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A bit of context…
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R&D and adoption of new technologies in HEP

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:

HEP is moving towards new technologies, in particular hardware accelerators



E.g.

Monte Carlo simulation and data analysis are intensive and requires lots of computing power.



Quantum computing for HEP experiments

Many experimental and theoretical HEP applications are deemed to benefit from quantum computation.

QC4HEP WG [arXiv: 2307.03236]

https://arxiv.org/abs/2307.03236


Recap



required to develop algorithms

complete introspection

require noise modeling

limited (in many senses)

requires calibration

final validation

Simulation Hardware



Discrete gates primer

The Hilbert space on which the unitaries act is a strutured as a  tensor product of  qubits

the generic qubit state is:

and it can be visualized as a point on the Bloch sphere
x

y

z

φ

θ

1

0

ψ

Goal: Construct a generic  operation based on building blocksU(2 )n

⨂ n

∣0⟩ = ​ ∣1⟩ =(1
0) ​(0

1)

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ with  ∣α∣ +2 ∣β∣ =2 1

α = cos θ/2 β = e sin θ/2−iϕ



Example gates: Pauli

 gate

The  gate acts like the classical  gate, it is
represented by the  matrix,

therefore

 gate

The  gate flips the sign of , it is represented
by the  matrix,

therefore

X

X NOT

σx

σ ​ =x ​ ​(0
1

1
0

)

∣0⟩ ⟶ ∣1⟩
∣1⟩ ⟶ ∣0⟩

Z

Z ∣1⟩
σ ​z

σ ​ =z ​ ​(1
0

0
−1

)

∣0⟩ ⟶ ∣0⟩
∣1⟩ ⟶ − ∣1⟩



 Single-qubit gates

These are operations on the Bloch sphere

 Two-qubit gates

The building-block interactions

 Multi-qubit gates

Higher-level instructions for algorithms

 Define a  gate set

universality means it can generate all unitarities

possibly redundant, since it may be efficient to execute

multiple implementations, related to diverse hardware

Gates could be variously parametrized, so there exists
universal sets made beyond

universal
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Circuit

Circuit are a way to compose gates to build unitaries, sequentially

or in parallel

Unitary - but measurements.



Note that .

Every unitary transformation as decomposed in
rotations (Euler’s angles)

Other parameters are possible:  and  parametrize the position of the axis, multi-qubit gates can
paramterize complex interactions, …

Having parameters, it opens the door to optimization  → i.e. quantum machine learning (QML)

Parametrized gate

R ​(θ) ≡y e =−iθ ​

2
σ ​y

​ ​(cos(θ/2)
sin(θ/2)

− sin(θ/2)
cos(θ/2)

)

R ​(π) ≡y Y

GPI GPI2

Rotations gates (Bloch sphere)
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The controlled-$NOT$ ($CNOT$) gate is a conditional
gate defined as

We define a control qubit which, if at , applies  to a
target qubit.

control
target

Multi-qubit gates allow entangling states

Two-qubit gate
The atoms of interaction

CNOT ≡ ​ ​(1
0

0
σ ​x

)
∣1⟩ X

∣00⟩ → ∣00⟩ ∣01⟩ → ∣01⟩

∣10⟩ → ∣11⟩ ∣11⟩ → ∣10⟩

Controlled gates (conditionals)



Measurements are special gates, in two ways:

1. it is the only operation that allows to extract information

2. it is the only non-unitary gate

(Module of) amplitudes of the final states are
derived by repeating the experiment many
times identically, performing many shots.

Measurement
The non-unitary gate that you have

Shots



Noise and channels

Instead of acting over a state vector, the state will be
tracked by a 

This makes possible to track phenomena like
decoherence, which has not a unitary action on the
state.

Another option is to exploit measurement non-
unitarity, and represent the noise through repeated
execution.

Kraus

Stinespring

Choi

Liouville, Quantum networks, …

Non-unitary operations model

density matrix

∣ψ⟩ ⟶ ρ  ∼ ∣ψ⟩ ⟨ψ∣ ( )

Φ(ρ) = ​B ​ρB ​

i

∑ i i
∗

U ​ =0 ​K ​ ⊗
α

∑ α ∣α⟩ ⟨v ​∣0

Λ = ∣U⟩⟩⟨⟨U ∣



Noise and channels

Instead of acting over a state vector, the state will be
tracked by a 

This makes possible to track phenomena like
decoherence, which has not a unitary action on the
state.

