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☺ Quantum computers offer advantages in computation
☺ 50-1000 qubits devices are under construction

☹ Quantum applications are hard to find and implement

Noisy Intermediate Scale Quantum computers (NISQ)



Quantum simulations can offer practical quantum advantages



Quantum Simulation

Dynamical quantum simulators (e.g., using 104-105 cold atoms in optical lattices) cannot be efficiently classically 
simulated with state-of-the-art tensor-network algorithms (a la DMRG). But are these good enough?

Trotzky et. al., Nature Phys. 8 (2012), Choi et al., Science 352 (2016)
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Random circuit sampling (“Google”)
They apply a long circuit of random physical interactions on superconducting qubits. 

Boson sampling
Generates random numbers using a random photonic circuit, hard to simulate based on complexity theoretic evidence.

| PHOTONS ⟩ COU
NT

Boixo et al., Nature Phys. 14 (2016)
Bouland, Fefferman, Nirkhe, Vazirani, 
Nature Phys arXiv:1803.04402
Arute, Nature, Vol 574, 505 (2019)

Aaronson, Arkhipov, Th. Comp. 9 (2013)

Quantum Sampling problems offer complexity-theoretic advantages
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Our work
Two types of quantum advantages 

from quantum simulators



Complexity-theoretic advantage
for short-time evolutions

20

• Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys. Rev. X 
8 (2018), arxiv:1703.00466

• Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2 (2018), 
arXiv:1706.03786

• Haferkamp, Hangleiter, Fefferman, Eisert, Bouland, Bermejo-Vega, 
Phys. Rev. Lett. 125, 250501 – Published 17 December 2020 



Result: simple Hamiltonian evolutions are  
“horribly hard” to simulate classically 
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Approximate sampling from shallow (constant-time) evolutions of 2D translation-
invariant Hamiltonians is impossible assuming plausible* complexity-theoretic 
conjectures:  
1)  The Polynomial Hierarchy doesn’t collapse 

2)  Anti-concentration ≈ “fairly flat” outputs 

3)  Approximate average-case hardness 

*Identical to random circuit sampling, slightly better than boson sampling 

Protocols 
Bermejo-Vega, Hangleiter, Schwarz, 
Raussendorf, Eisert, Phys. Rev. X 8 

(2018), arxiv:1703.00466 

Proofs: anticoncentration & exact average case hardness 
Bouland, Fefferman, Nirkhe, Vazirani, Nature Phys arXiv:1803.04402 
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2 (2018), arXiv:1706.03786 
Haferkamp, Hangleiter,   Fefferman, Eisert, Bouland, Bermejo-Vega, Upcoming! 
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Prepare N qubits on an n × m square  
lattice in a product state 
 
 
 
withβi∈ {0, π/4} randomly. 

|ψβ⟩ =
N⊗

i=1

(
|0⟩+ βi |1⟩

)

H =
∑

(i,j)∈E

π

4
ZiZj −

∑

i∈V

π

4
Zi.

Quench to 
 
 
 
and evolve under U = eiH . 

Measure all qubits in the X basis. 

Protocols 
arXiv:1703.00466 
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Single-site addressing possible (within limits)  
 
 
 
 
Bakr, Gillen, Peng, Foelling, Greiner, Nature 462, (2009) 
Weitenberg, Endres, Sherson, Cheneau, Schauß, Fukuhara, Bloch, Kuhr, Nature (2011)  

Controlled coherent collisions long realized  
 
 
 
 
 
Mandel, Greiner, Widera, Rom, Hänsch, Bloch, Nature, 425, (2003) 

Reminiscient of disordered optical lattices 
 
 
 
 
 
Schreiber, Hodgman, Bordia, Lüschen, Fischer, Vosk, Altman, 
Schneider, Bloch, Science 349 (2015)  



Quantum Verification/Benchmarking:  
How can we check if the quantum computation is working? 
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Approach I  
With additional noise/complexity 
assumptions, a few quantum 
samples + exponential classical 
processing is enough 
 
Cross-entropy, HOG, BOG 
Boixo et al., Nature Phys. 14 (2016) 
Bouland, Fefferman, Nirkhe, Vazirani, Nature Phys 
arXiv:1803.04402 
Aaronson, Chen, CCC 17 
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Hangleiter, Kliesch, Schwarz, Eisert,  Quant. Sc. Tech. 2, (2017) 
Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys. 
Rev. X 8 (2018), arxiv:1703.00466 

 

Approach II 
With reliable single-qubit measurements, 
the fidelity of the prepared final state an 
be efficiently estimated	



1

Experimental demonstration
(arXiv:2307.14424v1)



Direct fidelity estimation

Requirements:
● single qubit measurements

Advantages (over XEB approaches):
● efficient in terms of both 

sample and computational 
complexity

● knowledge only of the 
measurement noise

● bounds the quality of the 
samples from a fixed 
quantum state

● system size efficient: estimates 
F with error ϵ using 1/ϵ2 
measurements

2

S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011).



