
11:00 – 12:30: Quantum computer algorithms: what
can we do with them and how can we realize them?

1. Quantum algorithms
1. Hamiltonian simulation
2. Deutsch-Jozsa’s
3. QFT
4. Phase Estimation
5. Shor’s algorithm
6. Grover’s search

2.Quantum realizations
1. Quantum error correction
2. Magic states
3. Gate Teleportation

Reference
IQC Introduction to Quantum Computing - Petros Wallden
The University of Edinburgh Open Course Materials
http://pwallden.gr/courseiqc.asp

http://pwallden.gr/courseiqc.asp

Complexity
Theory

Notation & Definitions

Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.

Complexity class: Is a set of problems with related
resource-based complexity

Notation:

- f (n) is in O(g(n)) if for some constant m there exists a
positive constant such that f (n) ≤ cg(n) for all n ≥ m

- f (n) is in Ω(g(n)) if for some constant m there exists a
positive constant c such that f (n) ≥ cg(n) for all n ≥ m

- f (n) is in Θ(g(n)) if for some constant m there exists positive
constants c1 ≤ c2 such that c1g(n) ≤ f (n) ≤ c2g(n) for all
n ≥ m

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Notation & Definitions

Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.

Complexity class: Is a set of problems with related
resource-based complexity

Notation:

- f (n) is in O(g(n)) if for some constant m there exists a
positive constant such that f (n) ≤ cg(n) for all n ≥ m

- f (n) is in Ω(g(n)) if for some constant m there exists a
positive constant c such that f (n) ≥ cg(n) for all n ≥ m

- f (n) is in Θ(g(n)) if for some constant m there exists positive
constants c1 ≤ c2 such that c1g(n) ≤ f (n) ≤ c2g(n) for all
n ≥ m

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Notation & Definitions

Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.

Complexity class: Is a set of problems with related
resource-based complexity

Notation:

- f (n) is in O(g(n)) if for some constant m there exists a
positive constant such that f (n) ≤ cg(n) for all n ≥ m

- f (n) is in Ω(g(n)) if for some constant m there exists a
positive constant c such that f (n) ≥ cg(n) for all n ≥ m

- f (n) is in Θ(g(n)) if for some constant m there exists positive
constants c1 ≤ c2 such that c1g(n) ≤ f (n) ≤ c2g(n) for all
n ≥ m

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)
1 There are problems outside NP that quantum computers can

solve
2 There are problems in NP that quantum computers cannot

solve (therefore NP-complete problems should be outside
BQP)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Oracle Model

We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

Access: Query the oracle, i.e. insert x and obtain f (x)

Goal: Determine properties of the function f with the fewest
queries to the oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Oracle Model

We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

Access: Query the oracle, i.e. insert x and obtain f (x)

Goal: Determine properties of the function f with the fewest
queries to the oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Oracle Model

We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

Access: Query the oracle, i.e. insert x and obtain f (x)

Goal: Determine properties of the function f with the fewest
queries to the oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉
By linearity, we can also query in superposition:∑

a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉

By linearity, we can also query in superposition:∑
a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉
By linearity, we can also query in superposition:∑

a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉
By linearity, we can also query in superposition:∑

a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum
OperationsDeutsch-Jozsa’s

quantum
algorithm

The Deutsch - Jozsa Algorithm

Inspiration for Shor’s and Grover’s algorithms

Initial protocol by Deutsch 1985, improved by Jozsa. Current
version, is result of further research (Cleve, Ekert,
Macchiavello and Mosca)

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}

Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Recall that Uf is defined as:∑
x ,y

Cx ,y |x〉 |y〉 →
∑
x ,y

Cx ,y |x〉 |y ⊕ f (x)〉

The Quantum Circuit of the algorithm is given by:

|0〉 /n H⊗n

Uf

H⊗n

|1〉 H

↑
ψ0

↑
ψ1

↑
ψ2

↑
ψ3

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Recall that Uf is defined as:∑
x ,y

Cx ,y |x〉 |y〉 →
∑
x ,y

Cx ,y |x〉 |y ⊕ f (x)〉

The Quantum Circuit of the algorithm is given by:

|0〉 /n H⊗n

Uf

H⊗n

|1〉 H

↑
ψ0

↑
ψ1

↑
ψ2

↑
ψ3

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.

2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1
If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1
If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1

If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1
If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!

It does not give a speed-up compared to BPP, since if we
allow for (small) probability of failure, there exist efficient
classical algorithms with constant oracle calls (example?)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!

It does not give a speed-up compared to BPP, since if we
allow for (small) probability of failure, there exist efficient
classical algorithms with constant oracle calls (example?)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!

It does not give a speed-up compared to BPP, since if we
allow for (small) probability of failure, there exist efficient
classical algorithms with constant oracle calls (example?)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

𝜑

|
|

L?

F
|
|ei𝜑

1/L

Quantum Fourier Transform

Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

F
N−1∑
x=0

ax |x〉 =
N−1∑
y=0

by |y〉 =
1√
N

N−1∑
y=0

N−1∑
x=0

ax exp(2πixy/N) |y〉

where the amplitudes ax , by are related as in DFT.

To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity

The QFT acts as (note that N = 2n):

F |x1x2 · · · xn〉 =
1√
N

(
|0〉+ e2πi [0.xn] |1〉

)
⊗
(
|0〉+ e2πi [0.xn−1xn] |1〉

)
⊗

⊗ · · · ⊗
(
|0〉+ e2πi [0.x1x2···xn] |1〉

)
(4)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

F
N−1∑
x=0

ax |x〉 =
N−1∑
y=0

by |y〉 =
1√
N

N−1∑
y=0

N−1∑
x=0

ax exp(2πixy/N) |y〉

where the amplitudes ax , by are related as in DFT.

To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity

The QFT acts as (note that N = 2n):

F |x1x2 · · · xn〉 =
1√
N

(
|0〉+ e2πi [0.xn] |1〉

)
⊗
(
|0〉+ e2πi [0.xn−1xn] |1〉

)
⊗

⊗ · · · ⊗
(
|0〉+ e2πi [0.x1x2···xn] |1〉

)
(4)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

F
N−1∑
x=0

ax |x〉 =
N−1∑
y=0

by |y〉 =
1√
N

N−1∑
y=0

N−1∑
x=0

ax exp(2πixy/N) |y〉

where the amplitudes ax , by are related as in DFT.

To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity

The QFT acts as (note that N = 2n):

F |x1x2 · · · xn〉 =
1√
N

(
|0〉+ e2πi [0.xn] |1〉

)
⊗
(
|0〉+ e2πi [0.xn−1xn] |1〉

)
⊗

⊗ · · · ⊗
(
|0〉+ e2πi [0.x1x2···xn] |1〉

)
(4)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

We will use Eq. (4) as definition for QFT

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

The Quantum Circuit for F is:

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi0.x1···xn |1〉

|x2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.x2···xn |1〉
...

