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Alkali metals
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Making Qubits out of atoms

ﬁ)w do we make qubits out of ’rhi@

1. We need to trap the atoms

2. We need to identify a |0) and a | 1) state

3. We need to be able to address fransitions between
|0) and | 1)

4. We need to be able to produce entanglement
between the atoms

5. We need to be able to measure the state of the system j

FHPASQAL

Most of these
are dependent
on each other
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1. Trapping the atoms

® We use optical tweezers to trap
individual atoms in a region of

around 1 um

Camera 2D AOD
é‘ ‘ ‘ %
Dichroic
mirror
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Vacuum
system




1. Trapping the atoms
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Prepare some traps

Load the traps
randomly
with Rubidium atoms
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Rearrange the atoms
by moving them to
the desired trap

FHPASQAL

Final layout
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1. Trapping the atoms

® High flexibility: atoms can be
arranged in arbitrary fixed 2D
configurations

https://arxiv.org/abs/2104.04119 https://arxiv.org/abs/2211.16337 https://arxiv.org/abs/2011.06827
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1. Trapping the atoms

A tweezer array with 6100 highly coherent atomic qubits

Hannah J. Manetsch,* Gyohei Nomura,* Elie Bataille,* Kon H. Leung, Xudong Lv, and Manuel Endres’
California Institute of Technology, Pasadena, CA 91125, USA 324

Optical tweezer arrays have had a transformative impact on atomic and molecular physics over
the past years, and they now form the backbone for a wide range of leading experiments in quan-
tum computing, simulation, and metrology. Underlying this development is the simplicity of single
particle control and detection inherent to the technique. Typical experiments trap tens to hundreds
of atomic qubits, and very recently systems with around one thousand atoms were realized without
defining qubits or demonstrating coherent control. However, scaling to thousands of atomic qubits
with long coherence times and low-loss, high-fidelity imaging is an outstanding challenge and critical
for progress in quantum computing, simulation, and metrology, in particular, towards applications
with quantum error correction. Here, we experimentally realize an array of optical tweezers trap-
ping over 6,100 neutral atoms in around 12,000 sites while simultaneously surpassing state-of-the-art ;hym||( et al.
performance for several key metrics associated with fundamental limitations of the platform. Specifi-
cally, while scaling to such a large number of atoms, we also demonstrate a coherence time of 12.6(1)
seconds, a record for hyperfine qubits in an optical tweezer array. Further, we show trapping life-
times close to 23 minutes in a room-temperature apparatus, enabling record-high imaging survival
of 99.98952(1)% in combination with an imaging fidelity of over 99.99%. Our results, together with
other recent developments, indicate that universal quantum computing with ten thousand atomic
qubits could be a near-term prospect. Furthermore, our work could pave the way for quantum simu-
lation and metrology experiments with inherent single particle readout and positioning capabilities
at a similar scale.

2014 2016-2017 2020 2022
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2. Making Qubits out of neutral atoms

We use as a |0) the ground state of Rubidium:

1522522 P%3523 P93 D104,524 Pt 55!
—J

These are called Rydberg

/s‘fo’res

As a | 1) state, we use a highly excited state, i.e. a state where”
the valence electron is in a level with high principal quantum

number (n~70) Forn = 60,
R ~ n*ay— ~ 100 nm

T~n’— ~ 100 us

|0) = |55) |0) = |5S) |0) = |5S)
11) > |60.S) 11) = |70S) 11) = |705)
https://arxiv.org/abs/ https://arxiv.org/abs/ https://arxiv.org/abs/

2211.16337 2202.09372 1707.04344
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3. Addressing single qubit transition

® This is done by shining on the
atom a laser beam very close
to the fransition energy

between [0) and | 1)

® The difference between the 7Y i | 1>
resonant frequency w, and the | 0
laser frequency w; is called h{
detuning, usually denoted o
@, @y

10)
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Entangling qubits

® two atoms in |00), far apart
from each other ( > 15um)

A A
A A
A A
Laser resonant with Laser resonant with
the transition |0) to the transition |0) to

1) 1)
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Entangling qubits - Rydberg blockade

® We put the two atoms in | 00),
close to each other ( ~ 5,6um)

® When the resonant laser is
switched on, we end up with
the entangled state

|01) + | 10)rather than | 11) A

Laser resonant with  Laser resonant with
the transition |0) to  the transition |0) to

1) 1)
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Entangling qubits - van der Waals interactions

® Two Rydberg states interact
with a van der Waals

interaction decaying as R 6
(with R distance between the
atoms)

® The interaction shifts upwards
the energy of the | 11) level,
favouring the excitation of the
entangled state |01) + | 10)

|11)

instead
|01) + | 10)
® Importantly: during the -+ —\/5
measurement, we always
observe states with Rydberg
blockade
ale | 00)
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Measuring the qubits

® The optical tweezer is actually
repulsive for atoms in the | 1)
state and for that reason,
during quantum computations,
the tweezers are switched off.

o o9
© 00 o
o0 o9
© o0 o

® After the quantum evolution of
the system, the tweezers are
turned back on and atoms in

| 1) are expelled from the traps
and lost, while atoms in | Q) are

recaptured

® A Fluorescent light is shone on
the atoms, and the emission is
captured by a CCD camera,
which therefore only sees
atomsin | 0). The remaining
spots are then assumed to be
atoms in the state | 1).

