Diego García Gámez 11-09-2024

UNIVERSIDAD DE GRANADA

(Some) Neutrino experiments results and future experiments

LI - International Meeting on Fundamental Physics

Why study neutrinos? A bit of motivation …

 $\mathbf 0$ **SCAL**

- The least known of all SM fermions
	- Lightest ones
	- ‣ Only Electrically neutral ones
	- ‣ Most penetrating ones
- Neutrino masses imply new physics Beyond Standard Model
- The most abundant of all fermions in the Universe with a strong impact on its evolution
- Their nature is related to the fundamental symmetries of nature (lepton number)
- Neutrinos could be the key to explaining why the Universe is basically made of matter (baryon asymmetry).

Standard Model of Elementary Particles

List of reasons that make them special:

What are we trying to learn?

- answer:
	- Which neutrino is the lightest?
	- \rightarrow Do ν and $\bar{\nu}$ behave the same (CP violation)?
	- ‣ Are there any sterile neutrino states? If so, what are their masses?
	- ‣ Deviations from unitarity of the PMNS matrix?
	- What is the absolute mass scale?
	- ‣ How do neutrinos get their mass? (Dirac or Majorana)

• Last 20 years have been a revolution for neutrino physics, but still fundamental questions to

Understanding neutrinos: a world-wide effort

Understanding neutrinos: a world-wide effort

(And more!)

DISCRETE

(First) Solar Neutrino experiments and "the solar neutrino problem" SNU Solar Neutrino Unit ≡ 1 captura por segundo por 10³⁶ átomos de ³⁷Cl

 0.5
6

10 Rate of events $\frac{1}{5}$ Valor teórico esperado 4 1978 1982 1974 1986 1990 More than 20 years of measurements: one third of the expected value (about 2000 atoms collected)

Nuclear fusion in the Sun produces a large flux of ν_e with $E < 20$ MeV. They have been studied with different experiment/technologies:

- Radio Chemical: (Homestake, SAGE, GALLEX)
	- Inverse beta decay, e.g. : $\nu_e + \frac{37}{17}Cl \rightarrow \frac{37}{18}Ar + e^-$
	- \blacktriangleright ³⁷Ar atoms where extracted from the detector and counted through their radioactive decays: ${}^{37}_{18}Ar + e^- \rightarrow {}^{37}_{17}Cl + \nu_e +$ Auger electron
- Water Cherenkov: (Super Kamiokande, since 1996)
	- **▶** Detect Cherenkov light from ES: $\nu_e + e^- \rightarrow \nu_e + e^-$
	- CC process ($\nu_e + n \rightarrow p + e^-$) is kinematically forbidden (Oxygen is a doubly magic nucleus)

• Clear evidence of neutrinos from the Sun, but **measured flux about half that expected!**

SNO experiment

- The Sudbury Neutrino Observatory (SNO) experiment (1999-2006) in Canada was designed to measure both the v_e and total neutrino flux from the Sun.
- Key point: three different physical processes with different sensitivities to the fluxes of electron, muon and tau neutrinos. • SNO provides clear evidence of neutrino flavour transformations over large distances.

-
- The SNO data demonstrate that the total flux of neutrinos from the Sun is consistent with the theoretical expectation, but rather than consisting of only v_e , there is a large v_μ and/or v_τ component.

• SNO consisted of 1,000 tons of heavy water, D_2O , inside a 12m diameter vessel, viewed by 9,600 PMTs.

CC $v_e + d \Rightarrow p + p + e^-$ ES $v_x + e^- \Rightarrow v_x + e^-$ NC $v_x + d \Rightarrow p + n + v_x$

Super Kamiokande Atmospheric Results

- SK made important contribution to solve the problem!
- Typical energy $E_{\nu} \approx 1$ *GeV*: (much greater than solar neutrinos no confusion)
- Measure rate as a function of angle with respect to local vertical
- Neutrinos coming from above travel \sim 20 km; from below (i.e. other side of the Earth) travel \sim 12800 km

- Data agrees with predictions for ν_e
- Strong evidence for disappearance of *νμ* for large distances
- Consistent with $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations
- Don't detect the oscillated ν_{τ} as typically below interaction threshold of 3.5 GeV

