

FUTURE DETECTORS N.C. FOUZ - CIEMAT

LI - INTERNATIONAL MEETING ON FUNDAMENTAL PHYSICS

TALK OBJECTIVES

The talk is oriented towards the detectors for future e+e- Higgs factories BUT synergies with HL-HLC present and future upgrades and other experiments

The talk aim to present

- The most relevant requirements imposed to the detector to accomplish the expected physics program
- A fast overview of the different proposed detector concepts and the key differences
- A fast overview of the status of art and R&D on detectors
- A very, very, very, small touch on the Spanish groups activities (just few examples)

Even concentrating "only" on detectors for e+e- Higgs factories there is a large number of R&D ongoing all around the world Some things will be described a bit, for others a brief comment or even I live them outside

My view, my interpretation, my knowledge... my ignorance too

Working point	Z, years 1-2	Z, la	ater	WW		WW			HZ tī		
\sqrt{s} (GeV)	88, 91,	, 94		157, 163		240		340-350	365		
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230		28		8.5		0.95	1.55		
Lumi/year $(ab^{-1}, 2 IP)$	24	48		6		1.7		0.2	0.34		
Physics Goal (ab ⁻¹)	150			10			5	0.2	1.5		
Run time (year)	2	2		2		3		1	4		
					10^6 HZ		10^6 HZ	$10^6 t\overline{t}$			
Number of events	5×10^{1}	2 Z	$10^{8} W$		W	N +		+200k HZ			
				10		251	$k \; \mathrm{WW} \to \mathrm{H}$	$+50 \mathrm{kWV}$	$V \rightarrow H$		
-0951	l.										
0106.13000					S	iyst	ematics ar	e estima	ations		
Oathate	present 2	021	F	CC-ee	FC	C-ee		Commen	t and		
	value ±	error	5	Stat.	Sy	vst.	leading exp. error		error		
$m_{\rm Z} ({\rm keV})$	91186700 ±	: 2200		4		00	From Z line shape scan		scan		
							Beam energy calibration		ation		
$\Gamma_{\rm Z} ~({\rm keV})$	$2495200 \pm$: 2300		4	2	25	From Z	line shape	scan		
		~ *			-	0.1	Beam energy calibration		ation		
τ lifetime (fs)	290.3 ±	0.5	0.001		0.	04	radial alignment		ment		
$\tau \text{ mass (MeV)}$	$1770.80 \pm 17.28 \pm 17$	0.12	0	0.004 0.04		04	momentum scale				
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. ($\frac{70}{11.38 \pm}$	15	0.	.0001 (2	$e/\mu/na$	threshold	ation		
m _W (Mev)	80350 ±	10		0.3		.5	Beam energy calibration				
Γ_{W} (MeV)	2085 ±	42		1.2 0		.3	From WW	V threshold	scan		
w (Carry							Beam en	ergy calibr	ation		
$\alpha_{ m s}({ m m}_{ m W}^2)(imes 10^4)$	1170 ±	420		3		nall		fron	h $\mathbf{R}^{\mathbf{W}}_{\ell}$		
$N_{\nu}(\times 10^3)$	2920 ±	50		0.8	sm	nall	ratio of i	nvis. to lep	tonic		
							in rac	liative Z re	turns		
$m_{top} (MeV/c^2)$	$172740 \pm$	500		17	sm	nall	From t	t threshold	scan		
							QCD	errors dom	inate		
$\Gamma_{\rm top}~({\rm MeV/c^2})$	1410 ±	: 190		45	sm	nall	From t	t threshold	scan		
) / SM	1.0.1	0.0		10		11	QCD	errors dom	inate		
$\lambda_{ m top}/\lambda_{ m top}$	1.2 ±	0.3	6	0.10	sm	nall	From t	t threshold	scar		
tt7 couplings	+	30%	0.5	-15%	err	all	From	arrors de fi	/ run		
toupings		. 3070	0.0	1.0 /0	SIL	an	$1000 \sqrt{3}$		v run		