Hgrya ()

https://arxiv.org/abs/
2012.12268
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Rydberg atomic array for qguantum simulation

Optical tweezers arrays allow for very Scalable to hundreds of atoms —can Can realise both the Ising model and XY
flexible atomic register — can directly capture both short-range order and model
port amorphous materials info system lack of long-range order.

Experiment Experiment 0.15

104 10 h . 06

5 » 5 H(t) = §Q(t)20'j —hé(t)ZnJ+Zr—6nmJ,

0 ﬁ ~ o4 ﬁ o 3 j j i#j U

-5 4 -5

h z h z Cs Tz Yy
el e H(t) =590 Y of — 500 Y05 +2) 7 (o707 +0¥0?).
d0 5 0 5 10 05 0 5 10 J J iFj Y
k k
Adapted from Phys. Rev. A 102, 063107 Adapted from Nature, 595, 233-238 (2021)
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Maximum
independent set
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A first example: Placing antennas in cities

® We have to decide where to
place antennas to maximise

their coverage. ((_A)_) O ‘ ‘

® Constraint; Two antennas

should not interfere.
O 6 o o

® Finding the maximum subset is
the so called maximum
independent set (MIS)

® Brute force: search within the
2" sets
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A second example: networking event

® You have a list of employees Alan Bob ' _
and their direct collaborators in Bob Alan Charline Daniel Eleanore

fhe company. Daniel Bob Eleanore Farid Guy
® You want to organise an event
- with a maximum
employees
- where none of the
employees see their direct

collaborators. ‘ .

20
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Graph theory
An undirected graph is a pair (V, E) An adjacency matrix is a square matrix used
where Vs finite set V.= {V,, ---, V, } to represent a finite graph. The elements of
(vertices), and E'is a subset of V. X V the maltrix indicate whether pairs of vertices
(edges). are adjacent or not in the graph.
2 A
] A 3 ! 3
V= {1,2,3} V= {13273}

010 01 1
A=11 0 1 A=1{(1 0 1
010 1 1T O


https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

-
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Graph theory
An independent set of a graph
G = (V,E)is asubset § C Vsuch that V.V, eS= (V,V,) ¢ E
no pair of vertices in S is connected by
and edge.
: - 2 3 3@
A 1® @3 5
] 3 1 3 1 4 K
_ V=1{1.2,34} 2
V={123) = (1250 o
E={(12),2,3 E={(1,2),(2,3),3,4),
(12, @) E = ((1.2).(23). G.1) an ‘@
( )
010 01 1 0101
A=<101> A=11 0 1 A=0101
010 1 10 100 1)

22
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Graph theory

A Maximum independent set of @

graph G is a subset § of V which is
an independent setf, and it has the
maximum cardinality among all
possible independent sets

1. Find all the independent set
for this graph.

2. Find the maximum
independent seft(s).
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Boolean reformulation

® We give an index to the
vertices of the graph.

7 (3,8} ===l 5= (00100001)

Size of the set: f(§) = ) n® = #S

® A subset S can also be defined
in a boolean manner

- 1ifin the subset

- O0if notin the subset < (S).. (S)
® We want to maximise the IS condition: h(S) = Z ni nj =0
cardinality of the subset #S. 8 i,jEE

® The independent set constraint
can be rewritten as h(S) = 0.

BOOLEAN REFORMULATION OF THE MIS

max f(S)
SeA

s.t. h(S)=0

24




MIS as an unconsirained optimisation problem

LAGRANGE MULTIPLIERS

Given the problem
max f(x)s.t. h(x) =0,
X

We define the Lagrangian

Z(x) = f(x) + Ah(x)

The solution of the constrained optimisation problem will be @
saddle point of Z.

0, =0and 0. =0
gx)=0ando f+10,g=0

FHPASQAL
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MIS as an unconstrained optimisation problem

® We therefore want to minimise C = — <.

® In principle, the minimisation should be both on
Sandon i

® Since h(S) > 0, the first term always favours IS
solufions.

® The proper choice of A can be done through
an optimisation procedure.

® One can show that for A > 1, the solution is

always an IS (see e.g. appendix of 2006.11190)

® We have now reduced our MIS to a QUBO
problem and also a problem that can be
natively solved on the QPU.

