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14:30 – 16:30: Novel approaches in quantum computing: from 
near term quantum devices to quantum machine learning

1. What Powers quantum computers: classical simulation of quantum computers, 
stabilizer formalism and magic states

2. Quantum advantage proofs

3. Quantum machine learning



What makes quantum computing work? 

Entangle 
ment? 

Inter 
ference? 

Largeness 
of Hilbert 
space? 

Wigner 
negativity?

Contextuality? 



J Quantum computers promise huge advantages for computation  
J 50-1000 qubit devices are being developed 

L Quantum applications are hard to find and extremely difficult to build 
 
 

 
How can we develop quantum applications?  

When are quantum computers classically simulable?  



































Classical simulation methods 
for Clifford circuits 
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square lattice where qubits live on edges of the lattice. The Hamiltonian is

H = �
X

s

A
s
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p

B
p

, A
s

=
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r2s

X
r

, B
p

=
Y

r2p

Z
r

where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
p

| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:

| 
loop

i =
Y

s

(1 + A
s

)|0i⌦N

since A
s

(1 + A
s

) = 1 + A
s

. A ground state | 
loop

i is a superposition of states A
s

1

A
s

2

A
s

3

· · · |0i⌦N where s
1

, s
2

, s
3

· · ·
represent stars. Since A

s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1

A
s

2

|0i⌦N with neighboring stars s
1

and s
2

is

a state with a larger loop. In general, a state A
s

1

A
s

2

A
s

3

· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:

| 
loop

i =
X

8�

|�i

where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

a symmetry of the Hamiltonian can be captured by unitary transformations which satisfy the following:

U †HU = H ) [H, U ] = 0
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scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do
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Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,
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FIG. 1: (a) Propagation of quasi-particles by a(x) and b(x) (b) A pair of localized excitations e1 and e2 with elongated
excitations e

⇤
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So, interaction terms A
s

and B
p

are symmetry operators of the Hamiltonian

[A
s

, H] = [B
p

, H] = 0.

There are also symmetry operators with topologically non-trivial geometries as shown in Fig:

[H, `(Z)

0

] = [H, `(Z)

1

] = [H, r(Z)

0

] = [H, r(Z)

1

] = 0.

These operators cannot be written as products of A
s

or B
p

, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operators may anti-commute with each other:

(
`(Z)

0

, `(Z)

1

`(X)

0

, `(X)

1

)

where logical operators in the same column anti-commute with each other while logical operators in di↵erent columns

commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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Stabilizer Formalism 
(Gottesman-Knill theorem) 
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where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
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| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:
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· · · |0i⌦N where s
1

, s
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, s
3

· · ·
represent stars. Since A

s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1
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|0i⌦N with neighboring stars s
1

and s
2

is

a state with a larger loop. In general, a state A
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· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:
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where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

a symmetry of the Hamiltonian can be captured by unitary transformations which satisfy the following:

U †HU = H ) [H, U ] = 0
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where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
p

| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:
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loop
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since A
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) = 1 + A
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· · · |0i⌦N where s
1
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3

· · ·
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s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
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|0i⌦N with neighboring stars s
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and s
2

is

a state with a larger loop. In general, a state A
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· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:
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where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

a symmetry of the Hamiltonian can be captured by unitary transformations which satisfy the following:

U †HU = H ) [H, U ] = 0
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These operators cannot be written as products of A
s

or B
p

, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operators may anti-commute with each other:
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where logical operators in the same column anti-commute with each other while logical operators in di↵erent columns

commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A
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with each other, and ground states satisfy
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A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:
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to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
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|0i⌦N generated by a single application of a star operator A
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can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1

A
s

2

|0i⌦N with neighboring stars s
1

and s
2

is
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where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,
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square lattice where qubits live on edges of the lattice. The Hamiltonian is
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where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
p

| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:

| 
loop

i =
Y

s

(1 + A
s

)|0i⌦N

since A
s

(1 + A
s

) = 1 + A
s

. A ground state | 
loop

i is a superposition of states A
s

1

A
s

2
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s

3

· · · |0i⌦N where s
1

, s
2

, s
3

· · ·
represent stars. Since A

s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1

A
s

2

|0i⌦N with neighboring stars s
1

and s
2

is

a state with a larger loop. In general, a state A
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A
s
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3

· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:
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where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

a symmetry of the Hamiltonian can be captured by unitary transformations which satisfy the following:

U †HU = H ) [H, U ] = 0
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commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
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where � represents an arbitrary loop configuration. In this sense, a ground state of Z
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spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.
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Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,
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These operators cannot be written as products of A
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, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operators may anti-commute with each other:
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where logical operators in the same column anti-commute with each other while logical operators in di↵erent columns

commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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square lattice where qubits live on edges of the lattice. The Hamiltonian is

H = �
X

s

A
s

�
X

p

B
p

, A
s

=
Y

r2s

X
r

, B
p

=
Y

r2p

Z
r

where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
p

| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:

| 
loop

i =
Y

s

(1 + A
s

)|0i⌦N

since A
s

(1 + A
s

) = 1 + A
s

. A ground state | 
loop

i is a superposition of states A
s

1

A
s

2

A
s

3

· · · |0i⌦N where s
1

, s
2

, s
3

· · ·
represent stars. Since A

s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1

A
s

2

|0i⌦N with neighboring stars s
1

and s
2

is

a state with a larger loop. In general, a state A
s

1

A
s

2

A
s

3

· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:

| 
loop

i =
X

8�

|�i

where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

a symmetry of the Hamiltonian can be captured by unitary transformations which satisfy the following:

U †HU = H ) [H, U ] = 0

4

square lattice where qubits live on edges of the lattice. The Hamiltonian is

H = �
X

s

A
s

�
X

p

B
p

, A
s

=
Y

r2s

X
r

, B
p

=
Y

r2p

Z
r

where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
p

| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:

| 
loop

i =
Y

s

(1 + A
s

)|0i⌦N

since A
s

(1 + A
s

) = 1 + A
s

. A ground state | 
loop

i is a superposition of states A
s

1

A
s

2

A
s

3

· · · |0i⌦N where s
1

, s
2

, s
3

· · ·
represent stars. Since A

s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1

A
s

2

|0i⌦N with neighboring stars s
1

and s
2

is

a state with a larger loop. In general, a state A
s

1

A
s

2

A
s

3

· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:

| 
loop

i =
X

8�

|�i

where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

| i + | i + | i + · · ·

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

Z

(d)

Z

Z

Z

X

X

X

X

X

Z Z Z Z

X X X X X

5

FIG. 1: (a) Propagation of quasi-particles by a(x) and b(x) (b) A pair of localized excitations e1 and e2 with elongated
excitations e

⇤
1 and e

⇤
2

So, interaction terms A
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and B
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are symmetry operators of the Hamiltonian
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, H] = [B
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, H] = 0.
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These operators cannot be written as products of A
s

or B
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, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operators may anti-commute with each other:
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where logical operators in the same column anti-commute with each other while logical operators in di↵erent columns

commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To
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So, interaction terms A
s

and B
p

are symmetry operators of the Hamiltonian

[A
s

, H] = [B
p

, H] = 0.

There are also symmetry operators with topologically non-trivial geometries as shown in Fig:

[H, `(Z)

0

] = [H, `(Z)

1

] = [H, r(Z)

0

] = [H, r(Z)

1

] = 0.

These operators cannot be written as products of A
s

or B
p

, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operators may anti-commute with each other:

(
`(Z)

0

, `(Z)

1

`(X)

0

, `(X)

1

)

where logical operators in the same column anti-commute with each other while logical operators in di↵erent columns

commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
p

| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:

| 
loop

i =
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)|0i⌦N

since A
s

(1 + A
s

) = 1 + A
s

. A ground state | 
loop

i is a superposition of states A
s

1

A
s

2

A
s

3

· · · |0i⌦N where s
1

, s
2

, s
3

· · ·
represent stars. Since A

s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1

A
s

2

|0i⌦N with neighboring stars s
1

and s
2

is

a state with a larger loop. In general, a state A
s

1

A
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2

A
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3

· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:
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where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

a symmetry of the Hamiltonian can be captured by unitary transformations which satisfy the following:

U †HU = H ) [H, U ] = 0
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where logical operators in the same column anti-commute with each other while logical operators in di↵erent columns

commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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square lattice where qubits live on edges of the lattice. The Hamiltonian is
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where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i,
Z|1i = �|1i, X|0i = |1i and X|1i = |0i. The model is exactly solvable since interaction terms A

s

and B
p

commute

with each other, and ground states satisfy

A
s

| i = | i, B
p

| i = | i, 8s, p.