Baseline FCC-ee operation model,

FUTURE DETECTORS - M.C FOUZ

SOME PHYSIC EXPECTATIONS FOR FUTURE e+e- COLLIDERS

- Clearest environment than hadron colliders No pileup, no underlying event E and p constraints...
- Huge number of events (e.g. 5x10¹² Z vs 18x10⁶ at LEP 108 WW pairs vs 8x103 W at LEP)

High precision can be achieved

To take full advantage of this conditions DETECTORS WITH EXCELLENT PERFORMANCE ARE MANDATORY

DETECTOR CHALLENGES FOR FUTURE e+e- COLLIDERS

DETECTOR CHALLENGE

To achieve systematic uncertainties similar or smaller than the <u>statistical</u>

Clearest environment than hadron colliders No pileup, no underlying event E and p constraints...

Huge number of events (e.g. 5x10¹² Z vs 18x10⁶ at LEP 108 WW pairs vs 8x103 W at LEP)

SEP. 2024

High precision can be achieved

SOME PERFORMANCE REQUIREMENTS DRIVEN BY PHYSICS

Momentum Angular resolution	$\sigma_{Pt}/P_T^2 \sim 3-4 \ge 10^{-5}$ (~7 µm single hit resolution) (~1/10 of LEP) < 0.1 µrad for 45 GeV muons			
Impact parameter E.M resolution	$\sigma_{do} = 5 \oplus 15 (p \sin \theta^{3/2})^{-1} \mu m$ (~3 µm single hit resolution) (b and c tagging capability) < 10 - 15 % \sqrt{E} (with low constant term)			
Jet energy resolution	$\sim 30\%\sqrt{E}$ (~ a factor 2 better than present)			
Particle Identification (PID)) Excellent lepton and photon ID (e/ π , μ/π , γ/π^0), π/K , K/p separation (heavy flavor studies) for a broader momentum range for e, μ and hadrons to improve tagging, jet energy			
Hermetic coverage Precise timing	will play an important role	Improve PID Beam-induced background rejection Pile-up rejection Improve calorimeter/tracker reconstruction		

MAIN DIFFERENCES BETWEEN CIRCULAR AND LINEAR e+e- COLLIDERS Impacting on detectors (I)

Beam structure

Continuous beam has implications on power, rates, readout...

ILC experiments uses power pulsing (electronics off between trains) => Reduction of power consumption a factor O(10)

Luminosity. FCC-ee running at Z pole (Tera-Z vs Giga-Z)

@ Z-pole: L ~1.8 x 10^{36} /cm². Z-pole, physic event rates up to 100 kHz. (pile up of 2x10⁻³)

Implication on detectors, electronics, DAQ: response time, time resolution, size of event, data handling.... Huge statistic \rightarrow Systematic control down to ~10⁻⁵ level

Excellent control of acceptances needed

Luminosity measurements $\sigma(L)/L = 10^{-4}$ (for low angle Bhabha events)

Constraints on design (including mechanics of Endcap Calorimeter and LumiCal)

MAIN DIFFERENCES BETWEEN CIRCULAR AND LINEAR e+e-Colliders impacting on detectors (ii)

Daniel Jeans

Machine Detector Interface (MDI)

Crossing angles at interaction Point (mrad)		L* (meters)			
ILC	14	ILC	4.1		
CLIC	16.5 -20	CLIC	6		
FCC-ee	30	FCC-ee	2.2		
CEPC	33	CEPC	2.2		

Circular machines:

- Last focusing magnet (at L*) INSIDE the detector volume (also the LumiCal at 1m
- from IP vs 2**.5m**)

FUn

 B field limited to 2T at Z-pole operation (vs ~3.5T for linear) → Larger tracker volume

Lower tracker acceptance for FCCee vs ILC

6

SEP. 2024

θ < 100 mrad reserved to magnets and instrumentation
 + Lumical (up to 150 mrad)
 Forward tracker limitation > 10 deg.