® We will now see how one can reach the
ground state of the optimisation problem with
quantum annealing.

C = min Ah(S) — £(S)
SeA

B (8),(S) _ S)
= min A n.=on. Zn

] l
=2 i,jeV’ =%
>0

FHPASQAL

26



FHPASQAL
Quantum evolution on a QPU

o Initially ( = 0) all the spins are in the GS.

.q6 .q7 .q8
100 ... 00). ‘o
® A run consists on modulating A z:.qa e &
h . . v ) 4 o atoms
<Hmm6=r5}5$m¢xxﬂq—wmﬁ¢ﬂﬂ0q-—&ﬂqu =P m -
1 -75 -50 -25 00 25 50 75
® Pulse shaping is possible (interpolated waveform),
but with a certain modulation bandwidth.
Desired square pulse
e The use of en Electro Optical Modulator (EOM) QPUpulse  Desired square pulse ~ QPU pulse

P

allows one to achieve square pulses with high

(GLOBAL

precision.

)/
10 |EoM]
) % M

[ 7

@

|

5 (rad/us) Q (rad/ps)

rydberg

® Maximal allowed time before decoherence starts fo
matter is typically Trnagx = 4 §S.

@/2n
o

27




FHPASQAL

Open source emulator

® Play with analog device specs. Pulser

® Simulate realistic pulse shapes.

® EOM, addressability, ...

® State preparation, shot noise, ...

Sequence

Pulser Studio

28




Quantum evolution: A review

Histogram

e Initially ( = 0) all the spins are in the GS |0) = |00 ... 00).

© Quantum evolution under the time-dependent Hamiltonian

H=h Z —0 - 8(m; + Y, Vynn,
I#]

o A time t, the state is described by
(1)) = exp~h HOd| 0)

e Itis also worth to write |w(f)) in the computational basis

lw(®) = ) as0)|S)

NS

e The probability of measuring a given bitstring S’ is then given by

P(S) = (S lw@))|* = |ag|?

FHPASQAL
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Quantum evolution: Rabi oscillations

Let us consider the single qubit Hamiltonian
H = Qo+ b0,
e Compute the time-evolution of the initial
state |yp) = |0).
e Compute the probability P(1)

30
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Quantum annealing

QUANTUM ANNEALING

Let us assume we know the ground

state at fime 0 of an Hamiltonian H,,
and we do not know the ground state Ht)=(T—1)Hy+tH
- 0 1

of the Hamiltonian H;.

_ [P H(dt
For a sufficient slow evolution, we can |l//(t)> = el HO |l//(0)>
drive continuously the system from the
initial state to the final state, while
staying in the instantaneous GS.

This allows then to connect
adiabatically the initial GS to the final

GS.
Important condition: there should be \

a gap between the instantaneous GS
and the first excited state.

Energy

If we are not adiabatic, then this can
lead to fransitions to excited states

Example: Landau Zener transitions — /\
exponentially decaying in terms of a

ratio between the gap and the
velocity of the path. 0 Time

31




A first example of MIS

Let us consider the antenna problem on a line
with 4 sites

e Analyse the problem by the brute force
method

e Reformulate the MIS problem as a QUBO
problem

e Compute the value of &
® What happens for 4 < 12

*—o—0—0

FHPASQAL

32



First example of MIS: quantum annealing

Probing many-body dynamics on a 51-atom quantum simulator

Hannes Bernien,! Sylvain Schwartz,!2 Alexander Keesling,! Harry Levine,! Ahmed Omran,! Hannes Pichler,? !
Soonwon Choi,! Alexander S. Zibrov,! Manuel Endres,* Markus Greiner,! Vladan Vuleti¢,? and Mikhail D. Lukin®

! Department of Physics, Harvard University, Cambridge, MA 02138, USA
?Department of Physics and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
dInstitute for Theoretical Atomic, Molecular and Optical Physics,
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

4 Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

Interaction

range (Ry/a)

Z, ordered
@000@8000e000e

----)

Z3 ordered
[ JoJoX JYeXoX YeJoX JeXeX )

Z, ordered
0000000000000

>
Detuning (A/€)

H. Bernien et al, Nature 551, 579-584 (2017)

o

Position in cluster

—

—
2 OO W = 01 0O W =+ 01 © W

—

0

4
Detuning (MHz)

0 0.5

1
Rydberg probability

FHPASQAL
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Optimising the pulse sequence

We have to choose the path of the
quantum annealing

First approach: linear ramps.