Another option is to exploit measurement non-
unitarity, and represent the noise through repeated
execution.

Kraus

Stinespring

Choi

Liouville, Quantum networks, …

Non-unitary operations model

density matrix

∣ψ⟩ ⟶ ρ  ∼ ∣ψ⟩ ⟨ψ∣ ( )

Φ(ρ) = ​B ​ρB ​

i

∑ i i
∗

U ​ =0 ​K ​ ⊗
α

∑ α ∣α⟩ ⟨v ​∣0

Λ = ∣U⟩⟩⟨⟨U ∣



Noise and channels

Instead of acting over a state vector, the state will be
tracked by a 

This makes possible to track phenomena like
decoherence, which has not a unitary action on the
state.

Another option is to exploit measurement non-
unitarity, and represent the noise through repeated
execution.

Kraus

Stinespring

Choi

Liouville, Quantum networks, …

Non-unitary operations model

density matrix

∣ψ⟩ ⟶ ρ  ∼ ∣ψ⟩ ⟨ψ∣ ( )

Φ(ρ) = ​B ​ρB ​

i

∑ i i
∗

U ​ =0 ​K ​ ⊗
α

∑ α ∣α⟩ ⟨v ​∣0

Λ = ∣U⟩⟩⟨⟨U ∣



Applications
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Quantum machine learning



QML - 

If a first-order optimization  method
used, gradient calculation may be
"quantum-aware" (PSR).

→

The advantage is mainly in the , and
possibly ansatz expressivity.

Quantum computation is naturally based on
continuous variables. But in practice they are
generated through digital control electronics with

remarks
A classical function being clasically optimized.

​ ​( ) =ȳest θ̄ ⟨0∣U( ) ∣0⟩ :θ̄ R →n Rm

inference time

noisy calibrated pulses
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qPDF [arXiv: 2011.13934]

:

1. Define a quantum circuit: 

2. 

3. Using 

 Parametrize Parton Distribution Functions (PDF) with multi-qubit variational quantum circuits

Algorithm’s summary

U(θ,x) ∣0⟩ =⊗n ∣ψ(θ,x)⟩

U ​(α,x) =w R ​(α ​ log(x) +z 3 α ​)R ​(α ​ log(x) +4 z 1 α ​)2

z ​(θ,x) =i ⟨ψ(θ,x)∣Z ​ ∣ψ(θ,x)⟩i

qPDF ​(x,Q ​, θ) =i 0 ​

1 + z ​(θ,x)i

1 − z ​(θ,x)i

https://arxiv.org/abs/2011.13934
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Density estimation with adiabatic QML [arXiv: 2303.11346]

by fitting the corresponding Cumulative Density Function (CDF)
using an adiabatic QML ansatz.

:

1. Optimize the parameters  using adiabatic evolution: 

 in order to approximate some target CDF

values

2. Derivate from  a circuit  whose action on the ground state of

 returns 

3. The circuit at step 2 can be used to calculate the CDF

4. Compute the PDF by derivating  with respect to  using the Parameter

Shift Rule

 Determining Probability Density Functions (PDF)

Algorithm’s summary

θ̄ H ​(τ ; ) =ad θ̄

[1 − s(τ ; )] +θ̄ X̂ s(τ ; )θ̄ Ẑ

H ​ad C(τ ; )θ̄

X̂ ∣ψ(τ)⟩

C τ

https://arxiv.org/abs/2303.11346
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Quantum hardware



Quantum computation

1. discrete gate-based

2. continuous variable (a.k.a. bosonic)

3. quantum annealing

The potential use cases partially overlap, and it is possible to emulate each other (at least approximately).

They are particularly related to the hardware realizing them...

Various models are proposed and explored



Technologies

Pros and cons for each, investigated by different groups, including diverse private companies.

Some optimal for specific applications, others for further usage, e.g. quantum memories [arXiv: 1511.04018] .

Many technologies simultaneously investigated [arXiv: 2304.14360]

https://arxiv.org/abs/1511.04018
https://arxiv.org/abs/2304.14360


Superconducting

«IBM» and «Google» are definitely two prominent players, but superconducting hardware is being
investigated by a plethora of labs.

Within the scope of this technology, many variations are also possible (flux-tunable qubits, couplers, cross-
resonance schemes), so it is a macro-category.