DIFFERENCES BETWEEN CIRCULAR AND LINEAR e+e-**INTERACTION REGION SUMMARY**

	FCC-ee	CEPC	ILC	CLIC
L* (Δz between IP and first	2.2 m	2.2 m	4.1 m	6 m
Position of final quadrupole	Inside detector	Inside detector	Outside detector	Outside detector
LumiCal position	z=1m, ~50-100 mrad (Constrained by compensating solenoid)	z~0.95~1.11m 26-105 mrad (fiducial volume 53-79 mrad)	z=2.5m, 33-80 mrad	z=2.5m, 39-134 mrad
Tracker acceptance	Down to ~9 degrees (defined by luminometer)	Down to ~8 degrees	Down to ~6° (defined by conical beam pipe)	Down to ~7° (defined by conical beam pipe)
Inner beam pipe radius	10 mm	10 mm	16 mm	29.4 mm
Crossing angle	30 mrad	33 mrad	14 mrad	20 mrad
Main solenoid B field	2Т	3T (2T at Z pole)	3.5-5T	4T

Constraints from accelerators to future e+e-factory experiments - Giovanni Marchiori -

COORDINATED R&D DETECTOR EFFORTS WORLDWIDE - EUROPE VIEW - ROADNAP

European Strategy

European Strategy for Particle Physics -Update 2020

Detector Roadmap

C. The success of particle physics experiments relies on innovative instrumentation and state-of-the-art infrastructures. To prepare and realise future experimental research programmes, the community must maintain a strong focus on instrumentation. Detector R&D programmes and associated infrastructures should be supported at CERN, national institutes, laboratories and universities. Synergies between the needs of different scientific fields and industry should be identified and exploited to boost efficiency in the development process and increase opportunities for more technology transfer benefiting society at large. Collaborative platforms and consortia must be adequately supported to provide coherence in these R&D activities. The community should define a global detector R&D roadmap that should be used to support proposals at the European and national levels.

RECFA regular reports & final document **Plenary ECFA** Identification final document for community endorsement Publication of R&D topics **Detector R&D Roadmap Panel** and **Timeline** assist ECFA to develop & organise the process and to deliver the document Advisory Panel with Coordinators: Phil Allport (chair), Silvia Dalla Torre, Manfred Krammer, Felix Sefkow, Ian Shipsey other disciplines e.g. APPEC, NuPECC. Approved by assist ECFA to identify technologies & conveners LEAPS, LENS, Space, .. Ex-officio: ECFA chairs (previous and present), LDG representative **CERN Council** Scientific Secretary: Susanne Kuehn **Dec 2021 TF#7 TF#8** TF#9 **TF#4** TF#5 TF#6 TF#3 **TF#1 TF#2** Training Electronics & On-Integration Quantum & Calorimetry Photon Solid State Gaseous Liquid detector **Detectors** & Emerging Detectors Detectors Detectors Processing PID Technologies Johann Collot Erika Garutti Frank Hartmann Werner Riegler Roberto Ferrari Dave Newbold Francois Vasey Marcel Demarteau Nicolo' Cartiglia Neville Harney Roxanne Guenett Anna Colalec Roman Poeschi Giulio Pellegrin Michael Dose Consultation with the particle physics community & other disciplines with technology overlap 6 technology-oriented Task Forces (TF) and 3 transversal TF across all technologies and facilities

aim to establish the DRD collaborations which should start work in January 2024, with a ramp-up of resources through 2024/2025, reaching a steady state by 2026.

> Detector Roadmap implementation Approved Sep. 2022

http://cds.cern.ch /record/2784893

COORDINATED R&D DETECTOR EFFORTS WORLDWIDE - EUROPE VIEW – DRD COLLABORATIONS

New DRD collaborations hosted at CERN (<u>framework</u>) follows <u>general conditions</u> for execution of experiments at CERN