This might not be optimal. a AR/ ), 8(1)

Remember: Small gaps and potential 15k

gap closing — fransitions to excited [ —

states > —\tlme (Us)
Other approach: We aim to minimise PM 0.5\ ho, /U 00515 t, 60

a cost function. | | | Y

In our case, the energy of the spin 4 3 -2 1 0 | 1 3 4 hAo/U

system, which corresponds to the - :

Lagrangian & is the the function we https://arxiv.org/albs/
want to miniziae. 2012.12268

34
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Expectation values on the QPU

@ We perform the time evolution on the QPU
®We should then measure the expectation value of the energy

E=(w(T)|H|w(T)).
where H=—8(T) Y n,+ Y Vynn,
I I#]
@In the computational basis

W)= ) as®]S),

Sexr

E=-8T) ), laqD*{S|n|S)+V; Y. lagT)*(S|nn]S)

SeRB,i S,€RB,i,j
@Recall that n; is diagonal in the computational basis

35
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Experimental implementation

RESEARCH

QUANTUM SIMULATION

Quantum optimization of maximum independent set
using Rydberg atom arrays

S. Ebadi't, A. Keesling?t, M. Cain't, T. T. Wang’, H. Levine't, D. Bluvstein’, G. Semeghini’, See also
A. Omran'?, J.-G. Liu?, R. Samajdar’, X.-Z. Luo®>>*, B. Nash®, X. Gao', B. Barak®, E. Farhi®”, .
S. Sachdev', N. Gemelke?, L. Zhou®, S. Choi’, H. Pichler'®X, S.-T. Wang?, M. Greiner™, arXiv:1808.10816 for the theory

V. Vuletié¢'®*, M. D. Lukin*

Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge
in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial
dimensions, we experimentally investigate quantum algorithms for solving the maximum independent
set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize
closed-loop optimization to test several variational algorithms, and subsequently apply them to
systematically explore a class of graphs with programmable connectivity. We find that the problem
hardness is controlled by the solution degeneracy and number of local minima, and we experimentally
benchmark the quantum algorithm’s performance against classical simulated annealing. On the
hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit
regime and analyze its origins.

S. Ebadi et al., Science 376, 1209 (2022) 36
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Experimental implementation

E

Encoding Quantum evolution Readout

corrnrnr | U, 0(), A1), Vig) [o 201010 w0 _+0
o REPEREIEL T N\ [ Y /A B e

/33 120X AN A0 k /o--o-oo-go
e BRI AR [N\ o —g| | & 2 o.P
O A SN\ BA Vo —— T @ e @S ¥ S
o i e NG ISP
D4 TJ:Hfjf o. o Qté'xy'@@o%

::i,qf.::_/L )\h@@@rgéﬁr:

& Closed Loop L) " & ¥ x€& ¥ &9
s PE—

Optimization |
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Experimental implementation

A
¢)L ,7_1 7_2 Tp ALQ
«—> —> <«
o2 |l
L%
b1
Time
B Pulse duration (us)
0.07 0.13 0.25 0.26 0.26
041 ' L04T ' '
s MU\,
|
e —
oS AN 0.21, ,
‘_l* o-———- "9 Step 500
\\\
\\\
o -----0
0.25t ) ) : )
1 2 3 4 5
QAOA depth p

C

ST

-
f ALQ
Time
D Sweep duration (us)
0.2 0.5 1 2 5
o § 1 ' —_—
0.21 N s
: 5
o . d-18 == o
| s 0o - 20
(N Time (us .
- . (us)
So P
0.11 o Z-”
-
16 4 8 16 40
Effective depth p

FHPASQAL

)e(®)]0) <1|+hc]

Hg:-}j[
Heost = —hA(L an + Z Vinin;

1<J

R = Z (el n; | wy) [#MIS
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Experimental implementation

0.1

°f 0.05

0.02

0.01

=)
o
w

Hamming distance
o
no

0.1

P, MIS

0.01

0.001

D
—@— Experiment
—MIS SA
® size |[MIS|-1
i 10 100 1000 ® size [MIS|
Depth
E
\ \’ i -~ %P71.03(4)
%\ |
Z 041
<
1 10 100 |
Ej
I
I Experiment
B MIS SA
0.01 Graph size
® 80
A 65
| 51
& 39
1 10 100 10 100 1000
Depth Hardness parameter HP

FHPASQAL

# first excited states

/

_ Digi—
| MIS | Dy

# MIS (or in our notation f(S))
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Quantum simulation vs classical numerics

Hardness of the Maximum Independent Set Problem on Unit-Disk Graphs and
Prospects for Quantum Speedups

Ruben S. Andrist,’>* Martin J. A. Schuetz,>?>* Pierre Minssen,® * Romina
Yalovetzky,? * Shouvanik Chakrabarti,® Dylan Herman,? Niraj Kumar,®> Grant Salton,!>?*
Ruslan Shaydulin,® Yue Sun,®> Marco Pistoia,> T and Helmut G. Katzgraber®