One of the platforms with most resonance



Neutral atoms

«Atom computing» have been the first to claim >1000 qubits [arXiv: 2401.16177]

https://arxiv.org/abs/2401.16177


Control

The quantum operation is supposed to be exact, not within a certain range.

Quantum hardware is first of all an exercise in precise control



Qibo

- Your quantum workhorse -



The ecosystem



Contributors (March 2024)



Qibo [arXiv: 2009.01845]

Qibo 
backends 

Simulating on 
classical hardware

Clifford

Qibotn

Qibojit

tensorflow

numpy CPU/lightweight

CPU/GPU high 
performance

Specialized

Executing on 
quantum hardware Qibolab

Execution

https://arxiv.org/abs/2009.01845


Backends mechanism

Structure the integration of the various libraries.

State Vector

Numba

CuPy

CuQuantum SVTensorFlow

NumpyLightweight

Autodiff support Optimized GPU
(NVIDIA)

Portable GPU
(NVIDIA & AMD)

Accelerated CPU

Common operations are implemented once and reused (when possible).

Plug the framework.



on advanced hardware

Results [arXiv: 2203.08826 ]

https://gist.github.com/migueldiascosta/0a0dbe061982bc4cc2bc7171785a4b86
https://arxiv.org/abs/2203.08826


Automatic differentiation

Autodiff simulation is fundamental
to support QML investigation.

A dedicated differentiable backend
in simulation can considerably help
algorithms development.

Moving towards a single interface,
encompassing both simulation and
quantum hardware
implementations.

implementation

user

Tensorflow

...

PyTorch

JAX

qibo

e.g. TensorFlow

Parameter shift rule

...

Framework portability: implement in one, export derivatives.

for quantum machine learning → Qiboml



Clifford

Theorem 1 Given an n-qubit state , the
following are equivalent:

(i)  can be obtained from  by CNOT, Hadamard,
and phase gates only.
(ii)  can be obtained from  by CNOT, Hadamard,
phase, and measurement gates only.
(iii)  is stabilized by exactly 2n Pauli operators.
(iv)  is uniquely determined by 

 or the group of Pauli operators that
stabilize 

Instead of operating on the whole state vector, the state is
represented by a much more compressed tableau.

It still requires vectorized operations on the boolean entries, that
can be optimized in a similar fashion to the general state vector
approach.

Specialized execution.

∣ψ⟩ = U ∣ψ⟩

∣ψ⟩

∣ψ⟩ ∣0⟩ ⊗ n

∣ψ⟩ ∣0⟩ ⊗ n

∣ψ⟩
∣ψ⟩ S(∣ψ⟩) =

Stab(∣ψ⟩) ∩ P ​n

∣ψ⟩

​ ​ ​​ ​ ​ ​ ​ ​ ​

x ​11

⋮
x ​n1

x ​(n+1)1

⋮
x ​(2n)1

…

⋱
…
…

⋱
…

x ​1n

⋮
x ​nn

x ​(n+1)n

⋮
x ​(2n)n

z ​11

⋮
z ​n1

z ​(n+1)1

⋮
z ​(2n)1

…

⋱
…
…

⋱
…

z ​1n

⋮
z ​nn

z ​(n+1)n

⋮
z ​(2n)n

r ​1

⋮
r ​n

r ​n+1

⋮
r ​2n



Clifford
Benchmarks



Clifford
Benchmarks

Work in progress



Tensor network

Contractions

Optimized for observables.
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Tensor network

Approximation
Based on singular value decomposition (SVD).

A very frequent matrix product state (MPS).

But also other ansatzes are used.

Workload distribution

beyond opt_einsum

for q in range(nq):

    c.apply_gate('H', q)

for q in range(0, nq, 2):

    c.apply_gate('CNOT', q, q + 1)

c.apply_gate('CNOT', 4, 7)

c.apply_gate('CNOT', 4, 1)

c.apply_gate('CNOT', 4, 0)
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QiboTN

Work in progress



Transpilation

Optimization

   ┌───┐┌───┐┌───┐     ┌───┐
q: ┤ H ├┤ H ├┤ H ├  =  ┤ H ├
   └───┘└───┘└───┘     └───┘

Routing

                          q0: ──■──     ─X──────
 ┌────┐┌────┐┌────┐             │        │      
 ┤ q0 ├┤ q1 ├┤ q2 ├  ···  q1: ──┼──  =  ─X───■──
 └────┘└────┘└────┘           ┌─┴─┐        ┌─┴─┐
                          q2: ┤ X ├     ───┤ X ├
                              └───┘        └───┘

Decomposition (to natives)

Final assembly lowering.