...

|xn−1〉 • • · · · H R2 |0〉+ e2πi0.xn−1xn |1〉

|xn〉 • • · · · • H |0〉+ e2πi0.xn |1〉

where the gate Rk :=

[
1 0

0 e2πi/2
k

]
and we omitted a swap of

the qubits and a factor 1√
2

at the end of the circuit

It is simple to see that F is unitary since the circuit consists of
unitary gates (see also Appendix)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

We will use Eq. (4) as definition for QFT

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

The Quantum Circuit for F is:

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi0.x1···xn |1〉

|x2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.x2···xn |1〉
...

...

|xn−1〉 • • · · · H R2 |0〉+ e2πi0.xn−1xn |1〉

|xn〉 • • · · · • H |0〉+ e2πi0.xn |1〉

where the gate Rk :=

[
1 0

0 e2πi/2
k

]
and we omitted a swap of

the qubits and a factor 1√
2

at the end of the circuit

It is simple to see that F is unitary since the circuit consists of
unitary gates (see also Appendix)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

We will use Eq. (4) as definition for QFT

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

The Quantum Circuit for F is:

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi0.x1···xn |1〉

|x2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.x2···xn |1〉
...

...

|xn−1〉 • • · · · H R2 |0〉+ e2πi0.xn−1xn |1〉

|xn〉 • • · · · • H |0〉+ e2πi0.xn |1〉

where the gate Rk :=

[
1 0

0 e2πi/2
k

]
and we omitted a swap of

the qubits and a factor 1√
2

at the end of the circuit

It is simple to see that F is unitary since the circuit consists of
unitary gates (see also Appendix)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Example: Three qubits

F |x1x2x3〉 = |ψ1ψ2ψ3〉

|ψ1〉 = 1√
2

(
|0〉+ e2πi [0.x3] |1〉

)
|ψ2〉 = 1√

2

(
|0〉+ e2πi [0.x2x3] |1〉

)
|ψ3〉 = 1√

2

(
|0〉+ e2πi [0.x1x2x3] |1〉

)

The corresponding circuit is:

|x1〉 H R2 R3 |ψ3〉

|x2〉 • H R2 |ψ2〉

|x3〉 • • H |ψ1〉

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Example: Three qubits

F |x1x2x3〉 = |ψ1ψ2ψ3〉

|ψ1〉 = 1√
2

(
|0〉+ e2πi [0.x3] |1〉

)
|ψ2〉 = 1√

2

(
|0〉+ e2πi [0.x2x3] |1〉

)
|ψ3〉 = 1√

2

(
|0〉+ e2πi [0.x1x2x3] |1〉

)
The corresponding circuit is:

|x1〉 H R2 R3 |ψ3〉

|x2〉 • H R2 |ψ2〉

|x3〉 • • H |ψ1〉

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Phase Estimation

𝜑

|
|

L?

F
|
|ei𝜑

1/L

Phase Estimation

Setting:
1 A unitary operation U on m-qubits, along with a black box

(oracle) that can perform ∧U j for any integer j
2 An eigenstate |u〉 of U with eigenvalue e2πiφu . i.e.

U |u〉 = e2πiφu |u〉
3 Sufficient (n or if we want higher probability of success

t ∈ O(n)) ancilla qubits initialised to |0〉

Result: An n-bit approximation φ̄u of the phase φu

Cost: O(t2) operations and one call to the ∧U j oracle for
each j . Succeeds with probability 1− ε
Note: Since U is unitary, any eigenvalue U |u〉 = eu |u〉 implies
that 1 = 〈u|U†U |u〉 = |eu|2, and thus eu is a unit norm
complex number, i.e. of the form e2πiφu for some φu.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

Setting:
1 A unitary operation U on m-qubits, along with a black box

(oracle) that can perform ∧U j for any integer j
2 An eigenstate |u〉 of U with eigenvalue e2πiφu . i.e.

U |u〉 = e2πiφu |u〉
3 Sufficient (n or if we want higher probability of success

t ∈ O(n)) ancilla qubits initialised to |0〉
Result: An n-bit approximation φ̄u of the phase φu

Cost: O(t2) operations and one call to the ∧U j oracle for
each j . Succeeds with probability 1− ε
Note: Since U is unitary, any eigenvalue U |u〉 = eu |u〉 implies
that 1 = 〈u|U†U |u〉 = |eu|2, and thus eu is a unit norm
complex number, i.e. of the form e2πiφu for some φu.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

Setting:
1 A unitary operation U on m-qubits, along with a black box

(oracle) that can perform ∧U j for any integer j
2 An eigenstate |u〉 of U with eigenvalue e2πiφu . i.e.

U |u〉 = e2πiφu |u〉
3 Sufficient (n or if we want higher probability of success

t ∈ O(n)) ancilla qubits initialised to |0〉
Result: An n-bit approximation φ̄u of the phase φu

Cost: O(t2) operations and one call to the ∧U j oracle for
each j . Succeeds with probability 1− ε

Note: Since U is unitary, any eigenvalue U |u〉 = eu |u〉 implies
that 1 = 〈u|U†U |u〉 = |eu|2, and thus eu is a unit norm
complex number, i.e. of the form e2πiφu for some φu.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

Setting:
1 A unitary operation U on m-qubits, along with a black box

(oracle) that can perform ∧U j for any integer j
2 An eigenstate |u〉 of U with eigenvalue e2πiφu . i.e.

U |u〉 = e2πiφu |u〉
3 Sufficient (n or if we want higher probability of success

t ∈ O(n)) ancilla qubits initialised to |0〉
Result: An n-bit approximation φ̄u of the phase φu

Cost: O(t2) operations and one call to the ∧U j oracle for
each j . Succeeds with probability 1− ε
Note: Since U is unitary, any eigenvalue U |u〉 = eu |u〉 implies
that 1 = 〈u|U†U |u〉 = |eu|2, and thus eu is a unit norm
complex number, i.e. of the form e2πiφu for some φu.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

The circuit for Phase Estimation is given:

|0〉 /n H⊗n • F †

|u〉 /m U j |u〉

Remarks:

We drop the subscript u in the phase φ
We assume that φ = 0.φ1φ2 · · ·φn · · ·. Any integer part is
irrelevant, since φ appears in the expression e2πiφ

We will obtain a n-bit value φ̄ which is an approximation to
the phase φ
If φ has less or equal to n-digits we obtain the exact result.
We focus on this case here. One can show that for the general
case, the n-bit value φ̄ we obtain is the best such
approximation for the phase φ

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

The circuit in greater detail is the following:

|0〉 H · · · •

QFT −1n

...
...