The "solar" and "atmospheric" neutrino anomalies (1960s – 1990s). Resolution

2015 NOBEL PRIZE IN PHYSICS

Neutrinos can change 'flavours' and have mass

Neutrino Mixing (brief reminder)

- explained by the phenomenon of neutrino oscillations. How can this happen?
- the respective flavour of charged lepton in a weak interaction)
- produced in an interaction, the system has to be described by superposition of ν_1 , ν_2 and ν_3 .
- In quantum mechanics, the basis of weak eigenstates can be related to the basis of mass eigenstates by a matrix *UPMNS* (Pontecorvo–Maki–Nakagawa–Sakata),

• We know that the neutrino flavour transformations observed by some experiments can be

• There is no reason to believe that the neutrino mass eigenstates (the fundamental particles) ν_1 , ν_2 and ν_3 should correspond to the weak eigenstates, ν_e , ν_μ and ν_τ (produced along with

PMNS Matrix

• The PMNS matrix is usually expressed in terms of 3 rotation angles $\theta_{12}, \theta_{23}, \theta_{13}$ and a complex phase $\delta_{\rm cp}$

$$
U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

$$
\begin{pmatrix} \theta_{23} \approx 45^{\circ} \\ \text{Octant not known} \\ \text{(new symmetry?)} \end{pmatrix} \times \begin{pmatrix} \theta_{13} \approx 10^{\circ} \\ \delta_{cp} \text{ not known} \\ \text{(CP violation?)} \end{pmatrix}
$$

$$
\nu_{\mu} \rightarrow \nu_{\mu}
$$

$$
\nu_{\mu} \rightarrow \nu_{\tau}
$$

Atmospheric and long baseline

$$
\nu_e \rightarrow \nu_e
$$

$$
\nu_\mu \rightarrow \nu_e
$$

Reactor and long baseline

$$
\nu_e \rightarrow \nu_e
$$

$$
\nu_e \rightarrow \nu_\mu, \nu_\tau
$$

Solar and reactor

Mass Ordering

- Neutrino oscillation probabilities depend on the PMNS parameters and the neutrino mass s plittings: $\Delta m_{ij}^2 \equiv m_{\nu_i}^2 - m_{\nu_j}^2$ (with i, j = 1, 2, 3) $- m_{\nu_i}^2$ *νj*
- In solar oscillation, the matter effect allows fixing the sign of the mass splitting $\Delta m_{21}^2 > 0$ \Rightarrow $m_{\nu_2} > m_{\nu_1}$
- This allows two possibilities: \blacktriangleright Normal Ordering (NO): $m_{\nu_3} > m_{\nu_2} > m_{\nu_1}$
	- \blacktriangleright Inverted Ordering (IO): $m_{\nu_2} > m_{\nu_1} > m_{\nu_3}$

⇒Different implications in the dynamics of neutrino oscillations

Current status of measurements

Relative 1 *σ* • This is done in so-called global analyses that fit the theoretical parameters to the experimental data

[M. Tortola Neutrino 2024]

• Combining data of all neutrino oscillation experiments, it is possible to make a definite determination

- of all the oscillation parameters
-

- δ and *a* switch signs in going from the $\nu_\mu \rightarrow \nu_e$ to $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ channel:
	- \triangleright δ and matter effects create opposite effects in neutrinos and antineutrinos $\Rightarrow \nu/\bar{\nu}$ (matter/ antimatter) asymmetry is introduced by both CP violation and the matter effect

Oscillation Probability: Appearance channel

$$
P(\nu_{\mu} \to \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta + \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{21} \cos(\Delta_{31} + \delta) + \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2} (aL)}{(aL)^{2}} \Delta_{21}^{2},
$$

 $\Delta \Delta_{ij} = \Delta m_{ij} L/4E_{\nu} \Rightarrow$ Dependence on L/E (we can "control" with our experiment design)

$$
\bullet \; a = G_F n_e / \sqrt{2} \; \Rightarrow
$$

Matter effect from coherent forward scattering on electrons (appears

multiplying L) (Electron density of the medium)

Parameter space

•Experiments are sensitive to many parameters, if we can resolve degenerate effects

Asymmetry measurement alone has degenerate possible values for both *δcp* and mass ordering

Long Baselines \Rightarrow large matter effects Asymmetry measurement alone has degenerate possible values only for *δcp* (mass ordering degeneracy lifted)

Long Baselines \Rightarrow large matter effects

Energy dependence of oscillation can resolve δ_{cp} degeneracy

Short Baselines \Rightarrow small matter effects

Bi-probability plots

Present experiments: T2K and Nova

Latest analysis: +96% neutrino beam $V: 26.61 \times 10^{20}$ POT \overline{V} : 12.50 \times 10²⁰ POT

2014-2023:

10 years of beam to NOvA!

