Roadmap of Particle Physics

International Meeting on Fundamental Physics - Benasque 13 Sep 2024

Stéphane Willocq Univ. of Massachusetts, Amherst

Outline

- US particle physics long-range planning exercise
 - Snowmass 2021
 - Project prioritization (P5)
 - Process
 - Recommendations
- Outstanding physics questions
 - Energy frontier
 - Intensity frontier
 - Cosmic frontier
- Summary

Exploring the Quantum Universe

Important source of information on P5 report for this talk: Presentation by H. Murayama on 2 Feb 2024 @CERN

US particle physics prioritization

Long-range planning for US participation in global particle physics: https://usparticlephysics.org/

- Broad process to collect community input: "Snowmass" 2021
- Particle physics project prioritization panel (P5)

US particle physics prioritization

Long-range planning for US participation in global particle physics: https://usparticlephysics.org/

Snowmass community planning exercise

- US particle physics community gathering traditionally held in Snowmass, Colorado
- First meeting in 1982 (Snowmass '82 proceedings), organized by Division of Particles & Fields of American Physical Society
 - First US planning exercise open to the community
 - Purpose:

"Assess the future of elementary particle physics, to explore the limits of our technological capabilities, and to consider the nature of future major facilities for particle physics in the U.S."

- Following meetings:
 - Snowmass '84 on design and utilization of SSC (proceedings)
 - Snowmass '86 on physics of SSC (proceedings)
 - Snowmass '88 on HEP in 1990's (proceedings)
 - Snowmass '90 on research directions for the decade (proceedings)
 - Snowmass '94 on particle astrophysics and cosmology (proceedings)
 - Snowmass '96 on new directions in HEP (proceedings)

- Snowmass 2001 on future of particle physics web, proceedings)
- Snowmass 2005 on linear collider physics and detector (proceedings)

Snowmass community planning exercise

• Evolving meeting structure

- and concluding talks

• Evolving topics

- Initially focused on major accelerator projects
- Inclusion of broader portfolio with small-, mid-, and large-scale projects, 0 including non-accelerator expts, cosmology

"Snowmass on the Mississippi" 2013 on long-range US HEP plans (agenda)

- 8 "frontiers" working groups
 - Energy
 - Intensity
 - Cosmic
 - Instrumentation

- Facilities
- Computation
- Theory

 Multi-week workshop format replaced by work and satellite meetings spread over ~1 year Culminating in final meeting with parallel sessions, plenary colloquia, panel discussions,

Education and Outreach

Snowmass 2021 (-> 2022)

• 512 white papers ->79 topical group reports -> 10 frontier summaries (715-page book!)

• Final meeting

17-26 July 2022 in Seattle (web)

Areas of focus

- Science
 - Identify most compelling questions to address
- Tools and infrastructure
 - Accelerators, detectors, computing, software
 - Theory
- Human resources 0
 - Enabling researchers: training, DEI, outreach

• Snowmass 2021 community planning exercise [delayed 1 year by covid] (web, proceedings)

Energy Cosmic Neutrinos Rare processes & precision

Instrumentation Accelerator Underground facilities Computation Community engagement Theory

Snowmass 2021: Final workshop 17-26 July 2022 in Seattle

Particle physics project prioritization panel (P5)

• What is P5?

Temporary sub-committee of HEPAP which advises US funding agencies (DOE and NSF)

• P5 charge

- Develop a 10-year strategic plan for US particle physics within two budget scenarios

• Process

- Input sources:
 - Snowmass 2021 community planning
 - Town hall meetings (4 labs + 2 univ.), laboratory visits, and individual communications
 - Funding agencies
 - Sub-committee on costs / risks / schedule

HEPAP = High Energy Physics Advisor

Provide a set of prioritized recommendations for US investment in particle physics research

• Diverse panel of 32 members covering wide range of expertise areas -> panel complete in Jan '23

• Intense panel deliberations with final decisions by consensus -> final report released in Dec '23'

Ъ	Panel

P5 members

Shoji Asai (University of Tokyo) **Amalia Ballarino (CERN) Tulika Bose** (Wisconsin–Madison) **Kyle Cranmer** (Wisconsin–Madison) Francis-Yan Cyr-Racine (New Mexico) Sarah Demers (Yale) **Cameron Geddes** (LBNL) Yuri Gershtein (Rutgers) Karsten Heeger (Yale) - Deputy Chair **Beate Heinemann (DESY) JoAnne Hewett** (SLAC) - HEPAP chair, ex officio until May 2023 **Patrick Huber** (Virginia Tech) Kendall Mahn (Michigan State) **Rachel Mandelbaum** (Carnegie Mellon) Jelena Maricic (Hawaii) **Petra Merkel** (Fermilab) **Christopher Monahan** (William & Mary)

Hitoshi Murayama (Berkeley) - Chair **Peter Onyisi** (Texas Austin) Mark Palmer (BNL) **Tor Raubenheimer** (SLAC/Stanford) Mayly Sanchez (Florida State) **Richard Schnee** (South Dakota School of Mines & Technology) **Sally Seidel** (New Mexico) – interim HEPAP chair, ex officio since June 2023 **Seon-Hee Seo** (IBS Center for Underground Physics until Sep, Fermilab since Sep) **Jesse Thaler** (MIT) **Christos Touramanis (Liverpool) Abigail Vieregg** (Chicago) **Amanda Weinstein** (lowa State) **Lindley Winslow** (MIT) **Tien-Tien Yu** (Oregon) **Robert Zwaska** (Fermilab)

Budget scenarios (overall, including projects)

11

Budget scenarios for projects

Cost of proposals before prioritization (other than excluding on-shore Higgs factory)

P5 sub-committee on costs / risks / schedule

Costs / risks / schedule sub-committee

- Crucial input on maturity of cost estimates, risks, and schedule
- Interacted with project proponents to make independent estimates of costs and schedule, and providing a sort of uncertainty band on those
- Members
 - Jay Marx (Caltech), Chair
 - Gil Gilchriese, Matthaeus Leitner (LBNL)
 - Giorgio Apollinari, Doug Glenzinski (Fermilab)
 - Mark Reichanadter, Nadine Kurita, John Seeman (SLAC)
 - Jon Kotcher, Srini Rajagopalan (BNL)
 - Allison Lung (JLab)
 - Harry Weerts (Argonne)

P5 considerations toward decision

Considerations

- Ambitious proposals ranked according to scientific merit, design maturity, and fit within budgetary profile constraints
- Balance of large-, medium-, and small-scale experiments, and time scales
- Balance over science drivers 0
- Balance of on-shore and off-shore projects
- Enabling US leadership in core areas of particle physics
- Current projects vs. future investments
- Support for theory, accelerator R&D, instrumentation, computing