|0〉 H • · · ·

|0〉 H • · · ·

|u〉 /m U20 U21 · · · U2n−1 |u〉

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

We focus on the dotted box first:

|0〉 H · · · •

QFT −1n

...
...

|0〉 H • · · ·

|0〉 H • · · ·

|u〉 /m U20 U21 · · · U2n−1 |u〉

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

Here we have the circuit and output untill before applying the
QFT −1n . We see that the output is precisely that of the QFT
if we had as input the computational qubits |φ1 · · ·φn〉:

|0〉 H · · · • |0〉+ e2πi(2
t−1)φ |1〉

...
...

|0〉 H • · · · |0〉+ e2πi(2
1)φ |1〉

|0〉 H • · · · |0〉+ e2πi(2
0)φ |1〉

|u〉 /m U20 U21 · · · U2n−1 |u〉

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Phase Estimation

Therefore applying the inverse QFT and measuring in the
computational basis will give us the value 2nφ = (φ1 · · ·φn).

|0〉 H · · · •

QFT −1n

...
...

|0〉 H • · · ·

|0〉 H • · · ·

|u〉 /m U20 U21 · · · U2n−1 |u〉

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Quantum Factoring

𝜑

|
|

L?

F
|
|ei𝜑

1/L

Shor, FOCS 1994

Shor’s Algorithm

Invented by Peter Shor in 1994

Is a quantum algorithm that solves efficiently the problem
of factoring a large number to its prime factors

Factoring belongs in BQP

There is no known polynomial classical algorithm for factoring

An indication BPP ⊂ BQP. Not a proof since the classical
conjectured hardness is not based on an impossibility proof

Classical widely used cryptosystems (e.g. RSA) are based on
the assumption that factoring is hard

The discrete logarithm problem can also be efficiently
solved using Shor’s algorithm, breaking more used
cryptosystems (e.g. ElGamal, Diffie-Hellman key exchange)

If a scalable, fault tolerant, universal quantum computer is
built, most of current crypto breaks (from emails, bank
transactions to national security secrets)!

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Shor’s Algorithm

Invented by Peter Shor in 1994

Is a quantum algorithm that solves efficiently the problem
of factoring a large number to its prime factors

Factoring belongs in BQP

There is no known polynomial classical algorithm for factoring

An indication BPP ⊂ BQP. Not a proof since the classical
conjectured hardness is not based on an impossibility proof

Classical widely used cryptosystems (e.g. RSA) are based on
the assumption that factoring is hard

The discrete logarithm problem can also be efficiently
solved using Shor’s algorithm, breaking more used
cryptosystems (e.g. ElGamal, Diffie-Hellman key exchange)

If a scalable, fault tolerant, universal quantum computer is
built, most of current crypto breaks (from emails, bank
transactions to national security secrets)!

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Shor’s Algorithm

Invented by Peter Shor in 1994

Is a quantum algorithm that solves efficiently the problem
of factoring a large number to its prime factors

Factoring belongs in BQP

There is no known polynomial classical algorithm for factoring

An indication BPP ⊂ BQP. Not a proof since the classical
conjectured hardness is not based on an impossibility proof

Classical widely used cryptosystems (e.g. RSA) are based on
the assumption that factoring is hard

The discrete logarithm problem can also be efficiently
solved using Shor’s algorithm, breaking more used
cryptosystems (e.g. ElGamal, Diffie-Hellman key exchange)

If a scalable, fault tolerant, universal quantum computer is
built, most of current crypto breaks (from emails, bank
transactions to national security secrets)!

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Shor’s Algorithm

Invented by Peter Shor in 1994

Is a quantum algorithm that solves efficiently the problem
of factoring a large number to its prime factors

Factoring belongs in BQP

There is no known polynomial classical algorithm for factoring

An indication BPP ⊂ BQP. Not a proof since the classical
conjectured hardness is not based on an impossibility proof

Classical widely used cryptosystems (e.g. RSA) are based on
the assumption that factoring is hard

The discrete logarithm problem can also be efficiently
solved using Shor’s algorithm, breaking more used
cryptosystems (e.g. ElGamal, Diffie-Hellman key exchange)

If a scalable, fault tolerant, universal quantum computer is
built, most of current crypto breaks (from emails, bank
transactions to national security secrets)!

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Shor’s Algorithm

It has a classical and a quantum part

Classical Part: Reduces the factoring (and the discrete log)
problem to the problem of Order-Finding

Quantum Part: Solves Order-Finding, it further requires:

1 Quantum Fourier Transform
2 Phase Estimation
3 Efficient classical subroutines for: reversible modular

exponentiation and the continued fractions algorithm

We focus on Order-Finding, while we give at the end (for
completeness) the classical part

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Shor’s Algorithm

It has a classical and a quantum part

Classical Part: Reduces the factoring (and the discrete log)
problem to the problem of Order-Finding

Quantum Part: Solves Order-Finding, it further requires:

1 Quantum Fourier Transform
2 Phase Estimation
3 Efficient classical subroutines for: reversible modular

exponentiation and the continued fractions algorithm

We focus on Order-Finding, while we give at the end (for
completeness) the classical part

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Shor’s Algorithm

It has a classical and a quantum part

Classical Part: Reduces the factoring (and the discrete log)
problem to the problem of Order-Finding

Quantum Part: Solves Order-Finding, it further requires:

1 Quantum Fourier Transform
2 Phase Estimation
3 Efficient classical subroutines for: reversible modular

exponentiation and the continued fractions algorithm

We focus on Order-Finding, while we give at the end (for
completeness) the classical part

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding

Definition (Order): Given positive integers x and N that are
co-prime, the order of x modulo N is the least positive
integer r such that x r = 1(modN)

The Problem

Determine the order r given the base number x and modulo N

It is believed to be difficult problem for classical computers
(existing algorithms solve it in exponential time)

The order-finding algorithm is (essentially) phase estimation
applied to the following unitary operator
Ux ,N |y〉 = |xy(modN)〉

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding

Definition (Order): Given positive integers x and N that are
co-prime, the order of x modulo N is the least positive
integer r such that x r = 1(modN)

The Problem

Determine the order r given the base number x and modulo N

It is believed to be difficult problem for classical computers
(existing algorithms solve it in exponential time)

The order-finding algorithm is (essentially) phase estimation
applied to the following unitary operator
Ux ,N |y〉 = |xy(modN)〉

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding

Definition (Order): Given positive integers x and N that are
co-prime, the order of x modulo N is the least positive
integer r such that x r = 1(modN)

The Problem

Determine the order r given the base number x and modulo N

It is believed to be difficult problem for classical computers
(existing algorithms solve it in exponential time)

The order-finding algorithm is (essentially) phase estimation
applied to the following unitary operator
Ux ,N |y〉 = |xy(modN)〉

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding

Order-Finding can be decomposed into three steps:

1 Application of Phase Estimation to the unitary:

Ux ,N |y〉 = |xy(modN)〉

2 A method to prepare the corresponding eigenstates
without knowing the order

3 A method to recover the desired order from the
approximation of the phase/eigenvalue

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding: Step 1 (Phase Estimation)

The unitary Ux ,N |y〉 = |xy(modN)〉 corresponds to the
function f (x) = (xa) mod N which if iterated corresponds to
modular exponentiation. Such a function (and unitary) can
be efficiently in O((logN)3) gates (see Nielsen & Chuang).