- High intensity $\nu_{\mu}/\bar{\nu}_{\mu}$ beam (~600 MeV), located 2.5° off-axis from the far detector.
- maximizes the oscillation probability
- Several near detectors: monitor the beam, reduce systematic uncertainties in oscillation analyses, and measure neutrino cross-sections
- Far detector is Super-Kamiokande: 50 kton water Cherenkov detector, \sim 11k 20" PMTs, added 0.03% Gd in 2022 to improve neutron tagging efficiency

• Off-axis technique: enhance the neutrino energy spectrum at a certain neutrino energy, typically that one that

 E_v (GeV)

T2K Recent Results

- with SK-Gd
- at 90% C.L.
- none of them is significant

Fist T2K + SK Joint Analysis

- T2K has good sensitivity to δ_{CP} but mild sensitivity to mass ordering
	- ‣ T2K's baseline probes the first oscillation maximum and matter effects have a limited impact.
- SK has good constraint on mass ordering but not on *δCP*
	- \blacktriangleright Upward-going neutrinos (travel \sim 13,000 km) experience large matter effects
	- \blacktriangleright Limited information about the incoming neutrino direction, and a broader range of neutrino energies.
- Adding SK atmospheric sample allows to break the degeneracies between δ_{CP} and the mass ordering \Rightarrow boost sensitivity to CP:
	- This analysis finds a 1.9*σ* exclusion of CP-conservation and a preference for the normal mass ordering (IO p-value is 0.08)

- 1. Make a beam 2. Select v_{μ} and v_{e} candidates at both detectors Of V_{μ}
- Muon neutrinos from the NuMI beam at Fermilab, with 14.6 mrad (0.84^o) off-axis peaks at \sim 2 GeV
- ND & FD are segmented liquid scintillator detectors (4×6 cm² PVC cells), that differ in size:
	- \blacktriangleright ND: 290 tons, ~4×4 m² × 16 m
	- \blacktriangleright FD: 14,000 tons, \sim 16×16 m² × 60 m

3. Interpret E_v distributions

- mass ordering sensitivity by \sim few %:
	-
- another (degenerate region)

T2K vs Nova

Different energy \Rightarrow leads to qualitatively different neutrino interactions

 \Rightarrow leads to Different baseline \Rightarrow Matter asymmetry grows with baseline (easier mass ordering studies)

Joint Analysis probes both spaces lifting degeneracies of individual experiments

T2K + Nova Joint Analysis

Preference for $\delta_{CP} = -\frac{\pi}{2}$ 2

• Wide range of allowed δ_{CP} values in normal ordering:

Preference for $\delta_{CP} = \pm \pi$

- Small difference seen in octant preference depending on the mass ordering
- Measurements remain consistent with the maximal mixing hypothesis for θ_{23}

• CP conservation excluded at 3σ in inverted ordering:

- Individual experiments prefer normal mass ordering.
- Best fit in the inverted ordering for joint fit with reactor constraint but no significant preference (57% posterior).

inverted mass orderings.

Future Experiments: JUNO, HYPER-KAMIOKANDE and DUNE

Jiangmen Underground Neutrino Observatory (JUNO)

 $\mathrm{E}_{\mathrm{vis}}$ [MeV]

-
-
- -
- filling

The Juno Detector

- The JUNO detector consists of a central detector, a water Cherenkov detector and a muon tracker (veto detectors)
- **Central detector**:
	- 35.4 m spherical acrylic vessel, containing 20 kton LS
	- ‣ Surrounded by 17612 Large (20") PMTs and 25600 Small (3") PMTs (75.2% coverage)

• **Veto detectors**:

- ‣ Water Cherenkov detector:
	- 35 kton ultra pure water to shield backgrounds from the rock
	- Instrumented w/ 2400 20" PMTs on SS structure

• Top tracker

- Plastic scintillator strips refurbished from OPERA
- $-$ 3 layers, \sim 60% coverage on the top (of the surface above the WCD)