14

P5 report: Themes & science drivers

Decipher the Quantum Realm

Elucidate the Mysteries of Neutrinos

Reveal the Secrets of the Higgs Boson

Search for Direct Evidence of New Particles

Pursue Quantum Imprints of New Phenomena

Explore New Paradigms in Physics

Determine the Nature of Dark Matter

Understand What Drives Cosmic Evolution

P5 report: Evolution of science drivers

the

Realm

the

New

2014 Science Drivers

2023 Science Drivers

P5 report: Overview and vision

We envision a new era of scientific leadership, centered on decoding the quantum realm, unveiling the hidden universe, and exploring novel paradigms. Balancing current and future large- and mid-scale projects with the agility of small projects is crucial to our vision. We emphasize the importance of investing in a highly skilled scientific workforce and enhancing computational and technological infrastructure. Acknowledging the global nature of particle physics, we recognize the importance of international cooperation and sustainability in project planning. We seek to open pathways to innovation and discovery that offer new insights into the mysteries of the quantum universe.

17

- Highest priority on ongoing projects (no rank-order)
- Large-scale projects:
 - a. HL-LHC at CERN: upgrades of ATLAS and CMS detectors, and accelerator
 - b. Phase-I of DUNE and PIP-II at Fermilab
 - c. LSST at Vera Rubin Observatory
- Mid-scale projects:
 - d. Neutrinos: NOvA, SBN, T2K, IceCube
 - e. Dark matter: DarkSide-20k, LZ, SuperCDMS, XENONnT
 - Cosmic evolution: DESI
 - g. New phenomena: Belle II, LHCb, Mu2e

• Exciting new initiatives (ranked from highest to lowest priority)

- a. Cosmic evolution: CMB-S4 w/ telescopes in Chile and at South Pole
- b. Neutrinos: Phase-II of DUNE at Fermilab
- c. Off-shore Higgs factory: FCC-ee at CERN or ILC in Japan
- d. Third-generation (G3) dark matter direct detection
- e. Second-generation IceCube

NSF-specific initiative in multi-messenger astrophysics —> dark matter

- Cherenkov Telescope Array (CTA)
- Next-generation gravitational-wave observatory 0
- IceCube-Gen2

• Balanced portfolio including mid- and small-scale experiments (no rank-order)

- Implement new program at DOE: 0 Advancing Science and Technology through Agile Experiments (ASTAE)
 - Starting with experiments from Dark Matter New Initiatives (DMNI) program, incl. axion searches
- Continue Mid-Scale Research Infrastructure (MSRI) and Major Research Infrastructure (MRI) 0 programs at NSF
- Support following experiments: 0
 - DESI-II for cosmic evolution
 - LHCb upgrade II and Belle II (incl. SuperKEKB) upgrade for quantum imprints
 - Global CTA Observatory for dark matter

- **Investment in the future** (no rank-order)
 - -> ready to build major test/demonstrator facilities within 10 years
 - Enhance research in theory
 - Expand General Accelerator R&D (GARD)
 - Invest in R&D in instrumentation
 - Conduct R&D toward projects in next decade, incl. detectors for ee Higgs factory and 10 TeV 0 pCM collider, Spec-S5, DUNE FD4, Mu2e-II, Advanced Muon Facility, and line intensity mapping
 - Support cyberinfrastructure: software tools, R&D in computing, novel data analysis techniques
 - Improve Fermilab accelerator complex (incl. neutrinos, flavor, 10 TeV pCM collider) 0

• Vigorous R&D toward cost-effective 10 TeV pCM collider (proton, muon, or wakefield technology)

- Diversity, inclusion, equity & relevance to society
 - 0
 - Workforce initiatives 0
 - Incorporate ethics agreements -> expectations for professional conduct
 - Broaden engagement through partnership, training, accessibility programs
 - Conduct work-climate studies
 - Increase support for professionals (scientists, engineers, technicians) at universities
 - Plan dissemination of scientific results to the public, include funding for such activities

Invest in initiatives to develop workforce, broaden engagement, and ethical conduct

- Convene targeted panel to make decision on US accelerator-based program (without needing to wait for next P5 in ~10 years)
 - Panel charged to consider:
 - Level and nature of US contribution in Higgs factory
 - Mid- and large-scale test and demonstrator facilities in accelerator and collider R&D
 - Plan for evolution of Fermilab accelerator complex

Figure 1 – Program and Timeline in Baseline Scenario (B)

Index: Operation Construction R&D. Research P: Primary S: Secondary

		0.0000								
§ Possible acceleration/expan	nsion for more favorable budget situations									
Science Experiments			Neutrinos	Higgs Boson	Dark Matter	Cosmic Evolution	Direct Evidence	Quantum Imprints	Astronom Astrophys	
Timeline	2024	2034			Science	Drivers	5		sics	
LHC				Ρ	Р		Р	Р		
LZ, XENONnT					Р					
NOvA/T2K			Р				S			
SBN			Ρ				S			
DESI/DESI-II			S		S	Р			Р	
Belle II					S		S	Р		
SuperCDMS					Р					
Rubin/LSST & DESC			S		S	Р			Р	
Mu2e								Р		
DarkSide-20k					Р					
HL-LHC				Ρ	Р		Ρ	Р		
DUNE Phase I			Р				S	S	S	
CMB-S4			S		S	Р			Р	
СТА					S				Р	
G3 Dark Matter §			S		Р					
IceCube-Gen2			Р		S				Р	
DUNE FD3			Р				S	S	S	
DUNE MCND			Ρ				S	S		

Figure 1 – Program and Timeline in Baseline Scenario (B)

Index: Operation Construction R&D, Research P: Primary

§ Possible acceleration/expansion for more favorable budget situations

Science Experiments	S		Neutrinos	Higgs Boson	Dark Matter	Cosmic Evolution	Direct Evidence	Quantum Imprints	Astronom Astrophys
Timeline	2024	2034			Science	e Driver	S		sics
Higgs factory §				Р	S		Р	Р	
DUNE FD4 §			Р				S	S	S
Spec-S5 §			S		S	Р			Р
Mu2e-II								Р	
Multi-TeV §		DEMONSTRATOR		Р	Р		Р	S	
LIM			S		Р	Р			Р

Advancing Science and Technology through Agile Experiments

ASTAE § P	Р	Р	Р	Р	Р	
-----------	---	---	---	---	---	--

FACILITIES

Science Enablers

LBNF/PIP-II	
ACE-MIRT	
SURF Expansion	
ACE-BR §, AMF	

Increase in Research and Development

GARD &	
	TES
Theory	
Instrumentation	
Computing	

/	S:	Se	cor	nda	ry
---	----	----	-----	-----	----

•	

Approximate timeline of the recommended program within the baseline scenario. Projects in each category are in chronological order. For IceCube-Gen2 and CTA, we do not have information on budgetary constraints and hence timelines are only technically limited. The primary/secondary driver designation reflects the panel's understanding of a project's focus, not the relative strength of the science cases. Projects that share a driver, whether primary or secondary, generally address that driver in different and complementary ways.