The following state is an eigenstate of Ux ,N :

|us〉 =
1√
r

r−1∑
k=0

exp(
−2πisk

r
) |xk mod N〉

We can see this by evaluating Ux ,N |us〉:

Ux ,N |us〉 =
1√
r

r−1∑
k=0

exp(
−2πisk

r
) |xk+1modN〉 = exp(2πi

s

r
) |us〉

The eigenvalue is e2πis/r and the phase φ = s/r has
information about the order r which we need further steps to
extract.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding: Step 2 (Preparing the Eigenstate)

We can’t prepare the eigenstates |us〉 since we don’t know r .

Note:

1√
r

r−1∑
s=0

|us〉 =
1

r

r−1∑
s=0

r−1∑
k=0

exp(
−2πisk

r
) |xk mod N〉 = |1〉

Running the PE algorithm on input |0〉 |us〉:

PE (|0〉 |us〉) = |s/r〉 |us〉

By linearity, running the PE algorithm on input |0〉 |1〉:

PE (|0〉 |1〉) = PE

(
|0〉 1√

r

r−1∑
s=0

|us〉

)
=

1√
r

r−1∑
s=0

|s/r〉 |us〉

Measuring the first register collapses the state to one term:
|s ′/r〉 |us′〉 for unknown both s ′, r .

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding: Summary

Circuit:

|0〉 /n H⊗n • F †

|1〉 /m x j mod N

Steps:

1 Start with |0〉 |1〉
2 Apply PE , using the unitary Ux,N in order to obtain:

1√
r

∑r−1
s=0 |s/r〉 |us〉

3 Measure to obtain a n-bit approximation of s ′/r for a
randomly chosen s ′

4 Use the continued fraction approximations to find the best
guess for the order r

5 Check that is correct and terminate or repeat from step 1.

Complexity: O((logN)3) operations and succeeds w.h.p.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding: Summary

Circuit:

|0〉 /n H⊗n • F †

|1〉 /m x j mod N

Steps:

1 Start with |0〉 |1〉
2 Apply PE , using the unitary Ux,N in order to obtain:

1√
r

∑r−1
s=0 |s/r〉 |us〉

3 Measure to obtain a n-bit approximation of s ′/r for a
randomly chosen s ′

4 Use the continued fraction approximations to find the best
guess for the order r

5 Check that is correct and terminate or repeat from step 1.

Complexity: O((logN)3) operations and succeeds w.h.p.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Order Finding: Summary

Circuit:

|0〉 /n H⊗n • F †

|1〉 /m x j mod N

Steps:

1 Start with |0〉 |1〉
2 Apply PE , using the unitary Ux,N in order to obtain:

1√
r

∑r−1
s=0 |s/r〉 |us〉

3 Measure to obtain a n-bit approximation of s ′/r for a
randomly chosen s ′

4 Use the continued fraction approximations to find the best
guess for the order r

5 Check that is correct and terminate or repeat from step 1.

Complexity: O((logN)3) operations and succeeds w.h.p.

Petros Wallden Lecture 9: Quantum Algorithms III: Shor

Grover’s
Search

Search Algorithms

Searching (e.g. a name in a catalogue) is an important task
with many applications

Classical algorithms are not efficient, they require O(N)
queries in a database of size N = 2n

Quantum algorithms do better O(
√
N)

Quantum offers a quadratic speed-up. This is the optimal
that quantum algorithms can achieve.

It is practically important but much more moderate than an
exponential speed-up (e.g. Shor’s algorithm).

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Algorithm: General

We assume that if we are given a solution to the search, we
can recognise the solution (typical in database search)

Modelled with a quantum oracle that identifies the solution

The “cost” is the number of queries to the oracle

The method:

1 Start with an equal superposition of all database elements
2 Perform a subroutine (Grover’s iteration) that amplifies the

amplitude of the database element that constitutes the
solution to the search

3 Repeat sufficient times so that the amplitude of the solution is
close to unity

4 Measure in the computational basis and obtain the answer to
the search

The algorithm can be generalised and is known as amplitude
amplification

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Algorithm: General

We assume that if we are given a solution to the search, we
can recognise the solution (typical in database search)

Modelled with a quantum oracle that identifies the solution

The “cost” is the number of queries to the oracle

The method:

1 Start with an equal superposition of all database elements
2 Perform a subroutine (Grover’s iteration) that amplifies the

amplitude of the database element that constitutes the
solution to the search

3 Repeat sufficient times so that the amplitude of the solution is
close to unity

4 Measure in the computational basis and obtain the answer to
the search

The algorithm can be generalised and is known as amplitude
amplification

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Algorithm: General

We assume that if we are given a solution to the search, we
can recognise the solution (typical in database search)

Modelled with a quantum oracle that identifies the solution

The “cost” is the number of queries to the oracle

The method:

1 Start with an equal superposition of all database elements
2 Perform a subroutine (Grover’s iteration) that amplifies the

amplitude of the database element that constitutes the
solution to the search

3 Repeat sufficient times so that the amplitude of the solution is
close to unity

4 Measure in the computational basis and obtain the answer to
the search

The algorithm can be generalised and is known as amplitude
amplification

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

The Oracle

We define the function f : {0, 1}n → {0, 1} where
f (x) = 1 iff x is the solution.

The corresponding quantum oracle Ôf acts (unitarily):
Ôf |x〉 |q〉 = |x〉 |q ⊕ f (x)〉

With the following circuit, the net result is that we multiply
the input state with (−1)f (x), i.e. alter the overall sign only
for the solution sought.

|x〉 /n

Ôf

(−1)f (x) |x〉

|1〉 H H |1〉

where we used
1√
2

(|f (x)〉 − |1⊕ f (x)〉) = (−1)f (x) 1√
2

(|0〉 − |1〉)
We can ignore the ancilla qubit and thus from here on, we
replace the action of the oracle Ôf with the circuit above.

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

The Oracle

We define the function f : {0, 1}n → {0, 1} where
f (x) = 1 iff x is the solution.