Qubit recycling (non-adaptive MBQC with ions)

Requirements:
● single qubit measurements

Advantages (over XEB approaches):
● efficient in terms of both 

sample and computational 
complexity

● knowledge only of the 
measurement noise

● bounds the quality of the 
samples from a fixed 
quantum state

● system size efficient: estimates 
F with error ϵ using 1/ϵ2 
measurements



Qubit recycling (non-adaptive MBQC with ions)

● Measurement (P ↔ S)
● P = Cooling Reset (S’ → D′)
● HS = Recycling (S → D′ transition)
● HD(D → S′)



Measuring the fidelity and XEB for our setup

Requirements:
● single qubit measurements

Advantages (over XEB approaches):
● efficient in terms of both 

sample and computational 
complexity

● knowledge only of the 
measurement noise

● bounds the quality of the 
samples from a fixed 
quantum state

● system size efficient: estimates 
F with error ϵ using 1/ϵ2 
measurements
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S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011).



Experimental results for single-instance verification of random cluster states

● Blue = with recycling (blue)
● Pink = without recycling
● Gray error bars = measurement 

noise (from benchmarking)
● Colored error bars = 3σ statistical 

error
● Shaded green area = acceptance 

region 

M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. 
Schindler, and T. Monz,Nat. Phys. 18, 1053 (2022)

I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. 
Jacob,
O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. 
Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. 
Schindler, and T. Monz,, PRX Quantum 2, 020343 
(2021))

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, 
S. X. Wang, Stephan Quint, M. F. Brandl, V. Nebendahl, 
C. F. Roos, M. Chwalla, M. Hennrich, and Rainer Blatt,, 
New J. Phys. 15, 123012 (2013).



Estimating the noise strength: verification with artificially induced phase noise

We add dephasing noise on all qubits after initial state preparation and each MS gate.
Rotation angles of Z rotations are drawn from normal distribution with zero mean and standard deviation σ 
∈ [0, 0.2π] every 50 shots. For correlated noise, the parameters in each time step are chosen
equally and for uncorrelated noise, they are chosen independently.



Estimating the noise strength: verification with artificially induced phase noise

● Green = induced global noise
● Pink = induced local noise
● Gray error bars = measurement 

noise (from benchmarking)
● Colored error bars = 3σ statistical 

error
● Shaded green area = acceptance 

region 

M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. 
Schindler, and T. Monz,Nat. Phys. 18, 1053 (2022)

I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. 
Jacob,
O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. 
Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. 
Schindler, and T. Monz,, PRX Quantum 2, 020343 
(2021))

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, 
S. X. Wang, Stephan Quint, M. F. Brandl, V. Nebendahl, 
C. F. Roos, M. Chwalla, M. Hennrich, and Rainer Blatt,, 
New J. Phys. 15, 123012 (2013).



Experimental results for average performance verification

● Gray error bars = measurement 
noise (from benchmarking)

● Colored error bars = 3σ statistical 
error

● Gray shaded area = Fidelity 
prediction from calibration data 
gate fidelities of single-qubit gates 
f1Q = 99.8%, twoqubit gates f2Q = 
97.5 ± 0.5%, and measurements fM 
= 99.85%,

● Dotted line: effective local Pauli 
error probability of 1.7%

M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. 
Schindler, and T. Monz,Nat. Phys. 18, 1053 (2022)

I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. 
Jacob,
O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. 
Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. 
Schindler, and T. Monz,, PRX Quantum 2, 020343 
(2021))

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, 
S. X. Wang, Stephan Quint, M. F. Brandl, V. Nebendahl, C. 
F. Roos, M. Chwalla, M. Hennrich, and Rainer Blatt,, New 
J. Phys. 15, 123012 (2013).