The Science

Highlights given on following slides Many interesting topics not covered! Refer to excellent talks given earlier at IMFP 2024 for a more complete overview

A broad vision for Particle Physics

- Elucidate the most fundamental constituents of matter and their interactions. and understand the general physical principles governing them
 - Deeper tests of Standard Model of particle physics
- Understand the physical principles governing cosmic evolution, space and time
 - Deeper tests of **\CDM Model**
- Explore the Universe at the smallest and largest possible distance scales, and uncover their interconnections
- Discover new paradigms

Decipher the Quantum Realm

Elucidate the Mysteries of Neutrinos

Reveal the Secrets of the Higgs Boson

Search for Direct Evidence of New Particles

Pursue Quantum Imprints of New Phenomena

Illuminate the Hidden **Jniverse**

Determine the Nature of Dark Matter

Understand What Drives Cosmic Evolution

Outstanding questions

- **Standard Model:** astounding success but incomplete description of Nature
- Fundamental questions that MUST be addressed:
 - Origin of electroweak scale and electroweak phase transition
 - Higgs boson non-natural? composite? part of an extended scalar sector?
 - Flavor puzzle (origin of fermion generations, masses, mixings)
 - Origin of neutrino mass
 - Matter antimatter asymmetry (CP violation)
 - Nature of dark matter

Higgs boson physics

• Previous breakthroughs

- Discovery via coupling to bosons ($\gamma\gamma$, ZZ^* , WW^*) 0
- Established spin-0 scalar nature, mass measured to 0.1% 0
- Observation of coupling to 3rd gen. fermions $(\tau^+\tau^-, bb, t\bar{t})$ 0
- All major production mechanisms observed (ggF, VBF, VH, ttH)
- Confirmed Electroweak Symmetry Breaking (EWSB)
- Compelling future program
 - \circ High-precision measurements, including diff. XS toward high p_T
 - Couplings to lighter fermions (μ , c, s, ...)
 - Total width 0
 - Self-coupling —> Higgs potential, origin of EWSB
 - Searches for additional scalars, exotic decays, portal to hidden sectors

HL-LHC is a Higgs factory (and a W, Z, top, etc. factory)

- Huge statistical power for heavy particles Recommendation 1a
 - Number of particles produced for each of ATLAS & CMS with 3,000 fb⁻¹ at $\sqrt{s} = 14$ TeV
 - ► ~600,000,000,000 W bosons
 - ~3,000,000,000 $t\bar{t}$ pairs
 - ~190,000,000 Higgs bosons
 - ~120,000 HH pairs
 - Gives access to "rare" processes
 - ► ~50,000 $t\bar{t}t\bar{t}$
- HL-LHC allows exploration at both energy frontier <u>and</u> intensity frontier

• exotic Higgs decays down to BF ~10⁻⁵ – 10⁻⁶ (e.g. $H \rightarrow aa \rightarrow \mu\mu\tau\tau$) + extremely rare Z or top decays

- Pursue Quantum Imprints
- of New Phenomena
- Search for Direct Evidence of New Particles

Determine the Nature of Dark Matter

Higgs couplings @HL-LHC

- Combination of ATLAS and CMS measurements extrapolated from (early) Run 2 analyses
- Precision on tree-level coupling modifiers (κ_i)

• 1.5 - 1.8% for couplings to bosons (γ , W, Z)

° 1.9 - 4.3% for couplings to fermions (μ, τ, b, t)

31

Impact of precision on BSM @HL-LHC

• Higgs couplings deviations depend on BSM scenario

Dim-6 EFT w/ Higgs + EW

- Large impact of tree-level 0 $\mathcal{O}_{GG,WW,BB}$ on SM loop-induced $gg \rightarrow H \text{ or } H \rightarrow \gamma \gamma$ $\Lambda \gtrsim 30 \text{ TeV} (c = 1)$
- Also strong impact from Drell-Yan measurements on $\mathcal{O}_{2W,2B}$

Sally Dawson (LHCP 2024)

μμ

Generic Higgs coupling deviations
$$\mathcal{O}\left(\frac{v^2}{\Lambda^2}\right) \simeq 1.6 \% \left(\frac{2 \text{ TeV}}{\Lambda}\right)^2$$

but mapping between precision and energy scale is highly model dependent

Higgs potential EW phase transition resp. for baryon asymmetry? Vacuum stable?

- Measurement of Higgs potential a science driver for HL-LHC, largely unconstrained so far
- Shape of potential key to understand **EW** phase transition in early universe
- Shape of potential determines vacuum stability

- Cubic (aka tri-linear) coupling λ ($\equiv \lambda_3$) via Higgs pair production
- Single Higgs measurements sensitive to λ via higher-order corrections

Higgs self-coupling @HL-LHC

- Tri-linear coupling λ directly accessible via Higgs pair production
- $pp \rightarrow HH$ cross section 3 orders of mag. lower than single Higgs
- Improved trackers and ML key for HH studies (e.g. b tagging)

destructive interference with box diagram

Higgs self-coupling @HL-LHC

- Tri-linear coupling λ directly accessible via Higgs pair production
- $pp \rightarrow HH$ cross section 3 orders of mag. lower than single Higgs
- Improved trackers and ML key for HH studies (e.g. b tagging)

destructive interference with box diagram

BSM: Higgs portal @HL-LHC

- Higgs portal to dark sector of new particles and interactions
 - Lowest-dimension operator $H^{\dagger}H \mathcal{O}_{DS}$
 - Search for $H \rightarrow$ invisible in VBF and ZH production SM rate: $B(H \rightarrow ZZ^* \rightarrow \nu \overline{\nu} \nu \overline{\nu}) \simeq 0.1 \%$
 - Model-independent $B(H \rightarrow inv) < 2.5\%$ (95% CL ATLAS+CMS)
 - HL-LHC sensitivity exceeds direct detection expts in minimal Higgs portal model for $m_{\rm DM} \lesssim 30 \text{ GeV}$
- Significant gains in BSM with low XS or BF from large luminosity
 - Electroweak SUSY, compressed spectra
 - Feeble interactions, dark sector portals, long-lived particles