The corresponding quantum oracle Ôf acts (unitarily):
Ôf |x〉 |q〉 = |x〉 |q ⊕ f (x)〉
With the following circuit, the net result is that we multiply
the input state with (−1)f (x), i.e. alter the overall sign only
for the solution sought.

|x〉 /n

Ôf

(−1)f (x) |x〉

|1〉 H H |1〉

where we used
1√
2

(|f (x)〉 − |1⊕ f (x)〉) = (−1)f (x) 1√
2

(|0〉 − |1〉)

We can ignore the ancilla qubit and thus from here on, we
replace the action of the oracle Ôf with the circuit above.

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

The Oracle

We define the function f : {0, 1}n → {0, 1} where
f (x) = 1 iff x is the solution.

The corresponding quantum oracle Ôf acts (unitarily):
Ôf |x〉 |q〉 = |x〉 |q ⊕ f (x)〉
With the following circuit, the net result is that we multiply
the input state with (−1)f (x), i.e. alter the overall sign only
for the solution sought.

|x〉 /n

Ôf

(−1)f (x) |x〉

|1〉 H H |1〉

where we used
1√
2

(|f (x)〉 − |1⊕ f (x)〉) = (−1)f (x) 1√
2

(|0〉 − |1〉)
We can ignore the ancilla qubit and thus from here on, we
replace the action of the oracle Ôf with the circuit above.

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration

Oracle : |x〉 → (−1)f (x) |x〉

H⊗n M̂0 := 2 |0〉 〈0| − 1 H⊗n

1 Apply the oracle Ôf (including the H at the ancilla qubit)

2 Apply H to the n-qubits

3 Reflect around the |0〉 state by applying M̂0 := 2 |0〉 〈0| − 1

4 Apply H to the n-qubits

Note that H⊗nM̂0H
⊗n = M̂+n , where |+n〉 := 1√

N

∑N−1
x=0 |x〉:

Ĝ = M̂+nÔf = (2 |+n〉 〈+n| − 1)Ôf

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration

Oracle : |x〉 → (−1)f (x) |x〉

H⊗n M̂0 := 2 |0〉 〈0| − 1 H⊗n

1 Apply the oracle Ôf (including the H at the ancilla qubit)

2 Apply H to the n-qubits

3 Reflect around the |0〉 state by applying M̂0 := 2 |0〉 〈0| − 1

4 Apply H to the n-qubits

Note that H⊗nM̂0H
⊗n = M̂+n , where |+n〉 := 1√

N

∑N−1
x=0 |x〉:

Ĝ = M̂+nÔf = (2 |+n〉 〈+n| − 1)Ôf

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration

Oracle : |x〉 → (−1)f (x) |x〉

H⊗n M̂0 := 2 |0〉 〈0| − 1 H⊗n

1 Apply the oracle Ôf (including the H at the ancilla qubit)

2 Apply H to the n-qubits

3 Reflect around the |0〉 state by applying M̂0 := 2 |0〉 〈0| − 1

4 Apply H to the n-qubits

Note that H⊗nM̂0H
⊗n = M̂+n , where |+n〉 := 1√

N

∑N−1
x=0 |x〉:

Ĝ = M̂+nÔf = (2 |+n〉 〈+n| − 1)Ôf

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ |β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ
θ |β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ
θ |β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ
θ

2θ
|β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ
θ

2θ
|β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ
2θ

3θ
|β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ
2θ

3θ
|β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Iteration: Geometrically

θ

3θ

4θ

|β̄〉

|β〉

|ψ1〉

Ôf |ψ1〉

|ψ2〉

Ôf |ψ2〉

|ψ3〉

Notation: State |β〉 is the solution, state |ψ1〉 = |+n〉, state
|β̄〉 is in the same plane and 〈β| β̄〉 = 0, and
|ψk+1〉 := M̂+nÔf |ψk〉
Each iteration consists of two successive reflections:
(1) around |β̄〉 and (2) around |ψ1〉

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Gover’s Iteration: Geometrically

The angle between |β̄〉 and |ψk〉 is: (2k − 1)θ

To evaluate θ note that: sin θ = 〈β|ψ1〉 = 1√
2n

and for

sufficient large n we have θ ≈ 1√
2n

which is very small!

The starting state (equal superposition) is almost orthogonal
to the solution

We need k = O(2n/2) iterations to reach a number O(1),
since the angle scales as 2kθ. Then we can obtain total angle
≈ π/2 and can get with high probability the solution.

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Algorithm

O(
√
N)︷ ︸︸ ︷

bbbbbbbbbbbbbbbbbbb
|0〉

H⊗n

Ĝ Ĝ Ĝ

|0〉

|0〉 · · ·

|0〉

· · ·

|1〉

1 Apply H to the n-qubits to create equal superposition |+n〉
2 Apply the Grover operator Ĝ to amplify the amplitude of the

solution

3 Repeat O(
√
N) times

4 Measure the n-qubits in the computational basis

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Algorithm

O(
√
N)︷ ︸︸ ︷

bbbbbbbbbbbbbbbbbbb
|0〉

H⊗n

Ĝ Ĝ Ĝ

|0〉

|0〉 · · ·

|0〉

· · ·

|1〉

1 Apply H to the n-qubits to create equal superposition |+n〉
2 Apply the Grover operator Ĝ to amplify the amplitude of the

solution

3 Repeat O(
√
N) times

4 Measure the n-qubits in the computational basis

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

Grover’s Algorithm

We need one call to the oracle per Grover iteration, i.e.
O(
√
N) queries

We can generalise for M solutions to the search problem, with
O(

√
N/M) queries

For the algorithm to succeed need to know how many
iterations are required (performing more iterations will
eventually decrease the probability of success)

If the number of solutions is unknown, there is an algorithm
(quantum counting) that efficiently determines the number
of solutions

Petros Wallden Lecture 8: Quantum Algorithms II: Grover

More quantum
algorithms

Hamiltonian Simulation

Quantum Algorithm
for Linear equations

32/ 37

HHL algorithm for “solving” large linear systems

I Solving large linear systems Ax = b is one of the most
important problems in science and engineering.

Goal: given matrix A and vector b, find vector x

I Harrow-Hassidim-Lloyd’09: “solves” this problem
exponentially faster by preparing state |xi IF

system is well-behaved:

Assumptions

(1) state |bi easy to prepare;

(2) A is well-conditioned: �max/�min not too big;

(3) unitary operation e iA is easy to apply (sparseness su�ces)

33/ 37

How does the Harrow-Hassidim-Lloyd algorithm work?

I Input: Hermitian matrix A 2 RN⇥N and vector b 2 RN

Goal: approximately prepare |xi, where Ax = b

I Let v
1

, . . . , vN ,�1, . . . ,�N be eigenvectors, eigenvalues of A

I HHL algorithm:

1. Prepare quantum state |bi =
PN

i=1

�i |vi i
NB: applying A�1 corresponds to multiplying with ��1

i

2. Use eigenvalue estimation:
PN

i=1

�i |vi i|�i i

3. Make new qubit
PN

i=1

�i |vi i|�i i
✓
��1

i |0i+
q
1� ��2

i |1i
◆

4. Uncompute |�i i by inverting eigenvalue estimation

5. Amplify the |0i-part to end with
PN

i=1

�i�
�1

i |vi i = |xi

NATURE PHYSICS | VOL 11 | APRIL 2015 | www.nature.com/naturephysics	 291

commentary

Read the fine print
Scott Aaronson

New quantum algorithms promise an exponential speed-up for machine learning, clustering and finding
patterns in big data. But to achieve a real speed-up, we need to delve into the details.