! Amazon Quantum Solutions Lab, Seattle, Washington 98170, USA
“AWS Center for Quantum Computing, Pasadena, CA 91125, USA
9 Global Technology Applied Research, JPMorgan Chase, New York, NY 10017 USA
4 California Institute of Technology, Pasadena, CA, USA
(Dated: July 19, 2023)

Rydberg atom arrays are among the leading contenders for the demonstration of quantum
speedups. Motivated by recent experiments with up to 289 qubits [Ebadi et al., Science 376, 1209
(2022)] we study the maximum independent set problem on unit-disk graphs with a broader range
of classical solvers beyond the scope of the original paper. We carry out extensive numerical studies
and assess problem hardness, using both exact and heuristic algorithms. We find that quasi-planar
instances with Union-Jack-like connectivity can be solved to optimality for up to thousands of nodes
within minutes, with both custom and generic commercial solvers on commodity hardware, without
any instance-specific fine-tuning. We also perform a scaling analysis, showing that by relaxing the
constraints on the classical simulated annealing algorithms considered in Ebadi et al., our implemen-
tation is competitive with the quantum algorithms. Conversely, instances with larger connectivity
or less structure are shown to display a time-to-solution potentially orders of magnitudes larger.
Based on these results we propose protocols to systematically tune problem hardness, motivating
experiments with Rydberg atom arrays on instances orders of magnitude harder (for established
classical solvers) than previously studied.

40
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Beyond MIS with analog neutral atoms

(a) Computational Problem (d) Solution
>
N

(b) Unit-Disk Encoding (c) MWIS on Rydberg platform

1

rp Q‘%’_g
9
o

oaji?!iggjt

Nguyen, Minh-Thi, et al. "Quantum optimization
with arbitrary connectivity using rydberg atom
arrays." PRX Quantum 4.1 (2023): 010316.

M. Lanthaler, C. Dlaska, K. Ender, and W. Lechner,
“‘Rydberg-blockade-based parity quantum
optimization,” Physical Review Letters, vol. 130, no.
22, p. 220601, 2023.
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Amorphous
quantum magnets
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From crystals to amorphous solids

3 TYPES OF MATERIALS

The disordered
structure of the

< s
material makes it =0 . SR
difficult to simulate ) =B =P AR
and requires large = ¥ SRS RSKAAT
approximations. { 3 Pa S ey s
&—f \ \ K K KKK
However, amorphous =D ‘-f’;}’.;,;};{
materials are o ’
ubigquitous and , , .
simulate them could Crystal latfice Quasicrystal Amorphous materials

lead to
groundbreaking
discoveries

Translational invariance

® These materials are fully
ordered and translational
symmetry

® Majority of quantum simulation
results consider such lattice
structures

Materials with no
translational symmetry but
long range order

® Proposal and first results for
the quantum simulation with
cold atoms

Short range order but no
long-range order

® The quantum simulation of
these is focus of this talk

43



Amorphous: Disordered at Long range and

short ranged ordered

Amorphous materials have no long-
range order

However, they have well defined
short-range order due to covalent
bonds: bond lengths and bond
angles

The combination of these leads fo a
well-defined coordination number

Reflected through in
- the radial distribution function g(r)

Coordination number

R
C = ZJTJ rg(rydr
(0]

FROM ORDERED TO DISORDERED MATERIALS

—
15
~
—~
o
~
—
(g}
~

[ecccoccse] ccev0cse o 0% 0%00% ¢
EEXXEXENNNN 00000000 o ..O.o'.Oo.‘
beoeoeoeoooo o 00000000, ..0.o°.0...
beoeeoeoooo o EXINYREFYN XX ° 00 © %0,
> poeecececccoc oo > poo oo oo ¢ 0 > .'..‘. °® oo
beoeeoeoooo o 00 00g0 000 ..oooOQ‘.o
beoeeoeoooo o 00 o000%00° peeooo 0 o
beoeoeeoooo o beo 0000 00 oeccoe 0 o
beoeoeoeoooo o 00 0000000 .-....o..o..
X X X
RADIAL DISTRIBUTION FUNCTION
(e) ()
8 ‘ ‘ 8
6 6 .
. Square s Disordered Amorphous
~ i ~ t )
2 1 2
0 T T T 0
0 2 4 6 8 0 2 4 6 8
T r

BOND LENGTHS AND BOND ANGLES IN GRAPHENE
AND MONOLAYER AMORPHOUS CARBON

Graphene
— MAC

300 250 —

200+

Counts
Counts

1004

0+
80 100 120 140 160
Bond angle (°)

B
0912 15 18 2.1
Bond length (A)

Adapted from Nafure, 577, 199-203 (2020)

Random
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g(r): ATOMIC DENSITY
FROM A REFERENCE ATOM
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Interest in amorphous solids

PHYSICS TEXTBOOK

WILEY-VCH
—

Richard Zallen

The Physics
of Amorphous Solids

iﬁﬂ""?
é«

‘Nearly all materials can, if
cooled fast enough and far
enough, be prepared as
amorphous solids.’