Search for Direct Evidence of New Particles

of Dark Matter

Flavor physics @HL-LHC

• **CP violation:** LHCb to put stringent test on CKM paradigm with 300 fb⁻¹

Independent determinations of UT apex ($\Delta m_d / \Delta m_s$, sin 2 β) and (V_{ub} , γ)

High-precision CPV angles

 Highest sensitivity to find CP violation in charm mixing

Signal yield asymmetry

Flavor physics @HL-LHC

Precise lepton-flavor universality tests

Observable CKM tests $\gamma (B \to DK, etc.)$ $\phi_s \left(B_s^0 \to J/\psi \phi \right)$ $|V_{ub}|/|V_{cb}| (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, etc.$ $a_{\rm sl}^d \ (B^0 \to D^- \mu^+ \nu_\mu)$ $a_{
m sl}^s \left(B_s^0
ightarrow D_s^- \mu^+
u_\mu
ight)$ Charm $\Delta A_{CP} \ (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$ $A_{\Gamma} (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$ $\Delta x \ (D^0 \to K^0_{\rm s} \pi^+ \pi^-)$ **Rare Decays** $\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+)$ $S_{\mu\mu} \ (B^0_s \to \mu^+ \mu^-)$ $A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$ $A_{\rm T}^{
m Im}~(B^0 o K^{*0} e^+ e^-)$ $\mathcal{A}_{\phi\gamma}^{\bar{\Delta}\Gamma}(B^0_s \to \phi\gamma)$ $S_{\phi\gamma}(B^0_s \to \phi\gamma)$ $\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$ Lepton Universality Tests $R_K (B^+ \to K^+ \ell^+ \ell^-)$ $R_{K^*} \ (B^0 \to K^{*0} \ell^+ \ell^-)$ $R(D^*) \ (B^0 \to D^{*-} \ell^+ \nu_{\ell})$

Pursue Quantum Imprints of New Phenomena

 Sensitivity to non-flavor diagonal BSM up to ~100 TeV HL-LHC increases reach by factor of 2

		LHC	b
Current LHCb	Upgr	ade I	Upgrade II
$({ m up to } 9{ m fb}^{-1})$	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{ m fb}^{-1})$
4°	1.5°	1°	0.35°
$32\mathrm{mrad}$	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
) 6%	3%	2%	1%
$36 imes 10^{-4}$	$8 imes 10^{-4}$	5×10^{-4}	$2 imes 10^{-4}$
$33 imes 10^{-4}$	10×10^{-4}	7×10^{-4}	$3 imes 10^{-4}$
E E		F	F F
29×10^{-5}	13×10^{-5}	8×10^{-5}	3.3×10^{-5}
11×10^{-5}	$5 imes 10^{-5}$	$3.2 imes10^{-5}$	$1.2 imes 10^{-5}$
$18 imes 10^{-5}$	$6.3 imes10^{-5}$	4.1×10^{-5}	$1.6 imes10^{-5}$
$-\mu^{-}$) 60%	11%	27%	11%
μ) 0370	4170	21/0	0.2
			0.2
0.10	0.060	0.043	0.016
0.10	0.060	0.043	0.016
$+0.41 \\ -0.44$	0.124	0.083	0.033
0.32	0.093	0.062	0.025
$+0.17 \\ -0.29$	0.148	0.097	0.038
5			
0.044	0.025	0.017	0.007
0.12	$0.03\bar{4}$	0.022	0.009
0.026	0.007	0.005	0.002

- ATLAS and CMS also will perform key flavor meas^{ts} incl. $B_{(s)}^0 \rightarrow \mu\mu, \phi_s, R_{K^{(*)}}$
- Theoretically clean, not syst. limited

arXiv:1808.08865

Future colliders

Recommendation 2c

Next priority: e+e- Higgs factory

	Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$
				e^-/e^+	ab^{-1} /IP
	HL-LHC	pp	$14 { m TeV}$		3
Ð	ILC & C^3	ee	$250~{ m GeV}$	$\pm 80/\pm 30$	2
r e			$350~{ m GeV}$	$\pm 80/\pm 30$	0.2
lea			$500~{ m GeV}$	$\pm 80/\pm 30$	4
lir			$1 { m TeV}$	$\pm 80/\pm 20$	8
	CLIC	ee	$380~{ m GeV}$	$\pm 80/0$	1
	CEPC	ee	M_Z		50
			$2M_W$		3
ee			$240~{ m GeV}$		10
ilar			$360 {\rm GeV}$		0.5
LCU	FCC-ee	ee	M_Z		75
Ci			$2M_W$		5
			$240~{ m GeV}$		2.5
			$2 M_{top}$		0.8
nh	μ -collider	$\mu\mu$	$125~{ m GeV}$		0.02

Reveal the Secrets of the Higgs Boson

Pursue Quantum Imprints of New Phenomena

Future colliders

Recommendation 2c Next priority: e+e- Higgs factory

	Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$
				e^-/e^+	ab^{-1} /IP
	HL-LHC	pp	$14 { m TeV}$		3
Ð	ILC $\& C^3$	ee	$250~{ m GeV}$	$\pm 80/\pm 30$	2
r e			$350~{ m GeV}$	$\pm 80/\pm 30$	0.2
lea			$500~{ m GeV}$	$\pm 80/\pm 30$	4
lir			$1 { m TeV}$	$\pm 80/\pm 20$	8
	CLIC	ee	$380 { m GeV}$	$\pm 80/0$	1
	CEPC	ee	M_Z		50
			$2M_W$		3
ee ee			$240~{\rm GeV}$		10
lar			$360~{ m GeV}$		0.5
rcu	FCC-ee	ee	M_Z		75
Ci			$2M_W$		5
			$240~{\rm GeV}$		2.5
			$2 M_{top}$		0.8
nh	μ -collider	$\mu\mu$	$125~{\rm GeV}$		0.02

Depends on collider environment

Coupling to SM

Reveal the Secrets of the Higgs Boson

Pursue Quantum Imprints of New Phenomena

Much interest for muon collider in US

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$
		(TeV)	e^-/e^+	ab^{-1}/IP
HFLHC	pp	27		15
FCC-hh	pp	100		30
SPPC	pp	75-125		10-20
LHeC	ep	1.3		1
FCC-eh		3.5		2
CLIC	ee	1.5	$\pm 80/0$	2.5
		3.0	$\pm 80/0$	5
μ -collider	$\mu\mu$	3		1
		10		10

e+e-: Higgs boson

• *Fully inclusive* Higgs sample via recoil mass in ZH production (~1 M events)