JUNO-TAO

• The Taishan Antineutrino Observatory (TAO) is a satellite experiment of JUNO

• TAO consists of a spherical 2.8 tons (1 ton fiducial) Gd-LS detector (1.8 m diameter) at 44 m from a reactor core (4.6)

-
- GW)
- -
-
- Veto system:
	-
	-
- TAO will measure the reactor $\bar{\nu}_e$ spectrum with unprecedented energy resolution: $< 2\% / \sqrt{E(MeV)}$
- TAO detector will start data taking at similar time as JUNO

• Viewed by 10 m2 SiPMs (∼50% PDE) and providing around 95% photon coverage

 \triangleright Operated at − 50 °C to lower the dark noise

JUNO Precision Measurement of Oscillation Parameters

- Relative precision of the oscillation parameters as a function of JUNO data taking time
- Current knowledge (level of few %) compared with 100 days (statistics dominated), 6 years (nominal), and 20 years (systematicsdominated) of JUNO data:
	- Exceptional sensitivity to Δm_{21}^2 , Δm_{31}^2 and $\sin^2\theta_{12}$:
		- Leading measurements in 100 days

Neutrino Mass Ordering with JUNO

• JUNO reactor antineutrino energy spectrum without and with the effect of neutrino oscillation

• Clear spectral features driven by the oscillation parameters \Rightarrow Rich information available in a high-resolution measurement of the spectrum

- JUNO can determine the neutrino mass ordering with 3σ significance after 7 years
- Combined reactor and atmospheric neutrino analysis in progress

[arXiv:405.18008](https://arxiv.org/pdf/2405.18008)

- It will continue the successful history of the Kamiokande, Super-Kamiokande, and T2K experiments.
- this summer).
-

• Hyper-K will have an upgraded neutrino beam with the goal of 1.3 MW Beam Operation (800 kW)

32 • Further improvements are expected thanks to the combination of ND280 upgrade and IWCD.

Hyper-K Detectors

- HK Far Detector (water Cherenkov):
	- \rightarrow 71 m (height) x 68 m (diameter) = 258 kt mass (188 kt) $fiducial) \Rightarrow x8$ SK mass
	- \blacktriangleright 20,000 of 50 cm PMTs (2x better QE and ΔT than SK)
	- ‣ Additional photo-coverage from multi-PMT modules:
		- 800 of 8 cm PMTs grouped in modules of 19 units
		- Improved position, timing and direction resolution
- HK Near Detectors:
	- ‣ Upgraded T2K near detectors: larger angular acceptance and better short track reconstruction to reduce systematic errors
	- ‣ New intermediate Water Cherenkov Detector (IWCD):
		- Moves vertically in \sim 50 m (spans of f-axis angles: 1.7 \degree 4.0 \degree)
		- 6 m (height) x 8 m (diameter) surrounded with \sim 500 multi-PMT modules
		- Gd doped for enhanced neutron detection

- HK with a BL=295km \Rightarrow Small matter effects and large CPV effect
- Combination of Beam and atmospheric ν measurements: $E \in [0.1, 10^3]$ *GeV* & $L \in [10, 13000]$ $km \Rightarrow$ Resolve parameters degeneracy
- Study matter effects on Earth to determine MO
	- \triangleright After 5 years the combined beam + atmospheric analysis show better than 3σ ability to reject incorrect MO
- Sensitivity to exclude CP violation using **beam neutrinos**, **atmospheric neutrinos** and the **combination of the two**:
	- Will allow HK to reach a 5σ statement on CP violation regardless of the true MO (10 years)

HK sensitivity to MO and CPV

Hyper-K sensitivity to CPV

- Detect CP violation within two years if $\delta_{CP} = -\pi/2$
- Exclude CP conservation at the 5σ level for more than 60% of δ_{CP} values after 10 years
	- The speed at which CP violation can be discovered depends on the systematic error model
- 1 σ resolution of δ_{CP} in 10 years: ~20° for δ_{CP} =-90°; ~ δ ^o for δ_{CP} =0°

Building Hyper-K: construction schedule

-
- Cavern excavation underway
- PMT production on schedule
- First data taking planned for 2027

Measurement of oscillated Monitoring neutrino energy

neutrino beam
 $\begin{array}{c|c}\n\text{Monitoring neutrino energy} \\
\text{spectra and composition}\n\end{array}$

- Powerful neutrino beam (>2 MW) will be sent from Fermilab (Chicago) to SURF (South Dakota) along 1300 km distance
- Four liquid argon far detector modules (\geq 40 kt fiducial mass) at 1.5 km deep underground
- Near detector complex at 560 m from the beam and 60 m underground

Deep Underground Neutrino Experiment (DUNE)

37

DUNE Horizontal Drift simulated 2.5 GeV v.

