(t, v), \quad t \in (0, T), v \in \mathcal{V} \setminus \mathcal{V}_{\partial}
$$

where $\mathcal{E}(v)$ is the set of edges adjacent to some node *v*. We prescribe R_{out} on each boundary node.

We can think of *R*[±] as Riemann invariants of a linearized Euler equation.

Evolution equation of difference system

The difference δ_+ between the solutions of original system and observer system satisfies

$$
\partial_t \begin{pmatrix} \delta^e_* \\ \delta^e_- \end{pmatrix} + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \partial_x \begin{pmatrix} \delta^e_* \\ \delta^e_- \end{pmatrix} = 0, \qquad e \in \mathcal{E},
$$

\n
$$
\delta^e_{\pm}(0, x) = y^e_{\pm}(x) - z^e_{\pm}(x), \qquad x \in (0, \ell^e), e \in \mathcal{E},
$$

\n
$$
\delta^e_{\text{out}}(t, v) = 0, \qquad t \in (0, T), v \in \mathcal{V}_\partial, e \in \mathcal{E}(v),
$$

\n
$$
\delta^e_{\text{out}}(t, v) = -\delta^e_{\text{in}}(t, v) + \frac{2}{|\mathcal{E}(v)|} \sum_{g \in \mathcal{E}(v)} \delta^g_{\text{in}}(t, v), \qquad t \in (0, T), v \in \mathcal{V} \setminus \mathcal{V}_\partial.
$$

where *V∂* is the set of boundary nodes and y_\pm^e and z_\pm^e are initial data of original system and observer system, respectively.

No synchronization for networks with inner cycles

Lemma

If the graph G = (V, E) *contains a cycle consisting of inner points then synchronization cannot be guaranteed, i.e. there exist initial data y*±, *z*[±] *such that*

 $\lim_{t\to\infty}$ ||($\delta_+(t)$, $\delta_-(t)$)||_{L²(ε)} ≠ 0.

Proof.

We consider an example. The general case can be handled analogously.

For any $a \in \mathbb{R}$ $\delta^1_{\pm} = 0, \delta^j_{+} = a, \delta^j_{-} = -a$ for $j \in 2, 3, 4$ is a stationary solution.

Observability inequality

Lemma

Let $G = (V, E)$ *be a tree-shaped network with N inner nodes. Let* ℓ_m *denote the maximal length of a pipe in G. Then there exists a constant C* $>$ *0 such that for T* \geq *N* $\frac{\ell_m}{c}$ *and t* $>$ *T we have*

$$
\left\|(\delta_+,\delta_-)(t,\cdot)\right\|^2_{L^2(\mathcal{E})}\leq C\sum_{v\in\mathcal{V}_{\partial}}\left\|(\delta_+,\delta_-)(\cdot,v)\right\|^2_{L^2([t-T,t+T])},\tag{1}
$$

Proof.

By induction in *N* Full graph *G* in gray and black Reduced graph *G*¹ in black *v*1

Observability inequality: induction step

For $N = 1$ the graph is star shaped and the result is known.

For $N > 1$ there exists an inner node v_1 that has only one edge connected to another inner node. Let G_1 be the sub-graph obtained by removing from G all edges connecting v_1 to boundary nodes \implies observation inequality holds on G_1 .

Note V∂(*G*1) ⊂ {*v*1} ∪ V∂(*G*). Thus, we need to control

$$
\|(\delta_+, \delta_-)(\cdot, \nu_1)\|_{L^2(t-T,t+T)} \leq C \sum_{v \in \mathcal{V}_{\partial}(G)} \|(\delta_+, \delta_-)(\cdot, v)\|_{L^2(t-T-c,t+T+c)}
$$

In a next step, we control the L²-in-space norm on the 'removed' edges by $\sum_{v \in \mathcal{V}_{\partial}(G)} ||(\delta_*, \delta_-)(\cdot, v)||_{L^2(t-T-c, t+T+c)}.$

Synchronization

Theorem

Let $G = (V, E)$ *be a tree-shaped network. Then there exist constants* $\mu > 0$, $C_1 > 0$ *such that*

$$
\|(\delta_*,\delta_-)(t,\cdot)\|_{L^2(\mathcal{E})}^2\leq C_1\exp(-\mu t)\quad \forall t>0.
$$

Sketch of Proof:

$$
\begin{split} &\left\|(\delta_+, \delta_-)(t+\tilde{t}, \cdot)\right\|_{L^2(\mathcal{E})}^2 - \left\|(\delta_+, \delta_-)(t-\tilde{t}, \cdot)\right\|_{L^2(\mathcal{E})}^2 \\ &\leq (-c) \int_{t-\tilde{t}}^{t+\tilde{t}} \sum_{v \in \mathcal{V}_{\partial}} \sum_{e \in \mathcal{E}(v)} \left(|\delta_{\text{out}}^e(s, v)|^2 + |\delta_{\text{in}}^e(s, v)|^2\right) ds \\ & = (-c) \sum_{v \in \mathcal{V}_{\partial}} \left\|(\delta_+, \delta_-)(\cdot, v)\right\|_{L^2([t-\tilde{t}, t+\tilde{t}])}^2. \end{split}
$$

Apply observability and modified Gronwall lemma.

What to do about general networks?

The effect of inserting a full state measurement in a pipe (edge) on the observer corresponds to splitting that edge and adding a boundary node for each half. If we add one measurement per cycle, we end up with a tree shaped graph.

What about finite time synchronization?

For start shaped networks without friction there is finite time synchronization.

If there is one inner pipe whose end-nodes have more than two adjacent pipes this is no longer true, due to reflection at nodes with more than two adjacent pipes:

If we start with $\delta^e_{\pm}(t = 0) = 1$ and $\delta_{\pm} = 0$ on all other edges then for any $n \in \mathbb{N}$

$$
\delta_{\pm}^e(t=n\frac{|e|}{c})=\frac{1}{3^n},\quad \delta_{-}^f(t=n\frac{|e|}{c})=\frac{2}{3^n}\text{ for }f\neq e.
$$

Summary

- ▶ Exponential synchronization of boundary observers for linear wave equations with full state measurements for networks without cycles. (This is different from measuring amplitudes only in string networks)
- This is optimal in the sense that finite time synchronization does not hold in general.
- in general, there is no synchronization for networks with cycles $→$ one needs to add one measurement per cycle to ensure synchronization.
- Analogous results hold in the case with linear friction. Technical challenge: Riemann invariants are no longer constant along characteristics and interact constantly.
- We conjecture that analogous results also hold for non-linear friction $-$ as long as the friction law is Lipschitz, and non-linear wave equations as long as solutions are subsonic.

Summary

- ▶ Exponential synchronization of boundary observers for linear wave equations with full state measurements for networks without cycles. (This is different from measuring amplitudes only in string networks)
- This is optimal in the sense that finite time synchronization does not hold in general.
- in general, there is no synchronization for networks with cycles $→$ one needs to add one measurement per cycle to ensure synchronization.
- Analogous results hold in the case with linear friction. Technical challenge: Riemann invariants are no longer constant along characteristics and interact constantly.
- We conjecture that analogous results also hold for non-linear friction $-$ as long as the friction law is Lipschitz, and non-linear wave equations as long as solutions are subsonic.

Thank you for your attention!