Direct fidelity estimation provides an efficient and scalable means of 
certifying both single instances and the average quality of MBQCS



Sample efficient: Larger systems can be verified with the same number of 
experiments as we have performed (30k -100 k shots)

Direct fidelity estimation provides an efficient and scalable means of 
certifying both single instances and the average quality of MBQCS



Sample efficient: Larger systems can be verified with the same number of 
experiments as we have performed (30k -100 k shots)

Applications: tool for verifying NISQ devices and quantum advantages 
based on sampling problems in MBQC

@queenofquanta

jbermejovega@go.ugr.es

Direct fidelity estimation provides an efficient and scalable means of 
certifying both single instances and the average quality of MBQCS



Practical quantum advantage for measuring dynamical 
structure factors

ML Baez, M Goihl, J Haferkamp, J 
Bermejo-Vega, M Gluza, J Eisert

Proceedings of the National Academy 
of Sciences 117 (42), 26123-26134



WHAT? DYNAMICAL STRUCTURE FACTOR FOR SPIN SYSTEMS

Sa,b(q, ω) =
1
N ∑

ij
∫

∞

−∞
dte−iq.(ri−rj)eiωtCa,b

i,j (t) , Ca,b
i,j (t) = ⟨σa

i (0)σb
j (t)⟩

Approximating the dynamical structure factor  within a constant error  
over an interval of time  is BQP-hard. 

For polynomially large ( ) then it is BQP-hard to approximate  
within an error .

Sα,β
t0,t1

(q, ω) ε ≤ 1/8
[t0, t1]

t1 − t0 = poly(n) Sα,β
t0,t1

(q, ω)
ε = poly−1(n)

L

⟨σa
i (t)σb

j (t′ )⟩

⟨σa
i (t)⟩

| | [σz
i (t), σz

j ] | |
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Sa,b(q, ω)

ED

ED - Krylov

ED

Trapped ions 
Rydberg atoms

Neutron Scattering

Neutron Scattering

Magnetization

27 53

This proposal

Two body observables Simulation leap for two body observables

Simulation of time dependent two body observables in long range models

25

J. Haferkamp, J. Bermejo-Vega, J. Eisert

arXiv: 1912.0607 

 

Confined Quasiparticle Dynamics in Long-Range Interacting Quantum Spin Chains

Fangli Liu,1 Rex Lundgren,1 Paraj Titum,1,2 Guido Pagano,1 Jiehang Zhang,1

Christopher Monroe,1,2 and Alexey V. Gorshkov1,2
1Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
2Joint Center for Quantum Information and Computer Science, NIST/University of Maryland,

College Park, Maryland 20742, USA

(Received 17 October 2018; revised manuscript received 31 January 2019; published 16 April 2019)

We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising
model with power-law (1=rα) interactions. We find that long-range interactions give rise to a confining
potential, which couples pairs of domain walls (kinks) into bound quasiparticles, analogous to mesonic
states in high-energy physics. We show that these quasiparticles have signatures in the dynamics of order
parameters following a global quench, and the Fourier spectrum of these order parameters can be exploited
as a direct probe of the masses of the confined quasiparticles. We introduce a two-kink model to
qualitatively explain the phenomenon of long-range-interaction-induced confinement and to quantitatively
predict the masses of the bound quasiparticles. Furthermore, we illustrate that these quasiparticle states can
lead to slow thermalization of one-point observables for certain initial states. Our work is readily applicable
to current trapped-ion experiments.

DOI: 10.1103/PhysRevLett.122.150601

Long-range interacting quantum systems occur naturally
in numerous quantum simulators [1–10]. A paradigmatic
model considers interactions decaying with distance r as
a power law 1=rα. This describes the interaction term in
trapped-ion spin systems [3,11–15], polar molecules
[16–19], magnetic atoms [5,20,21], and Rydberg atoms
[1,2,22,23]. One remarkable consequence of long-range
interactions is the breakdown of locality, where quantum
information bounded by linear “light cones” in short-range
interacting systems [24] can propagate superballistically or
even instantaneously [25–31]. The nonlocal propagation of
quantum correlations in 1D systems has been observed in
trapped-ion experiments [12,13]. Moreover, 1D long-range
interacting quantum systems can host novel physics that is
absent in their short-range counterparts, such as continuous
symmetry breaking [32,33].
Recently, it has been shown that confinement—which

has origins in high-energy physics—has dramatic signa-
tures in the quantum quench dynamics of short-range
interacting spin chains [34]. Owing to confinement, quarks
cannot be directly observed in nature as they form mesons
and baryons due to strong interactions [35,36]. An arche-
typal model with analogous confinement effects in quan-
tum many-body systems is the 1D short-range interacting
Ising model with both transverse and longitudinal fields
[37–42]. For a vanishing longitudinal field, domain-wall
quasiparticles propagate freely and map out light-cone
spreading of quantum information [41–44]. As first pro-
posed by McCoy and Wu [45,46] (see also Ref. [47]), a
nonzero longitudinal field induces an attractive linear
potential between two domain walls and confines them
into mesonic quasiparticles. Recently, Kormos et al.