DUNE Detectors

- Far detectors TPC size: 12.0 m (heigh) \times 14.0 m (width) \times 58.2 m (length)
- Two different readout technologies for the Far Detectors:
	- \blacktriangleright Horizontal drift (HD) \Rightarrow wire readout planes, 4 drift regions (A|C|A|C|A with 3.5m drift)
	- ▶ Vertical drift (VD) \Rightarrow central cathode defining 2 drift regions (A|C|A with 6.25m drift), anode constructed of perforated PCBs with etched electrodes forming the charge readout

38 \triangleright On-axis magnetized tracker + calorimeter (SAND) for beam monitoring and neutrino measurements

[JINST 15 T08010 \(2020\)](https://iopscience.iop.org/article/10.1088/1748-0221/15/08/T08010/pdf)

[arXiv:2312.03130 \(2023\)](https://arxiv.org/pdf/2312.03130)

- VD easier to install ⇒
	- Ist DUNE module
	- ▶ Baseline design for modules 3 & 4
- Near detector complex with three different detection systems on and off axis:
	- Movable detector system (3.3° at 33m): LArTPC (ND-LAr) with muon spectrometer (TMS)
	-

DUNE sensitivity to MO and CPV

 $\delta_{CP} = -\pi/2 \Rightarrow$ DUNE has $>$ 5σ MO sensitivity in 1 year and $>3\sigma$ CPV sensitivity in 3.5 years.

For worst-case oscillation scenarios \Rightarrow DUNE has $>5\sigma$ mass ordering sensitivity in 3 years.

In long term $(\sim] 5 \text{ years}) \Rightarrow$ DUNE can establish CPV over 75% of δ _{CP} values at $>3\sigma$.

DUNE sensitivity to MO and CPV

 $\delta_{CP} = -\pi/2 \Rightarrow$ DUNE has $>$ 5σ MO sensitivity in 1 year and $>3\sigma$ CPV sensitivity in 3.5 years.

For worst-case oscillation scenarios \Rightarrow DUNE has $>5\sigma$ mass ordering sensitivity in 3 years.

In long term $(\sim] 5 \text{ years}) \Rightarrow$ DUNE can establish CPV over 75% of δ _{CP} values at $>$ 3 σ .

 δ _{CP} ultimate precision ~6°-16°.

Building DUNE: construction schedule

Loaded on vessel ~mid May

- Far site excavation is complete
- Building & Site Infrastructure work continue until mid-2025
- Cryostat warm structure sent to US from CERN to be installed in 2025-26
- Far Detector installation in 2026-27
- Purge and fill with argon in 2028
- Physics in 2028 or early 2029
- Beam physics with Near Detector 2031

Ideas/Proposals to expand the physics reach of future LBL facilities

• South Korea exposed to the beam at a 1– 3º OAA and BL 1000–1300 km

Map showing the baseline and off-axis angle of the J-PARC beam in Japan and Korea

- DUNE FD4 "Module of Opportunity" (design not closed)
- THEIA is a proposed large-scale neutrino detector designed to use both Cherenkov and scintillation signals
-

Significance to reject the wrong MO (10 years)

• Similar sensitivity for neutrino oscillation program as LAr:

CP Violation Sensitivity

Korea Neutrino Observatory THEIA concept

European Spallation Source neutrino Super Beam

- Measuring CPV at the 2nd oscillation maximum: x2.5 higher sensitivity than at 1st maxima
- The facility is under construction in Lund, Sweden: 1st beam on target in 2025
- $\Delta \delta_{CP}$ < 8° for all δ_{CP} values for systematic uncertainties better than 5%

Conclusions

- Physics.
- neutrino and antineutrino spectra difficult.
	- help to resolve the degeneracies introduced by the different parameters.
- •The planned new generation of experiments, with more capable detectors and

•Neutrino oscillations remain one of the priority topics in Particle and Astroparticle

•Long-baseline neutrino oscillation is described by a complex parameter space, which introduces degenerate effects that make the correct interpretation of the observed

‣Complementary experiments (different size, medium target, technology, baselines)

powerful (anti-)neutrino beams, is needed to measure the MO and for CPV discovery.