For twenty years, quantum computing
has been catnip to science journalists.
Not only would a quantum computer

harness the notorious weirdness of quantum
mechanics, but it would do so for a
practical purpose: solving certain problems
exponentially faster than we know how to
solve them with any existing computer. But,
there’s always been a catch — and I’m not
even talking about the difficulty of building
practical quantum computers. Supposing we
had a quantum computer, what would we
use it for? The ‘killer apps’ — the applications
for which a quantum computer would
promise huge speed advantages over classical
computers — have struck some people as
inconveniently narrow. Using a quantum
computer, one could dramatically accelerate
the simulation of quantum physics and
chemistry (the original application advocated
by Richard Feynman in the 1980s), break
almost all of the public-key cryptography
currently used on the Internet (for example,
by quickly factoring large numbers with
the famous Shor’s algorithm1) and maybe
achieve a modest speed-up for solving
optimization problems in the infamous NP-
hard class (but no one is sure about the last
one). Alas, as interesting as that list might be,
it’s difficult to argue that it would transform
civilization in anything like the way classical
computing did in the previous century.

Recently, however, a new family of
quantum algorithms has come along to
challenge this relatively narrow view of
why a quantum computer might be useful.
Not only do these new algorithms promise
an exponential speed-up over classical
algorithms, but they do so for eminently
practical problems involving machine
learning, clustering, classification and finding
patterns in huge amounts of data. So, do
these algorithms live up to the claims? That’s
a simple question with a complicated answer.

One algorithm at the centre of the
‘quantum machine learning’ mini-revolution
is called HHL after Aram Harrow,
Avinatan Hassidim and Seth Lloyd, who
invented it in 20082. Many, though not all, of
the subsequent quantum learning algorithms
extend HHL or use it as a subroutine3.

HHL attacks one of the most basic
problems in all of science: solving a system of
linear equations. Given an n × n real matrix,
A, and a vector, b, the goal of HHL is to
(approximately) solve the system Ax = b for x,
and to do so in an amount of time that scales
only logarithmically with n, the number of
equations and unknowns. Classically, this
goal seems hopeless, as n2 steps would be
required even to examine all of the entries
of A, and n steps would be needed even to
write down the solution vector, x. In contrast,
by exploiting the exponential character of
the wave function, HHL promises to solve
a system of n equations in only about log n
steps. But does it really do so? This is one case
where it’s important to read the fine print.

Briefly, the HHL algorithm solves Ax = b
in logarithmic time, but it does so with
four caveats (Box 1), each of which can be
crucial in practice. To make a long story
short, HHL is not exactly an algorithm
for solving a system of linear equations in
logarithmic time. Rather, it’s an algorithm
for approximately preparing a quantum
superposition of the form |x〉, where x is the
solution to a linear system Ax = b, assuming
the ability to rapidly prepare the state |x〉, and
to apply the unitary transformation e–iAt, and
using an amount of time that grows roughly
like κs(log n)/ε, where n is the system size,
κ is the system’s condition number, s is its
sparsity and ε is the desired error.

For all that, couldn’t the HHL algorithm
still be useful for something? Absolutely —
as long as one can address all of the caveats,
and explain why they’re not fatal for the
desired application. To put it differently, we
could see HHL less as a quantum algorithm
in its own right than as a template for other
quantum algorithms. One fills out the
template by showing how to prepare |b〉,
apply e–iAt, and measure |x〉 in a specific case

of interest, and then carefully analyses the
resulting performance against that of the
best-known classical algorithm for that case.

To my knowledge, so far there have
been two attempts to work out potential
applications of the HHL template from
start to finish. Clader, Jacobs, and Sprouse5
argued that HHL could be used to speed up
the calculation of electromagnetic scattering
cross-sections, for systems involving smooth
geometric figures in three-dimensional space.
To do this, Clader et al.5 needed to verify a
number of things, in addition to the fact that
solving Maxwell’s equations can be reduced
to solving a linear system Ax = b. First, the
appropriate matrix A is sparse. Second, at least
from numerical data, the condition number
κ is bounded, after careful ‘preconditioning’
is performed. Third, provided the object is
regular, one can calculate the entries of A
and prepare the state |b〉 explicitly, avoiding
the need for a quantum RAM. And finally,
given that one really is interested in specific
observables of the solution vector x, one
doesn’t need the entire (x1, ..., xn).

Crucially, Clader et al.5 could not rule
out the possibility that, once the problem of
solving a linear system has been restricted
in all these ways, there is also a classical
algorithm that provides the answer in nearly
the same amount of time as HHL. The most
they could say is that they couldn’t find such
a classical algorithm. The difficulty here is a
general one: in quantum algorithms research
we always want to compare to the fastest
possible classical algorithm that performs
the same task. But if we are honest, the
‘task’ here cannot be defined as solving an
arbitrary linear system Ax = b, because HHL
can’t do that either. The task, rather, needs to
be defined as estimating certain observables
of x for certain special systems Ax = b,
such that HHL can efficiently estimate the
same observables. And that makes it far less
obvious whether there might be a clever
classical solution as well.

Similarly, in ref. 6, HHL was used to give
a quantum algorithm for approximating
effective resistances in electrical networks.
Again, this algorithm could give an
exponential speed-up over classical

Do these algorithms live
up to the claims? That’s
a simple question with a
complicated answer.

© 2015 Macmillan Publishers Limited. All rights reserved

292	 NATURE PHYSICS | VOL 11 | APRIL 2015 | www.nature.com/naturephysics

commentary

algorithms, but only under special conditions:
for example, if the electrical network
has small degree but a large amount of
interconnectivity and if a description of the
electrical network can be quickly loaded into
the quantum computer (for example, because
the network has a regular pattern). It is not yet
clear whether there are real-world examples
in which these conditions are satisfied, but
we also lack a fast classical algorithm to
approximate the effective resistances.

One important result indicates that there
are at least some cases where HHL runs
in logarithmic time, whereas any possible
classical algorithm requires polynomial
time2. Namely, HHL was shown to be
universal for quantum computation2. What
this means is that we can encode any
quantum algorithm — say, Shor’s factoring
algorithm — into a system of roughly 2n
linear equations with 2n unknowns, and
then use HHL to ‘solve’ the system (simulate
the algorithm) in polynomial time. Thus,
provided we believe any quantum algorithm
achieves an exponential speed-up over the
best possible classical algorithm, HHL can
in principle achieve such a speed-up as
well. On the other hand, the linear systems
produced by this reduction will be extremely
artificial. The essential insight behind the
exponential speed-up, one might argue, is
provided by Shor’s algorithm or whatever
other quantum algorithm we are simulating,
rather than by HHL itself.