100

10

0.1

0.01

- Absolute measurement of g_{HZZ} with 0.05% statistical precision reachable
 - Allows to translate cross-section ratios from HL-LHC into model-independent coupling measurements

of New Phenomena

41

- Sharp improvement wrt HL-LHC for Higgs coupling to Z, W, b, c, τ (factor 10 for Z or H_{inv})
- Higgs width precision
 - 1% combining e⁺e⁻ with HL-LHC
 - 1.7% direct measurement via line-shape at µC
- FCC-ee exploring running at $\sqrt{s} = 125$ GeV to measure coupling to electrons

e+e-: Top quark

- Top quark: key role in SM
 - Yukawa coupling $y_t \simeq 1$, quadratic corr^s to m_H , vacuum stability
 - Only quark that does not hadronize before decay
- Expect ~2M $t \bar{t}$ events w/ clean environment + ability to scan \sqrt{s}
- Top-mass precision: 40-75 MeV from scan
- Sharply improved ttZ coupling + EFT constraints on top couplings

- 3 TeV (c = 1)
- • 10 TeV (c = 1)

e⁺e⁻ : Precision Electroweak

- Giga-Z (ILC) & Tera-Z (FCC-ee, CEPC) runs: up to 6 x 10¹² Z bosons -> 5+ orders of magn. more than LEP
 - **Reduced statistical uncertainties** by factor up to ~500
 - Requires theory calculations at next order or higher + improved $\alpha_s, \alpha_{EM}, m_t$
- WW threshold: 2 x 10⁸ WW boson pairs
 - ->3 orders of magn. more than LEP

 $^{\rm o}$ W mass and width from line shape —> δm_W = 0.4 MeV, $~\delta \Gamma_W$ = 1.2 MeV

NW

Pursue Quantum Imprints of New Phenomena

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	
$\Delta lpha(m_Z)^{-1}~(imes 10^3)$	17.8*	17.8*		3.8(1.2)	17.8*	
$\Delta m_W ~({ m MeV})$	12*	0.5~(2.4)		$0.25\ (0.3)$	0.35~(0.3)	
$\Delta m_Z ~({ m MeV})$	2.1^{*}	0.7~(0.2)	0.2	0.004~(0.1)	0.005~(0.1)	
$\Delta m_H ~({ m MeV})$	170*	14		2.5~(2)	5.9	
$\Delta\Gamma_W$ (MeV)	42*	2		1.2 (0.3)	1.8 (0.9)	
$\Delta\Gamma_Z$ (MeV)	2.3*	1.5~(0.2)	0.12	$0.004 \ (0.025)$	$0.005\ (0.025)$	
$\Delta A_e \; (imes 10^5)$	190*	14 (4.5)	1.5(8)	0.7~(2)	1.5~(2)	
$\Delta A_{\mu}~(imes 10^5)$	1500*	82 (4.5)	3(8)	2.3~(2.2)	3.0(1.8)	
$\Delta A_{ au}~(imes 10^5)$	400*	86~(4.5)	3(8)	0.5~(20)	1.2(20)	
$\Delta A_b \; (imes 10^5)$	2000*	53 (35)	9 (50)	2.4(21)	3(21)	
$\Delta A_c \; (imes 10^5)$	2700*	140(25)	20 (37)	20 (15)	6(30)	
$\Delta \sigma_{ m had}^0~({ m pb})$	37*			0.035~(4)	0.05~(2)	
$\delta R_e~(imes 10^3)$	2.4*	0.5~(1.0)	0.2 (0.5)	0.004~(0.3)	0.003~(0.2)	
$\delta R_{\mu}~(imes 10^3)$	1.6*	0.5~(1.0)	0.2~(0.2)	$0.003\ (0.05)$	0.003~(0.1)	
$\delta R_{ au}~(imes 10^3)$	2.2*	0.6(1.0)	0.2~(0.4)	0.003~(0.1)	0.003~(0.1)	
$\delta R_b~(imes 10^3)$	3.1*	0.4(1.0)	$0.04 \ (0.7)$	$0.0014 \ (< 0.3)$	0.005~(0.2)	
$\delta R_c(imes 10^3)$	17*	0.6~(5.0)	0.2(3.0)	0.015~(1.5)	0.02(1)	

Stat. (exp. syst.) uncertainties improve by up to factors of 20-50

• EFT study w/ dim-6 operators for Higgs + EW: indirect BSM sensitivity up to 70 TeV (Tera-Z)

e+e-: Beyond the SM

- - 0

All above search channels involve displaced vertices

FCC-ee: US - CERN statement of intent

Joint Statement of Intent between The United States of America and The European Organization for Nuclear Research concerning Future Planning for Large Research Infrastructure Facilities, Advanced Scientific Computing, and Open Science

OTHER RELEASE

BUREAU OF OCEANS AND INTERNATIONAL ENVIRONMENTAL AND SCIENTIFIC AFFAIRS

APRIL 26, 2024

- <u>Statement (26 Apr 2024)</u>
 - U.S. and CERN to continue collaborating in the FCC Higgs Factory feasibility study
 - HL-LHC
 - panel prescribed in recommendation 6.1

Deirdre Mulligan (Deputy US Chief Technology Officer) Fabiola Gianotti (CERN Director General)

• Subject to appropriate processes, the intention for the U.S. to collaborate on the FCC-ee, should the CERN Member States determine the FCC-ee is likely to be CERN's next research facility following the

• Statement aligned with P5: should FCC-ee receive a "green-light" following the next update of the European Strategy, U.S. intends to collaborate; and nature of the contributions to be discussed by the

Multi-TeV colliders

Recommendation 4 Higgs potential via self-coupling precision of ~5% (100 TeV *hh*) ~4% (10 TeV µC)

Neutrino physics

• Previous breakthroughs

- Non-zero neutrino mass discovered via obser of neutrino oscillations
- Oscillations observed (or inferred) between al
- Mixing angles and mass splittings measured

Compelling future program

- Mass ordering
- Origin of neutrino mass
- Dirac or Majorana?
- CP violation?
- Non-standard interactions

rvation	$U = \begin{pmatrix} -s_{12} c_2 \\ s_{12} s_2 \end{pmatrix}$	$c_{12}c_{13} \ c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{ ext{CP}}} \ c_{12}c_{23} - c_{12}s_{13}c_{23}e^{i\delta_{ ext{CP}}} \ -c_{12}s_{23} - c_{12}s_{23}e^{i\delta_{ ext{CP}}}$	$s_{12}c_{13}$ - $s_{12}s_{13}s_{23}e^{i\delta_{ m CP}}$ - $s_{12}s_{13}c_{23}e^{i\delta_{ m CP}}$	$s_{13} \ c_{13} \ c_{13}$
ll flavors	<u>J. Pedro Ochoa-F</u>	Ricoux (ICHEP 2024)	recision	
	From PDC	G 2024		
	$\sin^2(heta_{12})$	0.307 ± 0.013	4.2 %	
	Δm^2_{21}	$(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$	2.4 %	
	$\sin^2(heta_{23})$	$0.558^{+0.015}_{-0.021}$	3.2 %	
	Δm^2_{32}	$(2.455 \pm 0.028) \times 10^{-3} \text{ eV}^2$	2 1.1 %	
	$\sin^2(heta_{13})$	0.0219 ± 0.0007	3.2 %	