Other References

- *Modern particle physics*, Mark Thomson (2013) Cambridge University Press
- *Particle Data Group*, Phys. Rev. D 110, 030001 (2024)
- *A modern introduction to neutrino physics*, Frank F. Deppisch, IoP (2019)
- *Global analysis of three-neutrino oscillations*, Mariam Tórtola (IFIC), Neutrino Conference 2024
- *Long baseline neutrino oscillation phenomenology*, Elizabeth Worcester (BNL), Neutrino Conference 2024
- *T2K experiment status and plans*, Claudio Giganti (LPNHE), Neutrino Conference 2024
- •*New neutrino oscillation results from NOvA with 10 years of data*, Jeremy Wolcott (Tufts University), Neutrino Conference 2024
- *JUNO*, Jun Cao (Institute of High Energy Physics), Neutrino Conference 2024
- *Hyper-Kamiokande*, Shigetaka Moriyama (Kamioka Observatory), Neutrino Conference 2024
- *DUNE*, Chris Marshall (University of Rochester), Neutrino Conference 2024
- *Other future Long Baseline Projects*, Alfons Weber (Johannes Gutenberg-Universität Mainz), Neutrino Conference 2024

Back-Up

Neutrino oscillations in matter (in brief)

$$
\sin^2 2\theta_m = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - \xi)^2} \qquad \xi = \frac{2VE}{\Delta m^2}
$$

• Mixing matrix can accordingly be expressed with the mixing angle in matter:

 $\overline{}$ *νe νμ*) ⁼ (*cosθ^m sinθ^m* $-\sin\theta_m$ $\cos\theta_m$) = (*ν*1*^m*

- In the low density limit ($\xi \rightarrow 0$): recover the vacuum case
- The mixing amplitude becomes maximal $(\theta_m = \pi/4)$ if:

 $\left(\frac{\nu_{1m}}{\nu_{2m}}\right)$ $P_m(\nu_e \to \nu_\mu) = \sin^2 2\theta_m \sin^2 2\theta_m$ $\Delta m_{e\!f\!f}^2L$ 4*E*

$$
\xi = cos2\theta \implies 2VE = \Delta m^2 cos2\theta
$$

$$
N_e = \frac{\Delta m^2 cos2\theta}{2\sqrt{2}EG_F}
$$
 (Mi)

 $=\frac{2\sqrt{2}G_FN_eE}{\Delta m^2} \qquad \Delta m_{eff}^2=\Delta m^2\sqrt{\sin^2 2\theta+\left(\cos 2\theta-\xi\right)^2}$

T2K Near Detectors

- is plastic scintillator.
- **• INGRID detector:**
	- 16 identical modules arranged in the shape of a cross (10 m).
	- ‣ A single module consists of alternating layers of iron and a plastic scintillator.
- **• ND280 detector.** A set of inner sub-detectors: ‣ Pi-Zero (P0D) detector (plastic scintillator module planes interleaved with thick bags fillable of water and thick brass sheets)

Except for the Time Projection Chambers in ND280, the entire active material (enabling particle tracking) of the near detectors

- ‣ A tracker with 2 Fine-Grained Detectors interleaved with 3 Time Projection Chambers:
	- TPC: argon-based drift gas under atmospheric pressure and readout with MicroMegas modules
	- FGD: 1st composed of scintillator layers only, while 2nd composed of alternating layers of scintillator and water
- ‣ Electromagnetic Calorimeter (ECal): surrounds the inner detectors (P0D, TPCs, FGDs) and consists of scintillator layers sandwiched with lead absorber sheets
- The Side Muon Range Detector (SMRD): consists of scintillator modules which are inserted into the gaps in the magnet.