investigated global quenches in this system and showed
that the nonequilibrium dynamics can be used to probe the
confined quasiparticle excitations [34].
In thiswork,we study the nonequilibriumdynamics of the

long-range interacting transverse-field Ising model without
a longitudinal field after a global quantum quench. We find
that long-range interactions introduce an effective attractive
force between a pair of domain walls, thus, confining them
into a bound state analogous to the meson in high-energy
physics. We calculate time-dependent order parameters and
connected correlation functions, both of which feature clear
signatures of confined quasiparticle excitations [41,42]. The
masses of these bound quasiparticles—the energy gaps
relative to the ground state—can be directly extracted from
the Fourier spectrum of time-dependent order parameters
[34,41,42]. We introduce a two-kink model to explicitly
show that the confining potential comes from long-range
interactions. This effective model also gives good predic-
tions for the quasiparticles’ masses and their dispersion
relations. Furthermore, we study the effect of confined
quasiparticles on the thermalization of different initial states.
We find that for certain initial states, one-point observables
exhibit slow thermalization [41,42,48,49], whichmight help
protect ordered phases in the prethermal region [50–52].
We note that our study is in agreement with the general

mechanism of global quantum quenches, first formulated
in Refs. [41,42,44] for short-range interacting systems,
and demonstrates that the general theory developed in
Refs. [41,42,44] holds for systems with long-range inter-
actions. Our work is well within the reach of current
trapped-ion experiments [15] and other atomic, molecular,
and optical (AMO) experimental platforms [1,9,53].

PHYSICAL REVIEW LETTERS 122, 150601 (2019)

0031-9007=19=122(15)=150601(7) 150601-1 © 2019 American Physical Society

Ĥ(J, B) = ∑
i

Bzσz
i − ∑

i<j

J
|ri − rj |

α σx
i σx

j



• Trapped ions Long range transverse field Ising model with variable interaction range 
Islam, et. al. Science 2013. Bohnet, et. al. Science 2016. Zhang, et. al. Nature 2017. 

• Rydberg atoms Long range transverse field Ising and XXZ models
Bernien, et. al. Nature 2017. Levine, et. al. PRL 2018. Labuhn, et. al. Nature 2016. et



Transverse field Ising model:

Spin-reflection parity
σx → − σx σz → − σzσy → σy

H(J, B) = ∑
i

Bzσz
i − ∑

i<j

Ji, jσx
i σx

j .

Expectation value of an odd 
number of Paulis vanishes

U( j) =
1

2
(1 − iσx

j )Controlled local initial operation

|ψ⟩ = U(t)U( j) |ψ0⟩Free time evolution

⟨ψ |σx
i |ψ⟩ = ⟨ψ0 |U( j)†σx

i (t)U( j) |ψ0⟩ = Gret(i, j,t)
x,x

Local measurement

Sxx(q, ω) = −
1
π

[1 + nB(ω)]Im[Gret
x,x(q, ω)]

Fluctuation-Dissipation within linear response theory

Gret
x,x(t) = −

i
2

⟨σx
i (t)σx

j (0) − σx
j (0)σx

i (t)⟩0

|ψ0⟩

Initial state 
vector Local excitation

Time evolution

Measurement
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Without symmetries -> Tomographic 
recovery of the dynamical structure factor

MLB, et al. arXiv: 1912.0607 

HOW? DSFS IN QUANTUM SIMULATORS



WHY? TEST CASES 

Ĥ(J, B) = ∑
i

Bzσz
i − ∑

i<j

Jijσx
i σx

j Ji, j =
J

| i − j |α

Transverse field Ising model:
Long range interactions Full ED: 16-18 sites

Lanczos: 28 sites, 250 states

Dynamics

TVDP: 128 sites, equal time correlators
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WHY? TEST CASES AND NOISE MODELS

Initial state 
fidelity

Globally fluctuating Ising couplings

J =
J(0)
rα

(1 + A sin(wt))

Random Ising interactions

J =
J(0)
rα

(1 + Aξ)