UC Berkeley

Neutrino oscillations

• Deep Underground Neutrino Experiment (DUNE) at Long Baseline Neutrino Facility (LBNF)

• Goals

- Determine mass ordering 0
- Test 3-flavor mixing model
- Supernova ν_{ρ} detection
- CP violating phase

Largest US project in Office of Science \$3.2B

DUNE complementary to other planned ν experiments (esp. T2HK)

- Wide-band energy spectrum (on axis)
- Relatively high ν beam energy
- Long baseline
- Different detector systematic uncertainties

Neutrino oscillations

DUNE Phase I

- Evidence (> 3 σ) for CP violation if large CPV

Neutrino oscillations

- - of $\delta_{\rm CP}$ values

- EPJC 81 (2021) 322
 - measurements

Cosmic frontier

• Previous breakthroughs

- Inflation: Quantum fluctuations seeded large-scale structures -> discovered in CMB
- Discovery of dark matter and dark energy -> guiding cosmic evolution
- Established theoretical framework: ΛCDM
- Compelling future program
 - Extend hunt for dark matter, increase sensitivity over wide mass range
 - Understand cause of cosmic acceleration for inflationary era and modern era (dark energy)

Determine the Nature of Dark Matter

 \circ Challenge ACDM model with high-precision imaging and spectroscopic surveys (LSST, DESI)

Understand What Drives Cosmic Evolution

Dark matter: Direct detection

- Third generation (G3) **DM direct detection expt** reaching "neutrino fog" Recommendation 2d
- Liquid xenon detector combining best of LZ, XENONnT, Darwin -> 60 T LXe **XLZD** (~10x mass of LZ or XENONnT)
- Liquid argon detector combining best of ArDM, DarkSide, DEAP, MiniCLEAN —> 300 T LAr Global Argon Dark Matter Collab. (GADMC)
- P5 propose one G3 experiment could be funded and hosted at SURF
- Large portfolio of smaller experiments exploring new technologies reaching lower DM mass, incl. wave-like DM

Determine the Nature of Dark Matter

Dark matter: Indirect detection

- New initiatives proposed for NSF
 - IceCube-Gen2

Recommendation 2d

- 10x sensitivity to astrophysical ν -> study ν properties
- Indirect dark matter detection (e.g. annihilation in Sun) most sensitive to heavy dark matter
- Cherenkov Telescope Array (CTA) in La Palma and Chile
 - Indirect dark matter detection via high-energy γ rays
 - Sensitivity to WIMP thermal targets (e.g. annihilation) in Milky Way galaxy center) beyond G3 reach, up to 100 TeV

Determine the Nature of Dark Matter

Cosmic evolution

- CMB-S4 Recommendation 2a
 - Precise CMB measurements
 - Probe inflation era via imprint of primordial gravitational waves on CMB -> probe ultra-high-energy scales
 - Dark matter and dark energy via gravitational lensing of CMB

Understand What Drives Cosmic Evolution

Cosmic evolution

Understand What Drives Cosmic Evolution

• Cosmic surveys

- Primary tools to study origin, structure, composition, and evolution of universe
- Imaging survey: Legacy Survey of Space and Time (LSST) at Vera Rubin Observatory in Chile
 - 3200-megapixel camera to image entire sky every 3-4 nights
 - Dark matter/energy: gravitational lensing, galaxy clustering, Type 1a supernovae to map cosmic acceleration -> dark energy density unc. $\sim 1\%$ Recommendation 1f

- **Spectroscopic survey:** Dark Energy Spectroscopic Instrument (DESI) at Kitt Peak (Arizona)
 - SD maps of matter distribution to probe evolution of dark energy since CMB era
 - DESI-II to focus on higher redshift (z > 2)

Recommendation 1c

Summary

- Advocated for greater support of enablers:

Decipher the Quantum Realm

Elucidate the Mysteries of Neutrinos

Reveal the Secrets of the Higgs Boson

Paradiams in Physics

Pursue Quantum Imprints of New Phenomena

Illuminate the Jniverse

Determine the Nature of Dark Matter

Understand What Drives Cosmic Evolution

• P5 recommended a broad and ambitious 10-year program for particle physics, in 20-year visi • Building on community input from Snowmass process, town halls, individual communications • **Balanced program** of projects at different frontiers, with large-, mid-, small-scale experiments

accelerators, instrumentation, theory, software and computing -> robust R&D for 20-year vision

i	C)	r	ן

Summary

- **Balanced program** of projects at different frontiers, with large-, mid-, small-scale experiments
- Advocated for greater support of enablers:

• P5 recommended a broad and ambitious 10-year program for particle physics, in 20-year visi • Building on community input from Snowmass process, town halls, individual communications

accelerators, instrumentation, theory, software and computing -> robust R&D for 20-year vision

Setting priorities The third update of the European strategy for particle physics gets under way.

i	C)	r	ן

BONUS SLIDES

HL-LHC plans

Plan for 3,000 fb⁻¹ of pp collisions delivered to ATLAS & CMS each

- 20 times more int. luminosity than current physics results are based on
- HL-LHC to run at $\sqrt{s} = 14$ TeV -> significant cross-section increase for massive final states

LHC / HL-LHC Plan

ATLAS and CMS detector upgrades for HL-LHC

ATLAS and CMS Phase-II upgrades for Runs 4, 5 & 6

- Challenge: pileup µ = 200 data acquisition rates 10x higher than LHC maintain or lower trigger thresholds
- Significant enhancement to sensitivity with
 - higher-resolution tracking systems (extending to $|\eta| = 4$)
 - improved calorimetry
 - increased muon coverage
 - enhanced trigger capability
 - novel timing systems
- Aggressive R&D in trigger, software and computing
 - exploit AI/ML techniques online and offline
 - develop software for heterogeneous computing technologies