Spectral gaps in DOS
— Amophous Semiconductors
Phys. Rev. B 4, 2508

Amoprhous Superconductors
Amorphous Superconductors,
Tsuei, C.C. (1981).

Supercond.T¢

Element Crystal ‘ Amorphous
Bi 5mK 6K
Be 26 mK 10K
Al 1.18K 6K

Adapted from Paul Corbae et
al 2023 EPL 142 16001

FHPASQAL

Amorphous Topological Insulators
Phys. Rev. Lett. 118, 236402

24 4

“r(@ ppet

> (b) e
i i
|5 0.00 0.02 0.04

) V m

Ui

Amorphous Quantum Spin Liquids
Nat. Commun. 14, 6663 (2023)
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Amorphous Quantum Magnets

® much research into amorphous
materials typically focusing on
classical/non-interacting

® Limited research into work on
quantum amorphous materials
due to inherent complexity

einherent requirement of

large systems e \‘ s, >N / \

*No franslational symmetry

\
Perturbative,

L] moawe
NQS...
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Amorphous solid Generation

Most common methods in previous literature is
Voronoi tessellation

(a) (c)

0.60 0.60
a0 — Lloyd’s
0.55 1 0.55 - Voronoi 2
1507 1 eij~ "max
0.50 0.50 = o) - 9 —_
100 Z =aq Z Zk(rl]) m; +a22 1 oo )t y—
- - = 1+eytj min = 1+e ij~ "max
0.45 0.45 50 4 J l Yy 1
0.40 : : : 0.40 : : . 01 ; ; ; Gaussian kernel to control  Penalty for atoms getting foo Distance
0.40 0.45 0.50 0.55 0.60 0.40 0.45 0.50  0.55 0.60 0.00 0.01 0.02 0.03

Bond length coordination number close penalty

Adapted from Nafure volume 577, 199-203 (2020)
Problem:s:
® Two sites connected by an edge (no matter its
length) become nearest-neighbours. . . ‘
@ Limited control over coordination number and edge ry = Distance between qubitiand j
lengths — we consider I « 1/r°

k(r) =  Gaussian function
> We need a method with very precise control — use . . .
variational approach m; = Coordination numbers picked from normail distribution
Initialisation Optimisation Selection
"o ® _
. ... ° o o o? ‘~. ¢ ) Ay, Ay, By 7 Tmins Tmax = Hyper parameters
R A Lan NP 28 Sy ":\‘0°
o0 4 o o o o @ o o o o ® °
19/03/2024
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Examples of amorphous solids

ce .‘t‘.‘/
R8T 18
_.c.\..aw..o..i
) .o. c..o.
AR
* .ﬂt.

e

¥

19/03/2024
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Static structure factor

Staftic structure factor C=3 C=4 C=35

iy A T a 6

—2m] : s R
S _ 1 -t ékg Clagel ! £ % ﬁ ]{ . it g “-‘1

(@) =— AN & T 1
N i=1 & 0k & WS ¥ 5 # o 0% - ¥ =
J= ¥ A £ & : A

~x g 3 i ﬁﬁ;" H j‘ 2

. : 27 m‘_ v o e e ok =
® No preferred direction ey - i SEak e L 2m : ““v‘l S . 0
— Rotational symmetry —2m IS 2m —2m k(:) 27 —2m IS 2m

® Same wave vector as

%

dominant lattice (square,
hexagonal)

%
o
81
" o
A

. ‘:’
;v
®
b A

B “'-’:...
sttt ,s setautuyd
A AAe sy Ty
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Classical emulation of amorphous magnets

® Lack of lattice topology

— challenge for the tensor A
network representation. N

® Inherently requires large system A . .
sizes (due to boundary effects) ® ° ' In

® In the antiferromagnetic case,
presence of (local) frustration.
How will this behave beyond
regular lattices.
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Semiclassical analysis

PROBLEM SET UP

® We consider the ferromagnetic Ising model with
(allows us to avoid any frustration)

H= OSZSZ+hZ S 7.

i<j Tij

® We set the minimum distance between two
atoms to unity, such that: min r; = 1

® We consider the transverse field h,/J, in which Jis
the average nearest neighbour interaction
strength

® We use mean-theory and linear spin wave theory
to capture the physics of amorphous materials in
the semi-classical limit

