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State estimation on networks using observers
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Estimate the current system state in gas/H2
networks (pressure, velocity in all pipes) to
improve control decisions

The state can only be measured at a certain
number of points.

Combine model/simulation and
measurements.

Construct observer system, i.e. IBVP that
uses approximate initial data and nodal
measurements.

How many measurement points are needed
so that we can guarantee synchronization for
long times?
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Setup
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We consider the case
» Full state measurements on all boundary nodes (no inner nodes)
» No measurement errors
» Original system and observer system coincide
» Linear model: wave equation (without fricton)
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for some ¢ > 0.

August 19, 2024 | Numerical Analysis | Jan Giesselmann | 3




]
Setup

TECHNISCHE
UNIVERSITAT
DARMSTADT

We consider the case
» Full state measurements on all boundary nodes (no inner nodes)
» No measurement errors
» Original system and observer system coincide
» Linear model: wave equation (without fricton)
On each pipe (edge on the graph) the model reads

R, (€ 0 R\ _ (0
R-),"\0 -c/\R-) ~\O
for some ¢ > 0. Kirchhoff-type coupling conditions at inner nodes
D (Réu(t,v) = Rat,v) =0, Reu(t, V) + Ra(t, v) = Roult, v) + Ru(t,v) Ve, f € E(v)

ec&(v)

where £(v) is the set of edges adjacent to some node v.
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» Full state measurements on all boundary nodes (no inner nodes)
» No measurement errors
» Original system and observer system coincide
» Linear model: wave equation (without fricton)
On each pipe (edge on the graph) the model reads
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for some ¢ > 0. Kirchhoff-type coupling conditions at inner nodes
Reult, V) = —Ra(t, V) + o Z RI(t,v), te€(0,T),veEV\ Vs

geEE(WV

where £(v) is the set of edges adjacent to some node v. We prescribe Ryt on each
boundary node.
We can think of R+ as Riemann invariants of a linearized Euler equation.
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Evolution equation of difference system
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The difference 0+ between the solutions of original system and observer system satisfies

8¢ c 0 g\
a(5)e (e a(H)-0  ece

85.(0, x) = yi(x) — 23 (x), x €(0,¢%,e €&,

Sou(t, V) =0, te(0,T),veEVyec &),

Sult, V) = =6n(t, V) + 2 > 05 te (0,7, veV\ Ve
ge&(v)

where V5 is the set of boundary nodes and y$ and z$ are initial data of original system and
observer system, respectively.
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No synchronization for networks with inner
cycles
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Lemma

If the graph G = (V, £) contains a cycle consisting of inner points then synchronization
cannot be guaranteed, i.e. there exist initial data y+, z+ such that

Jim [[(0.(8), 6— ()l 2e) #O-

Proof.
We consider an example. The general case can be handled analogously.

Foranyae R
5L =0,8 =a_ =—aforjc 23,4
is a stationary solution.

w

4
(——(]
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Observability inequality
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Lemma

Let G = (V, E) be a tree-shaped network with N inner nodes. Let ¢, denote the maximal
length of a pipe in G. Then there exists a constant C > 0 such that for T > N %’" andt>T
we have

12, 6-)(t o) < C D ME4r 6-)C 21007 Q)

vEVy

Proof.

By induction in N e
Full graph G in gray and black D
Reduced graph G; in black
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Observability inequality: induction step
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For N = 1 the graph is star shaped and the result is known.

For N > 1 there exists an inner node v4 that has only one edge connected to another inner
node. Let Gi be the sub-graph obtained by removing from G all edges connecting v to
boundary nodes = observation inequality holds on G;.

Note Va(Gi) C {vi} U Vs(G). Thus, we need to control

16+, 80 vz raen S €D 184, 6-)C V)l 27— ooy
vEVyH(G)

In a next step, we control the L%-in-space norm on the removed’ edges by
ZvEVa H Js,s 6 HLz(t T—ct+T+C)"
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Theorem

Let G = (V, ) be a tree-shaped network. Then there exist constants ;1 > 0, Cy > 0 such
that

(8, 8-)(t, )|[Z2(e) < Crexp(—pt) Vit > 0.

Sketch of Proof:
(180, 60+ 1, ) |28y = 184, 8-)(t = 1)l

/ ZZ |Geu(s, V)[? +|3(s, v)[?) ds

—tvevy ecE(v

Z || 5+:6 ||L2 ([t—Tt+1])

VEVy

Apply observability and modified Gronwall lemma.
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What to do about general networks?
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The effect of inserting a full state measurement in a pipe (edge) on the observer
corresponds to splitting that edge and adding a boundary node for each half. If we add one
measurement per cycle, we end up with a tree shaped graph.
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What about finite time synchronization?
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For start shaped networks without friction there is finite time synchronization.

If there is one inner pipe whose end-nodes have more than two adjacent pipes this is no
longer true, due to reflection at nodes with more than two adjacent pipes:

If we start with 65.(t = 0) = 1 and 6+ = 0 on all other edges then forany n € N

o (t= nH) _2

= 3 B 3 for f #e.
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> Exponential synchronization of boundary observers for linear wave equations with full
state measurements for networks without cycles. (This is different from measuring
amplitudes only in string networks)

» This is optimal in the sense that finite time synchronization does not hold in general.

> in general, there is no synchronization for networks with cycles — one needs to add
one measurement per cycle to ensure synchronization.

» Analogous results hold in the case with linear friction. Technical challenge: Riemann
invariants are no longer constant along characteristics and interact constantly.

» We conjecture that analogous results also hold for non-linear friction — as long as the
friction law is Lipschitz, and non-linear wave equations as long as solutions are
subsonic.
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Thank you for your attention!
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