LHCb and ALICE upgrades for HL-LHC

- Proposed LHCb Upgrade 2 arXiv:1808.08865
 - Runs 5 & 6 —> goal to collect 300 fb⁻¹ of pp collisions
 - Same or better performance than current detector but with 7 x more pileup
 - New tracker, PID, and EM calo systems with higher resolution and added timing
- Proposed ALICE 3 Upgrade arXiv:2211.02491 (Lol)
 - Runs 5 & 6 —> goal to collect 35 nb⁻¹ of Pb+Pb collisions
 - New detector, with excellent pointing resolution, tracking and PID
 - η coverage 4 x larger than ALICE
 - ALICE upgrades for Run 4: ITS3 and FoCal

Higgs couplings @HL-LHC

- Combination of ATLAS and CMS measurements extrapolated from (early) Run 2 analyses for YR18
- Precision on tree-level coupling modifiers (κ_i)

 \circ 1.5 - 1.8% for couplings to bosons (γ, W, Z)

° 1.9 - 4.3% for couplings to fermions (μ, τ, b, t)

• Access to couplings to 2^{nd} generation fermions via $H \rightarrow \mu^+ \mu^-$ Given $B(H \rightarrow \mu\mu) = 2 \times 10^{-4}$, statistics dominate even with 3,000 fb⁻¹

- New tracking system: 30% improvement in $m(\mu\mu)$ resolution
- Uncertainty reduced from 5.0% (YR18) to 3.5% by extrapolating full Run 2 analysis

Impact of precision on BSM @HL-LHC

Higgs differential cross sections

- High p_T region sensitive to BSM effects
- Directly benefits from statistical power of HL-LHC

Deviations from ggH and ttH effective operators

Higgs self-coupling @HL-LHC

• Expected HH signal significance ATLAS-PHYS-PUB-2022-053

Table 7: Projected significance and signal strength precision of the SM HH signal combining the $b\bar{b}\gamma\gamma$, $b\bar{b}\tau^+\tau^-$ and Table 1: Summary of the systematic uncertainty scale factors considered HL-LHC baseline scenario. The considered systematic uncertainties include: theoretical; flavour-tagging; jets; luminosity; and the data-driven background $b\bar{b}b\bar{b}$ channels at 3000 fb⁻¹ and $\sqrt{s} = 14$ TeV for the four uncertainty scenarios. The significances for individual bootstrap and shape uncertainties. $b\bar{b}\gamma\gamma$, $b\bar{b}\tau^+\tau^-$, and $b\bar{b}b\bar{b}$ channels are also summarized.

Significance $[\sigma]$ Combined signal						Systematic uncertainties	Scale factors for HL-LHC baseline scenario
Uncertainty scenario	b̄bγγ	$bar{b} au^+ au^-$	bbbb	Combination	strength precision [%]	Theoretical uncertainty	0.5
No syst. unc.	2.3	4.0	1.8	4.9	-21/+22	- c-jet tagging efficiency	0.5
Baseline	2.2	2.8	0.99	3.4	-30/+33	Light-jet tagging efficiency Jet energy scale and resolution	1.0
Theoretical unc. halved	1.1	1.7	0.65	2.1	-47/+48	Luminosity Background bootstrap uncertainty	0.6
Run 2 syst. unc.	1.1	1.5	0.65	1.9	-53/+65	Background shape uncertainty	1.0

Table 10: Projected confidence intervals for κ_{λ} evaluated on an Asimov dataset constructed under the SM hypothesis of $\kappa_{\lambda} = 1$, combining the $b\bar{b}\gamma\gamma$, $b\bar{b}\tau^{+}\tau^{-}$ and $b\bar{b}b\bar{b}$ channels at 3000 fb⁻¹ and $\sqrt{s} = 14$ TeV, assuming the four uncertainty scenarios.

Uncertainty scenario	κ _λ 68% CI	<i>κ</i> _λ 95% CI
No syst. unc.	[0.7, 1.4]	[0.3, 1.9]
Baseline	[0.5, 1.6]	[0.0, 2.5]
Theoretical unc. halved	[0.3, 2.2]	[-0.3, 5.5]
Run 2 syst. unc.	[0.1, 2.4]	[-0.6, 5.6]

Other highlights @HL-LHC

• EWPO & Top quark

- $\sigma(m_W) \simeq 5 \text{ MeV}$ (CDF: 9.4 MeV)
- $\sigma(m_t) \simeq 0.2 \text{ GeV}$ (LHC: 0.6 GeV)
- $\sigma(\sin^2 \theta_{\text{eff}}^{\ell}) \simeq 10 \times 10^{-5}$ (LEP+SLD: 16×10^{-5})

• $\Lambda \gtrsim 3.5 \text{ TeV}$ (c = 1) for LH tW

Parameter	HL-LHC
$\sqrt{s} [\text{TeV}]$	14
Yukawa coupling y_t (%)	3.4
Top mass m_t (%)	0.10
Left-handed top-W coupling $C_{\phi Q}^3$ (TeV ⁻²)	0.08
Right-handed top-W coupling C_{tW} (TeV ⁻²)	0.3
Right-handed top-Z coupling C_{tZ} (TeV ⁻²)	1
Top-Higgs coupling $C_{\phi t}$ (TeV ⁻²)	3
Four-top coupling c_{tt} (TeV ⁻²)	0.6

Snowmass EF report

Vector-boson scattering • Rare decays Higgs vs. unitarity violation • $W_L^{\pm} W_L^{\pm}$ only 6-7% of total VBS xs W+ Simme • Significance ~5 σ expected resolution by 40-50% ATLAS + CMSATLAS+CMS Snowmass WP GeV **CMS Phase-2** toy events ATLAS+CMS Snowmass WP 14 TeV - full PDF $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ $B^0 \rightarrow \mu^+ \mu^-$ CMS

e+e-: Higgs couplings

• Higgs coupling measurements —> indirect sensitivity to BSM scale up to ~70 TeV (strongly-coupled models)