A ground state of the Hamiltonian can be viewed as a condensation of string-like extended objects. Let us consider a

trivial product state |0i⌦N over the entire lattice (N is the number of total qubits) and observe that B
p

|0i⌦N = |0i⌦N .

Then, one notices that the following is a ground state:
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loop

i =
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s

)|0i⌦N

since A
s
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) = 1 + A
s

. A ground state | 
loop

i is a superposition of states A
s
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2
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3

· · · |0i⌦N where s
1

, s
2

, s
3

· · ·
represent stars. Since A

s

are products of Pauli-X type operators, applications of A
s

to a product state |0i⌦Nwill

flip the signs of qubits: |0i ! |1i. A term A
s

|0i⌦N generated by a single application of a star operator A
s

can be

viewed as a state with one small loop (Fig. ??(b)). Similarly, a term A
s

1

A
s

2

|0i⌦N with neighboring stars s
1

and s
2

is

a state with a larger loop. In general, a state A
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3

· · · |0i⌦N can be viewed as loops of various sizes. Therefore,

a ground state can be represented as an equal superposition of all the loop states:
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where � represents an arbitrary loop configuration. In this sense, a ground state of Z
2

spin liquid can be viewed as

as condensations of fluctuating string-like objects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that are determined by gauge theoretical considerations. Levin and Wen derived the most general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systems by further assuming that wave-functions possess scale invariance. Indeed, one may easily see that a ground

state of Z
2

spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance is not a necessary condition for the presence of topological order. In fact, quantum fractal codes do

not have full continuous scale symmetries, but discrete scale symmetries only where the number of ground states is

exponential in the linear length of the lattice, and ground states correspond to limit cycles of RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

capture global properties, it is convenient to consider topological symmetries of the Toric code Hamiltonians. Formally,

a symmetry of the Hamiltonian can be captured by unitary transformations which satisfy the following:

U †HU = H ) [H, U ] = 0
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FIG. 1: (a) Propagation of quasi-particles by a(x) and b(x) (b) A pair of localized excitations e1 and e2 with elongated
excitations e
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So, interaction terms A
s

and B
p

are symmetry operators of the Hamiltonian

[A
s

, H] = [B
p

, H] = 0.

There are also symmetry operators with topologically non-trivial geometries as shown in Fig:
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These operators cannot be written as products of A
s

or B
p

, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operators may anti-commute with each other:
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where logical operators in the same column anti-commute with each other while logical operators in di↵erent columns

commute with each other. As this example shows, global symmetries of the Hamiltonian can be captured by symmetry

operators with topologically non-trivial geometries.

These non-trivial symmetries operators are also important in quantum information theoretical context. It is well

known that Z
2

spin liquid, or the Toric code, can be used for storing logical qubits securely inside the ground state

space that is protected by a mass gap. This is because ground states are highly entangled, and no local errors destroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

One can characterize extended objects arising in quantum spin systems by looking at topological properties of logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D � m-dimensional logical operators where m is
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•  Integer arithmetic modulo d, over group Zd 
 

•  Qudit Cliffords preserve qudit Paulis. 
Qudit Paulis are tensor products of 
•  X(a)|b�=|a+b�,   Z(a)|b�=ωab|b�,    ω=exp(2πi/d) 

 
•  Stabilizer formalism can efficiently classically simulate 

adaptive Clifford circuits with Pauli measurements 
(weak & strong simulation) 
 

•  Uses algorithms for abstract algebra: Gaussian elimination 
(odd prime d) Smith Normal forms (composite d) 
•  Gottesman,Chaos, Solitons & Fractals, 96 
•  DeBeaudrap, QIC, 2013,  
•  Bermejo-Vega, Van Den Nest , QIC, 2014 
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