T2K Near Detectors: Upgraded

- Detection thresholds need to be lowered
- ‣ Increase the angular acceptance and the efficiency to discriminate FW and BW going tracks
- Larger fiducial mass
- **• ND280 upgrade:**
	- ‣ The existing tracker will maintain its sandwiched structure but with a larger fiducial volume (more v-interactions)
	- P0D sub-detector will be replaced by three novel sub-detectors:
		- a scintillating 3D target (Super Fine-Grained Detector or SuperFGD): 2 million 1 cm3 scintillating polystyrene cubes
		- existing TPCs
		- a timing resolution of the order of 140 ps.

- two new TPCs on top and below the SuperFGD (High-Angle TPCs or HATPCs): design similar to that of the

- six Time-of-Flight (TOF) detectors surrounding the new structure: a series of plastic scintillator layers designed to identify the particle direction sense through the measurement of the time of flight for each crossing track with

• Goals of the upgrade:

DUNE Near Detectors

• ND-LAr:

- ‣ Modular array (7x5) of liquid argon TPC
	- Reduces pileup
- ‣ Pixelated readout
	- Direct to 3D images
- ‣ Modules optically isolated
- ‣ Provides sample of interactions on the same target as far detector

• TMS (The Muon Spectrometer):

- ‣ Catch muons that exit ND-LAr
- ‣ Steel/scintillator layers
- ‣ Magnetic field provides signselection
- ‣ Muon momentum measured from range and/or curvature

- ‣ Remains on-axis
	- Sensitive to any changes to beam conditions on short timescales
- ‣ Low density tracker/ spectrometer
- ‣ Argon target region
- ‣ Solenoid magnet repurposed from KLOE

• SAND (System for on-Axis Neutrino Detection):

• Future Upgrade Potential:

- ‣ High-pressure gas TPC a promising option
- Lower density than liquid argon
	- Lower thresholds
	- Less scattering \rightarrow cleaner measurement of pions and electrons
- ‣ If magnetised, it can replace TMS

DUNE Phases

- - \blacktriangleright Full near + far site facility and infrastructure
	- ‣ Two 17 kt LArTPC modules
	- ‣ Upgradeable 1.2 MW neutrino beamline
	- ‣ Movable LArTPC near detector with muon catcher
	- ‣ On-axis near detector
- **• DUNE Phase II:**
	- ‣ Two additional FD modules (≥40 kt fiducial in total)
	- ‣ Beamline upgrade to >2 MW (ACE-MIRT)
	- ‣ More capable Near Detector (ND-GAr)

P5 report endorses FD3, ACE-MIRT, and MCND in the next decade, and R&D toward FD4

• **DUNE Phase I** (2026 start detector installation; 2029 physics; 2031 beam + ND):

How to resolve the Cherenkov/scintillation signals?

Slides from Michael Wurm "Theia concep" at *"DUNE Module of Opportunity Workshop"* (Valencia)

Octant sensitivity of HK and DUNE

• HK atmospheric neutrinos (10 years) can resolve the octant at 3σ if $|\theta_{23} - 45^\circ| > 4^\circ$ $(>2.3^{\circ}$ for Atm. + Beam)

• DUNE will have significant sensitivity to the θ_{23} octant for values of $sin^2\theta_{23}$ less than about 0.47 (43.3º) and greater than about 0.55 (47.8º)

KNO Physics Potential

- matter effect is large
- the wrong mass ordering is greater than 5σ for all values of δ_{cp}
- configurations have similar sensitivity
- MO- δ_{cp} degeneracy)

• If MO is unknown, the configuration with the Korean detector gives some fraction of δ_{cp} values for which a 5σ discovery is possible (breaking the

 \mathcal{D}

 \cdot JD $\times 2$

 $JD+KD$ at 2.5°

JD+KD at 2.0°

JD+KD at 1.5°

THEIA concept

• DUNE FD4 "Module of Opportunity" (design not closed): More ambitious designs are being considered including pixel readout, integrated charge-light readout, low background modules, and **non-LAr technologies**

• THEIA is a proposed large-scale neutrino detector designed to use both Cherenkov and scintillation signals to

-
- enable a rich program of fundamental physics
- Why Cherenkov & scintillation:
	- directionality/topology (multiple tracks).
	- thresholds
	-

THEIA for Long-baseline oscillations

- Ideally situated as the DUNE 4th far detector
- Similar sensitivity for neutrino oscillation program as LAr:

• A different technology and medium target offers a distinct set of detector systematic and neutrino interaction uncertainties \Rightarrow independent cross-check of the extracted oscillation parameter values