Coupling	HL-LHC	FCC-ee (240–365 Ge 2 IPs / 4 IPs
$\kappa_W ~[\%]$	1.5^{*}	$0.43 \ / \ 0.33$
$\kappa_Z[\%]$	1.3^{*}	$0.17 \ / \ 0.14$
$\kappa_g [\%]$	2^*	$0.90 \ / \ 0.77$
κ_{γ} [%]	1.6^{*}	$1.3 \ / \ 1.2$
$\kappa_{Z\gamma}$ [%]	10^{*}	10 / 10
κ_c [%]	_	1.3 / 1.1
$\kappa_t [\%]$	3.2^{*}	3.1 / 3.1
κ_b [%]	2.5^{*}	$0.64 \ / \ 0.56$
$\kappa_{\mu}~[\%]$	4.4^{*}	3.9 / 3.7
$\kappa_{ au}$ [%]	1.6^{*}	$0.66 \ / \ 0.55$
BR_{inv} (<%, 95% CL)	1.9^{*}	$0.20 \ / \ 0.15$
BR_{unt} (<%, 95% CL)	4^{*}	1.0 / 0.88

e+e-: Electroweak

• Z pole measurements

Quantity	Current precision	FCC-ee stat. (syst.) precision	Required theory input	Available calc. in 2019	No in
$egin{array}{l} m_{ m Z} \ \Gamma_{ m Z} \ \sin^2 heta_{ m eff}^\ell \end{array}$	$2.1 \mathrm{MeV}$ $2.3 \mathrm{MeV}$ $1.6 imes 10^{-4}$	$0.004~(0.1)~{ m MeV}$ $0.004~(0.025)~{ m MeV}$ $2(2.4) imes 10^{-6}$	non-resonant $e^+e^- \rightarrow f\bar{f},$ initial-state radiation (ISR)	NLO, ISR logarithms up to 6th order	N e ⁺
m_W	$12{ m MeV}$	$0.25 \ (0.3) \mathrm{MeV}$	lineshape of $e^+e^- \rightarrow WW$ near threshold	NLO (ee \rightarrow 4f or EFT frame-work)	NI ee W EI
HZZ coupling		0.2%	cross-sect. for $e^+e^- \rightarrow ZH$	NLO + NNLO QCD	N el
$m_{ m top}$	$100\mathrm{MeV}$	$17\mathrm{MeV}$	threshold scan $e^+e^- \rightarrow t\bar{t}$	N ³ LO QCD, NNLO EW, resummations up to NNLL	M or re m M

[†]The listed needed theory calculations constitute a minimum baseline; additional partial higher-order contributions may also be required.

FCC midterm report

Observable	value	$\frac{\text{presen}}{\pm}$	t error	FCC-ee Stat.	FCC-ee Syst.	Commer leading
$m_{Z} (keV)$	91186700	±	2200	4	100	From Z line shape Beam energy calib
$\Gamma_{\rm Z}~({\rm keV})$	2495200	±	2300	4	25	From Z line shape Beam energy calib
$\sin^2 heta_{ m W}^{ m eff}(imes 10^6)$	231480	±	160	2	2.4	From $A_{FB}^{\mu\mu}$ at Z Beam energy calib
$1/\alpha_{\rm QED}(m_Z^2)(\times 10^3)$	128952	±	14	3	small	From $A_{FB}^{\mu\mu}$ of QED&EW errors don
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767	±	25	0.06	0.2-1	Ratio of hadrons to le Acceptance for le
$lpha_{ m s}({ m m_Z^2})~(imes 10^4)$	1196	±	30	0.1	0.4-1.6	Fro
$\sigma_{ m had}^0$ (×10 ³) (nb)	41541	±	37	0.1	4	Peak hadronic cross-se Luminosity measure
$N_{\nu}(\times 10^3)$	2996	±	7	0.005	1	Z peak cross-se Luminosity measure
$R_b (\times 10^6)$	216290	±	660	0.3	< 60	Ratio of $b\bar{b}$ to ha Stat. extrapol. from
$A_{FB}^{b}, 0 \; (imes 10^{4})$	992	±	16	0.02	1-3	b-quark asymmetry at Z From jet c
$\mathrm{A_{FB}^{pol, au}}$ (×10 ⁴)	1498	±	49	0.15	<2	au polarization asym $ au$ decay p
au lifetime (fs)	290.3	±	0.5	0.001	0.04	Radial alig
au mass (MeV)	1776.86	±	0.12	0.004	0.04	Momentum
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38	±	0.04	0.0001	0.003	e/µ/hadron sepa
m_W (MeV)	80350	±	15	0.25	0.3	From WW threshold Beam energy calib
$\Gamma_{\rm W}~({ m MeV})$	2085	±	42	1.2	0.3	From WW threshold Beam energy calib
$lpha_{ m s}({ m m}_{ m W}^2)(imes 10^4)$	1010	±	270	3	small	From
$N_{\nu}(imes 10^3)$	2920	±	50	0.8	small	Ratio of invis. to leg in radiative Z re
m_{top} (MeV)	172740	±	500	17	small	From $t\bar{t}$ threshold QCD errors don
$\Gamma_{\rm top}~({ m MeV})$	1410	±	190	45	small	From $t\bar{t}$ threshold QCD errors don
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2	±	0.3	0.10	small	From t t threshold QCD errors don
ttZ couplings		±	30%	0.5 - 1.5 %	small	From $\sqrt{s} = 365 \mathrm{Ge}$

leeded theory $nprovement^{\dagger}$

INLO for $^{+}\mathrm{e}^{-} \rightarrow \mathrm{f}\overline{\mathrm{f}}$

INLO for \rightarrow WW, $V \to \text{ff in}$ FT setup

INLO lectroweak

latching fixed rders with esummations,nerging with IC, $\alpha_{\rm s}$ (input)

nt and error be scan ration e scan ration peak ration peak ninate ptons ptons om $\mathrm{R}^{\mathrm{Z}}_{\ell}$ ection ement $\operatorname{ections}$ ement drons m SLD \mathbf{Z} pole charge metry hysics nmentscale ration d scan ration d scan ration om R_{ℓ}^{W} ptonic eturnsld scan minate ld scan minated scan ninateeV run 68

e+e-: Top quark

• Expect ~2M $t \bar{t}$ events

w/ clean environment and ability to scan \sqrt{s}

- Test of Higgs mechanism via measurement of top mass and top Yukawa coupling
 - *m_t* measurement at ee collider with clear
 interpretation from cross-section measurement
 near threshold

$\delta m_t^{ m PS}~[{ m MeV}]$	ILC	CLIC
$\mathcal{L}[ext{fb}^{-1}]$	200	100 [200]
Statistical uncertainty	10	$20 \ [13]$
Theoretical uncertainty (QCD)		40-45
Parametric uncertainty α_s	26	26
Parametric uncertainty y_t HL-LHC		5
Non-resonant contributions		< 40
Experimental systematic uncertainty	2	0 - 30
Total uncertainty		40-75

$$11 - 20$$

e⁺e⁻ : Rare Z decays

• Rare/exotic Z or H decays:

- Extended scalar sector, SUSY, Higgs portal, vector portal
- BF sensitivity improved by 1-4 orders of magn. for H decays, 2-9 orders of magn. for Z decays relative to HL-LHC
 - strongest gains in hadronic final states with or w/o missing momentum

95% C.L. upper limit on selected Higgs Exotic Decay BR

arXiv:1612.09284