19/03/2024

MEAN-FIELD

PHASE DIAGRAM

Rotation to the mean-field polarised axis

Si = S‘f cos 0; +

S%sin 6,

S¥ = 8% cos 6, + §¢sin 6,

Under the assumption (S ) ~ 0

EMF:_%Z °

i<j

Mean-field ferro

J,
— cos 0, cost9 - —
r? 2

magnetic

order parameter

M=%;wﬁ

(VERY BRIEF) REVIEW OF LINEAR SPIN WAVE THEORY

Holstein-Primakoff mapping

~ 1
7 — x__ +
Sj =3 a a],S (aj +a;)

s Z sin 6,

=
3

FHPASQAL

A: Linear spin wave theory
energy gap

Transition points for the
hexagonal and square lattice

no

1

|

|
4
< 7
/

~

\\ //
| ,__:7‘*":\ / /
E \\ \ / //II
< vV N

—-=C~3 \I(\, /
-~ S."
O -=- ~.«1 \ /\‘TI(\I
30 12 3
hy/J

2

cos 6. J,
= ——Z—sme s1n9(a +a,~)(ajT+aj)+ Z h, sin 6. + . Z ; 0 . a;a,-
l, ,

i<j ’/

Bogoliubov fransformation

N
:H:Zwb*b + E,,

[Tag g

w,, : LSWT spectrum
b, : LSWT eigenmodes

51



Semiclassical analysis
Linear spin wave theory

NATURE OF THE ENERGY SPECTRUM

Localisation due to special disorder

Disorder in amorphous solids

@ ol d (b) o7 T
Loy iy ' 0.6 —

@ ‘l‘)'_—@";j"({’],, . 0.5 5200_
(dy,d2) [P € BTN 0.4 5
z GCOE E! “extended” localized i IY 3

& & 02 g 1001
il ©®--@ Q = Ho.1 w

z P OG0 002 004 I 0L . | i
0.0 0.5 1.0 15 2.0

Adapted from Phy. Rev. Lett. 124, 130604

We calculate the inverse participation ratio

I(w) = [ W (', ) |*8(0 — @)dr

I(w) — 0 for delocalised modes at energy w

(c)
(a) 6 7 (b) 0
/ w @/ 1 = —o— ¥ -0 * Soyge
. 0.5 * ~
I~ 41 4 > — 10ﬁ1 3
> — hp/T =017 | 13 3 =% a0,
394 he/J =116 | ™ : ey oo
- hy/J =136 —2 | ~< b
ha/J =155 \—\_/ 10 VAR .
0 T T T 0 1 T . 1 \.'
a 0 0.5 1 102 N 103
19/03/2024

(d)

NN Interaction

@

|’Ui2a* - ulza, |1/2

B
J

e

r
A

FHPASQAL

DYNAMICAL STRUCTURE FACTOR

Delocalized band despite
apparent disorder

Localisation (large momentum
width) for small fransverse field

hz/y=13§ 8%

|\
!

he/J =116 S%

—o

hy/J 3=1.36 S**

k""
(C) [a.u]

Ring band
structure

-2 0 2 -2 0 2 -2 0 2
k, k.

1 N L
Sk, @)= — ) elko—ﬁj el SHV(i | i 1)dtSHY(i, j, 1)
L= -0
ij
S, Julia-Farre, arXiv:2402.02852 (2023)
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Geometrical frustration and disorder

® Both locally frustrated and

unfrustrated plaquettes can
coexist in an amorphous

magnet
® For C

4, we can generate
amorphous magnets which

bears similarities with square or

Kagome lattices.
® This can lead to important

differences already for classical

spins:

- regular square = AF

- kagome — spin liquid
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Classical simulated annealing

® We perform simulated annealing on on
N = 60 replicas.
® We then study statistical quantities such as
® The energy of areplica

= (H),
o The Edward-Anderson parameter g3, MONTE CARLO SWEEP
N e random single spin
gl = Z a,f”af flio

* Metropolis update

=4 with temperature T;

2
q g
. NR<NR 1)/ Z sa

® We also compute the probobili’ry ;

distribution of the replica overlap P(qS )
for 20 replicas with lowest energy.

T,=Ty1—i/n 1=1,-

steps) steps
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SA on paradigmatic models

® Different behaviour of the
Probability distribution of the
replica overlap for square and
kagome (q).

(a) (b)

@This reflects the difference
between the AF GS and the spin
liquid GS.

mmm Square, g2, =1 u mmm Bimodal EA, g2, =0.48
mmm Kagome, g2, =0 @ Gaussian EA, g2,=1.0

®We also show the differences
between two paradigmatic
examples of spin glasses: The

(@)
P(@2) G

Edward Anderson model with

Bimodal couplings and Gaussian
couplings (b). -
0)

@Important to note that SA —1
converged well for the spin glass
because of the small system sizes qgg
considered here (6x6)

o
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SA on amorphous materials

® We perform a similar study for the

amorphous solid with C ~ 4for
both square and kagome types > —1.29 - o umpes 10°

and for N = 400. EJ;;) —1.01 A ®  Nseps = 10°
® SA does not converge well in this ®  Nsieps= 107

—1.00 A

L
\.

case (see (a,b)). This features also —1.30 1 —1.02 -

happens for spin glasses of the EA , : : : ' e : , ,

fype. 0 a 60 0 a 60
® Strong difference between the 2

energy landscape of square and
kagome amorphous solids.