European Spallation Source neutrino Super Beam (ESS*ν***SB)** $(L = 360 km)$ 2nd maximum Probability

- The ESSvSB is a long-baseline neutrino project that aims in measuring CPV at the 2nd oscillation maximum, where the sensitivity is x2.5 higher than at 1st maxima
- The ESS facility is under construction in Lund, Sweden (1st beam on target in 2025)
- Event rates for the different signal and BG components of the e-like sample at a BL=360 km

• The neutrino flux observed by the detector mainly corresponds to the second oscillation maximum

[EPJST 231:3779–3955](https://link.springer.com/article/10.1140/epjs/s11734-022-00664-w)

ESS*ν***SB Detectors**

- Far detector:
	- ‣ Baseline 360 km

‣ Depth to ground level: 1000 m

Detector Design

- Water Cherenkov detector
- 2 x 270 kt fiducial volume
	- (~20x SuperK)
- Readout: 2 x 38k 20" PMTs
- 30% optical coverage

74 m

BANK THE BANK THE BA

-
-
-

Systematic errors need to be reduced to $\leq 5\%$

\triangleright *ν*-nucleus cross section dominant sys. uncertainty in ESS*vSB* **• Missing measurements at the ESSvSB region (below 600 MeV)**

Measurements of per nucleon ν_{μ} and $\bar{\nu}_{\mu}$ CC inclusive scattering cross sections divided by neutrino energy as a function of neutrino energy

• ESS ν SB+ (started in 2023), aims to measure the ν -nucleus cross-section in 0.2 to 0.6 GeV range

[pdg.lbl.gov/2022/reviews](https://pdg.lbl.gov/2022/reviews/rpp2022-rev-nu-cross-sections.pdf)

ESS*ν***SB Detectors**

- Far detector:
	- ‣ Baseline 360 km
	- ‣ Depth to ground level: 1000 m

• Water Cherenkov detector

<u>Valent and Contains and Company of the Co</u>

- 2 x 270 kt fiducial volume
	- (~20x SuperK)
- Readout: 2 x 38k 20" PMTs
- → 30% optical coverage

74 m

133333333333333

- Systematic errors need to be reduced to $\leq 5\%$
- \triangleright *ν*-nucleus cross section dominant sys. uncertainty in ESS*vSB*
- **Missing measurements at the ESSvSB region (below 600 MeV)**
- ESS ν SB+ (started in 2023), aims to measure the ν -nucleus crosssection in 0.2 to 0.6 GeV range:
	- ‣ Using a low energy beam produced by muons circulating in a muon storage ring (LEvSTORM) and a low energy monitored beam (LEMNB) produced by pion decays

ESS*ν***SB Detectors**

- Far detector:
	- ‣ Baseline 360 km
	- ‣ Depth to ground level: 1000 m

- Systematic errors need to be reduced to $\leq 5\%$
- \triangleright *ν*-nucleus cross section dominant sys. uncertainty in ESS*vSB*
- **Missing measurements at the ESSvSB region (below 600 MeV)**
- ESS ν SB+ (started in 2023), aims to measure the ν -nucleus crosssection in 0.2 to 0.6 GeV range
- ESSvSB near detectors (END):

Near water Cherenkov detector

- 475 t fiducial mass high statistics xsec measurement beam monitoring
-
-

Emulsion detector (vIKING)

- water target, 1 t fiducial mass
- precise interaction topology measurement

SFGD-like detector

- plastic scintillator
- 1 t fiducial mass
- $1x1x1$ cm³ cubes with semiindependent readout
- calorimetry \bullet possible

- CP discovery potential for different systematic uncertainties $(5 \text{ years } \nu + 5 \text{ years } \bar{\nu})$:
	- ▶ Even for 25% uncertainty (very conservative), a significant portion of the values of δ would still allow a discovery of CP violation above the 5σ level
- Fraction of values of δ for which a given significance for CPV could be established:
	- \triangleright Covers 72% of δ _{CP} values in 10 years ω 5 σ C.L.
- Precision to measure the CP violating phase δ:
	- \triangleright $\Delta \delta$ CP < 8° for all δ CP values for systematic uncertainties better than 5%

ESS*ν***SB** expected sensitivity to δ_{cp}

[EPJST 231:3779–3955](https://link.springer.com/article/10.1140/epjs/s11734-022-00664-w)