Random transverse field

Bz = B + Aξ

Bad ground state 
preparation

Adiabatically or 
QAOA preparation

Periodic oscillations of the 
Rabi frequency induced by 

non-uniform laser frequency

Trapped ions: Spin-spin interactions 
generated by coupling hyperfine 

states to normal mode of motion of 
the ions

 depends on atom-atom distance and on 
coupling to the ions

Ω

Finite temperatures, and imperfect 
control over ions/atoms leads to 

changes on the distance between 
components 

Random interactions in both 
architectures 

& 

Random fields in Rydberg 
atom setups 

Rabi frequency is not uniform in the 
chain nor from shot to shot

Experiments have control up to A ∝ 0.01

J ∝ Ω
Bz ∝ Ω

Trapped ionsRydberg atoms
J ∝ Ω

 is the Rabi frequencyΩ

α ∝ 6
α ∈ [0,3]
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TEST CASES AND NOISE MODELS

Long range scaling up to L = 14 ΔS =
1

L2Nω ∑
q

∑
ω

S(q, ω)

Globally fluctuating Ising 
couplings

Random Ising interactions Random transverse field

14

Figure 6. Effect of experimental imperfections in the DSF for the long range transverse field Ising model. We plot the average error, �S =
1

N!

1
L2

P
!

P
q �S(q,!) as a function of the interaction range, ↵, for L = 14 sites. a) Effects of laser intensity fluctuations. These

fluctuations are more noticeable for higher interactions ranges, with the error being minimal at ↵ = 1, and saturating at ↵ > 3. b) and c)
Effect of lattice imperfection for random fields (b)) and random interactions (c)). For both these cases the effect is the same, the DSF is
highly susceptible to randomness at low values of ↵, and it monotonically becomes more robust as ↵ is increased, recovering the short range
behaviuor for ↵ ! 1.

(a)

(d)

(b)

(e)

Figure 7. Average DSF error as a function of sizes for the long range transverse field Ising model for ↵ = 1.5 ((a), (b), and (c)), as well as for
↵ = 6 ((d), (e), and (f)). (a) and (d) Effects of laser intensity fluctuations for . (b) and (e) Effect of lattice imperfection. (c) and (f) random
fields, (c) random interactions. For all these cases, at the experimental level of control over the different imperfections, A < 5% the error is
small and constant along the whole range of sizes, hinting at a good scalability.

confinement in long range models via DSF measurements in
quantum simulators.

In Fig. [[this will be in the appendix]] we show the maxi-
mal error as a function of frequency (reciprocal space) Eqs. 26
(Eqs.27), where we can see that the overall behavior of the er-
ror is qualitatively the same as for the short range TFIM. The
error is concentrated around the gap, with small fluctuations
at other values of ! for strong imperfections. For small noise
levels (1%�5%) the error in the DSF is negligible, for all im-
perfections models, as it was found for the short range TFIM.

In Fig. 6 we show the integrated error (Eq. 29) as a function
of the interactions range ↵ (see Eq. 23) for the models cor-
responding to evolution imperfections. Fig. 6(a) show the er-
ror for the case of laser intensity fluctuations, while Fig. 6(b)
and (c) show the random fields and random interactions re-
spectively. In both cases we see two regimes, where the error
drastically changes for 1 < ↵ < 3, while it stabilizes for

↵ > 3. For the laser intensity fluctuations, the error monoton-
ically increases in the first regime, and saturates in the second.
On the other hand, the opposite behavior is observed for the
lattice imperfections, where the error decreases as a function
of ↵. We remind the reader that for ↵ > 3 the system quali-
tatively behaves as the short range TFIM, following a gener-
alized Lieb-Robinson bound, and exactly recovering the short
range model at ↵ ! 1.

While the errors change as the value of ↵ is changed at
the noise levels present in the current architectures, the in-
tegrated error is negligible indicating the DSF at all values
of ↵ can be probed [[using]] these setups and the measure-
ment would yield correct results [[(what is the meaning of
correct?)]]. Please note that the behavior, when the errors are
not negligible is also interesting since they connect to Flo-
quet (laser intensity fluctuations), and disorder (random fields
and interactions) physics, [[e :)]]specially at small values of

α = 1.5 α = 1.5 α = 1.5

α = 6 α = 6 α = 6
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Experiments have control up to A ∝ 0.01

Imperfection effects are negligible and scale in a controlled way up to A ∝ 0.05
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