In the years since HHL, quantum
algorithms achieving exponential speed-up

over classical algorithms have been proposed
for other major application areas, including
k-means clustering7, principal component
analysis8, support vector machines9, data
fitting10 and even computing Google
PageRanks11. Although not all of these
algorithms face exactly the same caveats as
HHL, it is fair to say that there are related
issues in getting quantum speed-ups from
them. With each of them, one faces the
problem of how to load a large amount of
classical data into a quantum computer
(or else compute the data on the fly), in a
way that is efficient enough to preserve the
quantum speed-up. With each, one faces
the problem that, even if the output state |ψ〉
implicitly encodes all the data one wants in its
amplitudes, a measurement of |ψ〉 reveals only
a tiny probabilistic sketch of the information.
Most importantly, with each algorithm one
faces uncertainty about whether, after one has
properly accounted for all the caveats, one
could then find a classical sampling algorithm
that achieves similar performance to that of
the quantum algorithm.

To illustrate these issues, let’s consider
the algorithm in ref. 7 for supervised
machine learning. In this task, we are given
a quantum state |u〉 of log2 n qubits — or
equivalently, a vector of n amplitudes —
as well as two ‘clusters’ of other states
(|v1〉, ..., |vm〉) and (|w1〉, ..., |wm〉). The
problem is to classify |u〉 into one of the
two clusters, by deciding which mean it
is closer to: |v〉 = (|v1〉 + ... + |vm〉)/m or
|w〉 = (|w1〉 + ... + |wm〉)/m. Lloyd et al.7

have provided an extremely fast quantum
algorithm for this problem: in particular, they
showed how to estimate the inner products
〈u|v〉 and 〈u|w〉 with an accuracy of ε, using
only about (log mn)/ε steps. They argue that
this represents an exponential speed-up over
classical inner-product computation.

The trouble is, where did we get these
states |u〉, |vk〉 and |wk〉 in the first place? The
most obvious possibility would be that we
prepared the states ourselves, using lists of
amplitudes written out in a quantum RAM.
In that case, however, a straightforward
preparation strategy would work only if the
amplitudes are relatively uniform — if there
aren’t a few amplitudes that dominate all the
others in magnitude. But if the amplitudes
are uniform in the required way, then it’s
not hard to show that we can also estimate
the inner products 〈v|u〉 and 〈u|w〉 using
a classical random sampling algorithm, in
about (log mn)/ε2 steps. In other words,
once we carefully spell out conditions under
which the quantum algorithm would be
useful, we find — at least in this example —
that a classical algorithm exists that is at
most quadratically slower.

Admittedly, the above argument doesn’t
rule out that there could be other ways to
generate the states |u〉, |vk〉 and |wk〉, and
that with those other ways the quantum
speed-up would stand. And indeed, it can
be shown that if our task was to estimate
〈u|F|v〉, where F is an n × n unitary matrix
that applies a Fourier transform, then any
classical algorithm would need at least about

(1)	 The vector b = (b1, ..., bn) somehow
needs to be loaded quickly into the
quantum computer’s memory, so that we
can prepare a quantum state |b = ∑n

i=1 bi |i ,
of log2 n quantum bits, whose n amplitudes
encode the entries of b. Here, I assume for
simplicity that b is a unit vector. At least in
theory, this can be accomplished using a
‘quantum RAM’ — a memory that stores the
classical values bi, and that allows them all to
be read at once, in a quantum superposition.
Even then, however, it’s essential either that
b is relatively uniform, without a few values
of bi that are vastly larger than the others, or
else that the quantum RAM contains (say)
the partial sums ∑ j

i=1 bi
2, or pointers to the

large entries of b, rather than just values
of bi

2. Alternatively, if b is described by a
simple, explicit formula, then the quantum
computer might be able to prepare |b〉
quickly by itself, without needing to consult
a quantum RAM. Either way, though, if
preparing |b〉 already takes nc steps for some

constant c, then the exponential speed-up of
HHL vanishes in the very first step.

(2)	 The quantum computer also needs
to be able to apply unitary transformations
of the form e–iAt, for various values of t.
If the matrix A is sparse — it contains at
most s nonzero entries per row, for some
s << n — and if there is a quantum RAM
that conveniently stores, for each i, the
locations and values of the nonzero entries
in row i — then it is known that one can
apply e–iA in an amount of time that grows
nearly linearly with s (ref. 4). There are
other special classes of matrix A for which
a quantum computer could efficiently
apply e–iAt. Again, though, if applying e–iAt
takes nc time for some constant c, then the
exponential speed-up of HHL disappears.

(3)	 The matrix A needs to be not
merely invertible, but robustly invertible,
or ‘well-conditioned’. More precisely,

let κ = |λmax / λmin| be the ratio in magnitude
between the largest and smallest eigenvalues
of A. Then the amount of time needed by
HHL grows linearly with κ. If κ grows like
nc, then the exponential speed-up is gone.

(4)	 The limitation noted earlier — that even
writing down x = (x1, ..., xn) already requires
n steps — also applies in the quantum world.
When HHL is finished, its output is not x
itself, but rather a quantum state |x〉 of log2 n
qubits, which (approximately) encodes the
entries of x in its amplitudes. The quantum
computer user can then measure |x〉 in a
basis of her choice, to reveal some limited
statistical information about x: for example,
the locations of any extremely large entries
of x, or the approximate value of an inner
product 〈x|z〉, where z is a fixed vector.
However, learning the value of any specific
entry xi will, in general, require repeating
the algorithm roughly n times, which would
once again kill the exponential speed-up.

Box 1 | HHL checklist of caveats.

© 2015 Macmillan Publishers Limited. All rights reserved

NATURE PHYSICS | VOL 11 | APRIL 2015 | www.nature.com/naturephysics	 293

commentary

(√n)/(log n) steps, nearly matching an upper
bound of √n steps12,13. On the other hand,
a quantum computer can estimate 〈u|F|v〉
just as easily as it can estimate 〈u|v〉, in only
a logarithmic number of steps. To put it
differently, if one of two vectors that we want
to compare is given to us, not directly, but
only through its Fourier transform, then
we really do get an exponential quantum
advantage in comparing the vectors.