   ┌───┐     ┌───┐┌───────────┐
q: ┤ H ├  =  ┤ Z ├┤ GPI2(π/2) ├
   └───┘     └───┘└───────────┘

-- the bridge to hardware

→ compilation

*simplicity is not well-defined, as in Mathematica and gcc →  heuristics involved!



Qibolab [arXiv: 2308.06313]

TII lab

Quantum control

https://arxiv.org/abs/2308.06313
https://files-prod.tii.ae/360/TII-QRC-Computing-Lab.html


Execution flow



Qibolab - Interface
physicalinput

Circuit Pulse sequence Platform Driver Electronics QPU

The input for a computation could be very
standard, at the level of a circuit. That kind of
interface is already defined by Qibo itself.

However, at a lower level, pulses are still a
standard-enough way to interact with hardware,
and these are defined by Qibolab.

def create():

    instrument = DummyInstrument("myinstr", "0.0.0.0:0")

    channels = ChannelMap()

    channels |= Channel(

        "readout",

        port=instrument.ports("o1")

    )

    ...

    return Platform(

        "myplatform",

        qubits={qubit.name: qubit},

        instruments={instrument.name: instrument},

        ...

    )



Qibolab - Drivers
physicalinput

Circuit Pulse sequence Platform Driver Electronics QPU

Qblox
Zurich

QM

QICK

      move      1,R0        # Start at marker output channel 0 (move 1 into R0)

      nop                   # Wait a cycle for R0 to be available.

loop: set_mrk   R0          # Set marker output channels to R0

      upd_param 1000        # Update marker output channels and wait 1μs.

      asl       R0,1,R0     # Move to next marker output channel (left-shift R0).

      nop                   # Wait a cycle for R0 to be available.

      jlt       R0,16,@loop # Loop until all 4 marker output channels have been set once.

      set_mrk   0           # Reset marker output channels.

      upd_param 4           # Update marker output channels.

      stop                  # Stop sequencer. by Qblox

https://www.qblox.com/
https://www.zhinst.com/
https://www.quantum-machines.co/
https://github.com/openquantumhardware/qick
https://qblox-qblox-instruments.readthedocs-hosted.com/en/master/cluster/q1_sequence_processor.html#example


Qibosoq - Server on QICK [arXiv: 2310.05851]

physicalinput

Circuit Pulse sequence Platform Driver Electronics QPU

Qibolab handles the whole connection, and takes care of fetching the single or multiple results.

For the single open source platform FPGA firmware

currently in Qibolab, there has been a dedicate
effort to define a suitable server, to optimize the
communication with the board.

⟶ Qibosoq

in collaboration with INFN-UNIMIB-BIQUTE

https://arxiv.org/abs/2310.05851


Platform dashboard

http://login.qrccluster.com:10000/


Qibocal [arXiv: 2303.10397]

Qibocal

qq auto

qq acquire

qq fit

qq upload Share your 
results

Analyze your 
data

Acquire data 
for your 
protocols

Automated 
protocols 
execution

A due mention

https://arxiv.org/abs/2303.10397
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Pulses’ calibration
Resonator spectroscopy

               ┌───────┐                       
probe       : ─┤ Pulse ├───────────   
               └───────┘                          ┌───┐
                                      =  readout: ┤ M ├
                 ┌───────────────┐                └───┘
acquisition : ───┤  Acquisition  ├─
                 └───────────────┘

Scan spectrum to identify the coupled resonator frequency.

Rabi

            ┌───────┐                       
 drive   : ─┤ Pulse ├────────────────────────
            └───────┘              
                    ┌──────────────────────┐    
 readout : ─────────┤           M          ├─
                    └──────────────────────┘

Tune the amplitude (duration) of the drive pulse, in order
to excite the qubit from the ground state up to state .∣1⟩



Protocols report

CHSH →

Randomized benchmarking ↓

They are two of the routines available in Qibocal,
allowing to  the QPU .

QPU control implementation

validate performances
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⚞ Not a one-man show...



Thanks


