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14:30 — 16:30: Novel approaches in qguantum computing: from
near term quantum devices to quantum machine learning

1. What Powers quantum computers: classical simulation of quantum computers,
stabilizer formalism and magic states

2. Quantum advantage proofs

3. Quantum machine learning



What makes quantum computing work?

Largeness
of Hilbert
space?
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How can we develop quantum applications?
When are quantum computers classically simulable?

© Quantum computers promise huge advantages for computation
© 50-1000 qubit devices are being developed
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® Quantum applications are hard fo find and extremely difficult o build



Notions of Classicality

Classical Simulability Wigner Positivity
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Non-contextuality
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Vocabulary: circuit complexity

e (Qu)bit number number of (quantum) bits in a circuit.
* Circuit size: number of elementary gates in a circuit

e Depth: number of layers in a circuit
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Complexity theory




Vocabulary: complexity classes

Efficient algorithms solve n-bit problems using circuits of O(poly(n))
gates

Pis the class of problems that can be solved classically efficiently

— Example: nxn matrix multiplication, O(n*) classical algorithm

NP are problems that can be verified classicdlly efficiently

— Example: checking integer solution of an integer polynomial equation p(x)=0

Analogue quantum classes BQP and QMA



Notions of classical simulability

Quantum tasks: quantum circuits can generate probability distributions and
compute expectation values

Weak simulation: efficiently sampling from a output distribution of an n-qubit
poly(n)-size circuit (exactly or with 1/poly(n) additive error)

Estimation of observables. efficiently computing an expectation value with in
poly(n) fime with 1/poly(n) additive error

Strong simulation: efficiently computing output probabilities exactly or with huge
precision (exactly, or constant relative error)



Bravyi, Kitaev, PRA 2005

Clifords & Magic

Measure

Clifford
gate

Pauli
observable
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Clifford Gates

Magic States
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Clifford circuits exhibit quantum weirdness

teleportation

(457321 nonlocality
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Stabilizer states

Finite class of n-qubit quantum states
 But many interesting examples:
basis states, bell pairs, GHZ states, cluster states

States defined in terms of operators (stabilizers)
* Description is
e Spirit of MPS, PEPS Gaussian states.
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Definitions

1 qubit: Pauli gates

(1 0 [0 1 [0 =i (1 o0
SR R ) S (o B
n qubits: Pauli operators

aP, QPR QP - P e {l,XY, 7}
Y ' { a € {+1,+i}

* |y) is a stabilizer state if there exists a set of Pauli operators {7y, ..., 7,-}
such that
1. |y)is an +1-eigenstate with of everya; — o; |Y) = |P)
2. |Y)is uniquely defined,
3. all operators g;, 0; commute



Product states
o _0y+] 1) . .
|+) = 7 —> uniquely stabilized by {X}
¢ |0>n, |1>Tl - {Zl,Zz,...,Zn},{—Zl,—Zz,...,—Zn}

Entangled states

Bell states
« [@%) = 2 (100) + [11) > {X1Xp, 7175}
+ 107) = =(100) = [11)) > {~X1X;,Z175)
. wi):%(m)i 10)) > {+X1X5,—Z17Z;)
GHZ states
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Product states

e |+) = |0>\7§| L - uniquely stabilized by {X}
¢ |0>nl |1>Tl 9 {ZIIZZJ---)ZTl}l{_ZII_ZZ'""_ZTl}
Entangled states
Bell st~*
. £y _ 1 , Mind that n-qubit states
®=) = \/15( 00) + 1 can be defined in terms of
¢ |d7) = E( 00) — |1 very few matrices!
. |pry— L O(n)
=) = 5(101) £ [10))
GHZ state
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Stabilizer operations

 Send stabilizer states to stabilizer states
* Unitaries: known as Clifford circuits

* Measurements of Pauli observables
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Clifford gates

* Send Pauli operator sto Pauli operators
 There are simple rules to compute the action.
[ Act nicely on stabilizer states!

* [¢)is stab state U « U|y) is stab state
with stabilizer o H with stab group
* Uis Clifford s = U0'U+
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Clifford gates

* Send Pauli operator sto Pauli operators
 There are simple rules to compute the action.
[ Act nicely on stabilizer states!

* [¢)is stab state U « U|y) is stab state
with stabilizer & H with stab group
 Uis Clifford S = UcrUJr

L4 «—> 40—
232 w5, | 0HBe
—Z]—o = QQ'(_Ji




In general: Clifford circuits
products of poly(n) gates from this set

Pauli gates P = % phase gate  Hadamard
0 1 1 0 1|1 1
X = = -
) I ) EE
controlled-NOT controlled-Z
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Stabilizer measurements

any tensor product of Pauli

Typical measurements

e Standard basis

« Communication (dense coding)

operators is a stabilizer observable

Observable

* 7, 2,,..,2Z,sequentially

* Bell measurement:
both XX and ZZ
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Classical simulation methods
for Clifford circuits

.
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Stabilizer Formalism
(Gottesman-Knill theorem)




Stabilizer formalism for qubits

Stabilizer Code Pauli Tracking Gaussian Elimination
Formalism y
@ = qubit) xozox
11

Gottesman, PhD Thesis 1998, Aaronson, Gottesman, PRA, 2004



Stabilizer formalism for qubits

Stabilizer Code Pauli Tracking Gaussian Elimination
Formalism y
@ = qubit) xozox
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Gottesman, PhD Thesis 1998, Aaronson, Gottesman, PRA, 2004



Stabilizer formalism on qudits

Qudit Paulis * Integer arithmetic modulo d, over group Z,

* Qudit Cliffords preserve qudit Paulis.
Qudit Paulis are tensor products of
« X(a)lby=|la+b), Z(a)lb)=wbb), w=exp(2Ti/d)

e Stabilizer formalism can efficiently classically simulate
adaptive Clifford circuits with Pauli measurements
(weak & strong simulation)

e Uses algorithms for abstract algebra: Gaussian elimination

(odd prime d) Smith Normal forms (composite d)
Gottesman,Chaos, Solitons & Fractals, 96
DeBeaudrap, QIC, 2013,
Bermejo-Vega, Van Den Nest , QIC, 2014




	Slide 1: Novel approaches in quantum computing from near term quantum devices to quantum machine learning
	Slide 2: 14:30 – 16:30: Novel approaches in quantum computing: from near term quantum devices to quantum machine learning