Even here, however, care is needed.
The theorem in ref. 12 — which rules out
a superfast classical algorithm to compare
one vector u written in memory against
the Fourier transform of a second vector
v written in memory — applies only if u
and v are both completely random when
considered individually. Furthermore, we
still have the issue mentioned before: that
a quantum computer can estimate 〈u|F|v〉
in logarithmic time only if it can quickly
prepare the states |u〉 and |v〉. And to do that,
starting from lists of entries (|u1〉, ..., |un〉) and
(|v1〉, ..., |vn〉) in a quantum RAM, we need the
vectors to be reasonably uniform: neither u
nor v can have sharp ‘peaks’. Take away either
of these conditions, and the exponential
quantum speed-up can once again disappear.

The general rule here is that if we want
an exponential quantum speed-up, then we
need there to be an extremely fast way to
create a certain kind of superposition, and
we also need there not to be a fast way to
create an analogous probability distribution
using a classical computer. The Fourier
transform is one convenient way to achieve
both of these goals: it can foil classical
sampling methods because of its ‘global’
nature, while causing no problems for a
quantum computer. But quantum algorithm
designers have other tricks up their sleeves.

Recently, a polynomial-time quantum
algorithm has been proposed14 for
estimating certain topological features of

data: most notably Betti numbers, which
count the number of holes and voids of
various dimensions in a scatterplot. What is
notable about the algorithm used in ref. 14 is
that its input consists of only n(n – 1)/2 real
numbers — namely, the distances between
each pair of points out of n — and using that
data the algorithm constructs a quantum
superposition over up to 2n simplices in a
simplicial complex. In other words, much
like the algorithm of Clader et al.5 for
electromagnetic cross-sections, the new
algorithm avoids the expensive need to load
a huge amount of data from a quantum
RAM. Instead, it computes the data as
needed from a much smaller input. The
Betti number algorithm still has a significant
drawback: preparing a superposition over
simplices takes a number of steps that grows
like√(2n/S), where S is the total number of
simplices in the complex. So, if S is much
smaller than 2n, as it will often be in practice,
the algorithm can require exponential time.
Even so, the ability to estimate Betti numbers
efficiently when S ≈ 2n provides a good
example of how the limitations of HHL-type
algorithms can sometimes be overcome.

So in summary, how excited should we be
about the new quantum machine-learning
algorithms? To whatever extent we care
about quantum computing at all, I’d say
we should be excited indeed: HHL and the
later algorithms represent real advances in
the theory of quantum algorithms, and in a
world with quantum computers, they would
probably find practical uses. But along with
the excitement, we ought to maintain a sober
understanding of what these algorithms
would and wouldn’t do: an understanding
that the original papers typically convey, but
that often gets lost in second-hand accounts.

The new algorithms provide a general
template, showing how quantum computers
might be used to exponentially speed

up central problems like clustering,
pattern-matching, and principal component
analysis. But for each intended application of
the template, one still needs to invest a lot of
work to see whether the application satisfies
all of the algorithm’s ‘fine print’ — and if,
once we include the fine print, there’s also
a fast classical algorithm that provides the
same information. This property makes the
quantum machine-learning algorithms quite
different from, say, Shor’s factoring algorithm.
Having spent half my life in quantum-
computing research, I still find it miraculous
that the laws of quantum physics let us solve
any classical problems exponentially faster
than today’s computers seem able to solve
them. So maybe it shouldn’t surprise us that in
machine learning, like anywhere else, nature
will still make us work for those speed-ups.� ❐

Scott Aaronson is in the Electrical Engineering
and Computer Science Department,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139-4307, USA.
e-mail: aaronson@csail.mit.edu

References
1.	 Shor, P. W. SIAM J. Comput. 26, 1484–1509 (1997).
2.	 Harrow, A. W., Hassidim, A. & Lloyd, S. Phys. Rev. Lett.

103, 150502 (2009).
3.	 Childs, A. M. Nature Phys. 5, 861 (2009).
4.	 Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D.

Phys. Rev. Lett. 114, 090502 (2015).
5.	 Clader, B. D., Jacobs, B. C. & Sprouse, C. R. Phys.Rev. Lett.

110, 250504 (2013).
6.	 Wang, G. Preprint at http://arxiv.org/abs/1311.1851 (2013).
7.	 Lloyd, S., Mohseni, M. & Rebentrost, P. Preprint at

http://arxiv.org/abs/1307.0411 (2013).
8.	 Lloyd, S., Mohseni, M. & Rebentrost, P. Nature Phys.

10, 631–633 (2014).
9.	 Rebentrost, P., Mohseni, M. & Lloyd, S. Phys. Rev. Lett.

113, 130503 (2014).
10.	Wiebe, N., Braun, D. & Lloyd, S. Phys. Rev. Lett. 109, 050505 (2012).
11.	Garnerone, S., Zanardi, P. & Lidar, D. A. Phys. Rev. Lett.

108, 230506 (2012).
12.	Aaronson, S. Preprint at http://arxiv.org/abs/0910.4698 (2009).
13.	Aaronson, S. & Ambainis, A. Preprint at http://arxiv.org/

abs/1411.5729 (2014).
14.	Lloyd, S., Garnerone, S. & Zanardi, P. Preprint at http://arxiv.org/

abs/1408.3106 (2014).

Quantum optics route to market
Jürgen Stuhler

Research in quantum optics has already led to commercial technologies, but the gap between the lab
and market products is still large. Looking from the industrial side, one can see ways of bridging this gap.

Quantum optics research has
flourished over the past twenty
years. Driven by scientific curiosity

and enthusiasm, potential applications
and — last but not least — available
funding, many groups around the world
have published fundamental insights and

technologically promising results. During
these two decades, the Nobel Prize in
Physics was awarded to more than ten
scientists for their work on quantum optics
phenomena or tools. This resonates with the
statement of the European Commission that
the twenty-first century will be the century

of the photon — much like the twentieth
century was the century of the electron. And
2015 has been declared the International
Year of Light and Light-based Technologies.
Undoubtedly, quantum optics research is in
vogue and expectations are high. But, as in
any other scientific field, simple economics

© 2015 Macmillan Publishers Limited. All rights reserved

mailto:aaronson%40csail.mit.edu?subject=
http://arxiv.org/abs/1311.1851
http://arxiv.org/abs/1307.0411
http://arxiv.org/abs/0910.4698
http://arxiv.org/abs/1411.5729
http://arxiv.org/abs/1411.5729
http://arxiv.org/abs/1408.3106
http://arxiv.org/abs/1408.3106

	Slide 2: 11:00 – 12:30: Quantum computer algorithms: what can we do with them and how can we realize them?
	Slide 3
	Slide 3: Complexity Theory
	Slide 5: Quantum Operations
	Slide 6: Quantum Fourier Transform
	Slide 7: Quantum Phase Estimation
	Slide 8: Quantum Factoring
	Slide 9: Grover’s Search
	Slide 1: More quantum algorithms
	Slide 2: Hamiltonian Simulation
	Slide 32: Quantum Algorithm for Linear equations