® Beware that we explore the low
energy landscape but not the GS
due to the lack of convergence.

ap
Qsa

. g5,=0.11
mm g%,=0.16
B g%,=0.19
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Public Roadmap

Quantum evolution
kernel
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Graph-structured data

AR
W {%‘“\\\\\\\\\\\\}%}}?\

NH;

‘\\ \\\\\\\\\\

NONANS
N

Molecules

Social networks

’ Generali  mitsubishi UFJ
Sumitomo

Royal Bank scoﬂug/o

9 Lioyds TSB
HB
| @°%

GRID SYMBOL INDEX

I\ Bank of
Gen.Electric |\ Bank Nov oa®, _ saskv
@)/ 1\ Socta. L A el Fin. Transmission Line
Bear Stearns 3
Intesa-Sanpaolo @ GoldmanSachs® \ @\ NO—2— i | N~ | . 765 kV
] Transmission Line
el ]| D santander | e

Combined Cycle

Abgrio S Ace \G"" ale @ Power Plant

A\ - Commerzbank
N

\ @ Capital Group Thermal
Mediobanca @ { [ ] Power Plant
\ com
\ e ° ! Unicredito Nuclear
Sumitomomitsui @ .K sac Oci
ey Corp
Friends Provident @ JP Morgan @ @ sarclays Pumped Hydro
Fidelity Mng @ Cr.Suis: @ Chase BNP Paribas Power Plant

X
|
@ Power Plant
n
1
o
(]

345 kv
1 ) ] Nomura Substation
Deutsche Bank ”wﬂ",‘gmn Mng. 765 kv

Franklin Res. Merrill Lynch Substation

Economic
networks

Power networks
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Toxicity screening on Iroise * o 0 o
0 0. 0
Predictive Toxicity Challenge on Female Mice [1,2] ¢ o O o O
O O
O O
. O

First graph QML implementation on a real dataset of such

size.
* Year-long internal R&D project involving sw and hw teams

O~

# of registers (12N @? .

.-+ Control
# of qubits N @ Runtime
288 registers, Global
up to 32 analog, ~120k shofs
qubits constant

pulses

* Albrecht B, Dalyac C et al. "Quantum feature maps for graph
machine learning on a neutral atom quantum processor." Physical

Review A 107.4 (2023): 042615.

[1] Helma, et al., Bioinformatics, 01, 1, 107-108 (2001)
[2] Data taken from the GraKel library 59



Using the quantum dynamics to embed the data

® The quantum dynamics is
expected to infroduce aricher
feature map, with characteristics
that are hard to access by
classical means

FHPASQAL

Hilbert space

0

1 5 6
number of excitations n
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Quantum feature map

The graph fopology is encoded in the
dynamics through the Hamiltonian of the
system

Creates an edge if
ri <1

G=1{V,E}

Hy ~ Z V.nn;
i.j

FHPASQAL

The measurement hisftograms enable us to
build a similarity measure between graphs

A

2 3 4 5 6 7 8 9 10 11 12

Number of excitations

e

o 1 2 3 4 7 8 9 10 11 12

Number of excnatlons

I
W
o

I
N
o

o
N
o

Observed probability

°
o
o

o

o

o
|

o 1

o
W
o

©
N
u

©
N
o

Observed probability

o
o
a

o
o
S

Jensen- Shannon divergence between the graphs
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emical

compounds in PTC-FM

/7
7
\\ /
l /7
7/ . /
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/7 . //
7 . /
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Chemical compounds in PTC-FM
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Large atom number registers

a5
2._®
a -
O
.q2 1
.qZ 6
.q2 5
.qZ 8 .qZ 7
J29

a7

822

.qlo

J11

g12

.q14

20

.ql3

915 q16

.ql7

.qls

.qu

FHPASQAL
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Experimental results on par with classical kernel

Classification results on par with the
best classical kernels on this dafaset

a QEK b SVM-9 kernel

Simu

Graph index j

Exp =r=m E :
Graph index i i

o1
1

I

% of dataset

=
1

o
I

FHPASQAL

Kernel Fi-score (%)
QEK 60.4 4 5.1
SVM-19 58.2 + 5.5
Graphlet Sampling 56.9 + 5.0
Random Walk 55.1 6.9
Shortest Path 49.8 £6.0

w
1

N
1

4 6 8 10 12 14
Sizes

16 18 20

B Labeled as toxic
I Labeled as harmless

e

32
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