Open to collaborators all over the world **CERN COUNCIL ECFA CERN Research Board NO** restricted to Europe EDP web page Recommende contact point for Community Approves interaction the community Scientific and Resource Reporting and Review Reports Roadmap Oversight and **Detector Research and Development** CERN SPC Community Interaction **Committee (DRDC) ECFA Detector Panel** Includes members from: ECFA Detector Panel. EDP/DRD (EDP) CERN and LDG Includes ex-officio: APPEC. On request, additional experts from the EDP can Managers Forum NuPECC and ICFA IID Panel* be invited for dedicated review tasks representatives common issues * ICFA Instrumentation, Innovation and Development Panel DRD4 🗸 DRD5 🗸 DRD6 🗸 DRD8 DRD1 V DRD2 🗸 DRD3 DRD7 🗸 Mechanics Gaseous Liquid Solid State Photon det. Quantum, Electronics Calorimetry Detector and PID on-detector and Detector Detector emerging Integration techno. processing M. Demarteau M. Titov R. Guenette G. Kramberger M.Fiorini R. Poeschl F. Simon B. Schmidt M. Doser E. Oliveri J. Monroe G. Pellegrini G. Wilkinson F. Vasey R. Ferrari A. Mussgiller

✓ Approved by CERN RB*, ✓ DRD8 LoI submitted to DRDC, proposal aims end-2024

DRDC wep page and presentations of DRDs at open sessions

From D. Contardo (IP2I) ECFA highlights and DRD collaboration progress FCCee week. San Francisco June 2024

* approvals cover a period of three years - to be renewed

FUTURE DETECTORS - M.C FOUZ

<u>COORDINATED R&D DETECTOR EFFORTS WORLDWIDE - US VIEW</u>

(Particle Ph

Prioritiza

Recommendation 4: Support a comprehensive effort to develop the resources—theoretical, computational, and technological—essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

Investing in the future of the field to fulfill this vision requires the following:

d. Invest in R&D in instrumentation to develop innovative scientific tools (section 6.3)

ppert vigorous R&D toward a cost-effective 10 TeV pCM collider based

6.3

Detector Instrumentation

The field of particle physics is at an exciting juncture where current detector instrumentation technologies have pushed the <u>boundaries</u> of sensitivity and scalability. Whereas modest

The particle physics community has identified the need for stronger coordination between the different groups carrying out detector R&D in the US. We strongly support the R&D collaborations (RDCs) that are being established and will be stewarded by the Coordinating Panel for Advanced Detectors, overseen by the APS Division of Particles and Fields. The RDCs are organized along specific technology directions or common challenges and aim to define and follow roadmaps to achieve specific R&D goals. This coordination will help to achieve a more coherent detector instrumentation program in the US and will help to avoid duplication while addressing common challenges. International collaboration is also crucial, especially in cases where we want to have technological leadership roles. Involvement in the newly established detector R&D groups at CERN is encouraged, as are contributions to the design and planning for the next generation of international or global projects. Targeted future collider detector R&D, such as for Higgs factories or a muon collider is covered in section 6.

	RDC#	ΤΟΡΙϹ
5	1	Noble Element Detectors
ion Panel)	2	Photodetectors
	3	Solid State Tracking
	4	Readout and ASICs
	5	Trigger and DAQ
	6	Gaseous Detectors
	7	Low-Background Detectors
	8	Quantum and Superconducting Sensors
	9	Calorimetry
	10	Detector Mechanics
	11	Fast Timing

PROPOSED DETECTOR CONCEPTS

and the second second

PROPOSED DETECTOR CONCEPTS

VERTEX AND TRACKER DETECTORS – SUMMARY REQUIREMENTS

Excellent position resolution

The most demanding is for primary and secondary vertex, as for b- and c-tagging capabilities ($\sim 3\mu m$ single layer), First layer as closer to IP as possible

• Very low material budget

To reduce the multiple scattering for Pt resolution & particle flow calorimeter measurements (limits photon conversions and hadronic interactions) Challenge for the detector technology itself and the associated mechanics (supports, services..)

Low power consumption on-detector electronics to minimize/avoid the cooling needs More important for circular machines since power pulsing cannot be applied Requirements: 50 mW/cm² (vertex) / 150 mW/cm² (tracker)

• Time resolution $O(1 \ \mu s)$ [O(ns) for CLIC]

Benefits of precise timing <100 ps under study but not mandatory.

Could be implemented on the tracker or in a dedicated layer.

Enhanced background/backscatter rejection

4D tracking

particle ID by Time-of-Flight for heavy-flavour physics <30 ps / 2m for K/pi/p separation up to 3 GeV

• High efficiency crucial for calorimeter measurements (Particle flow)

VERTEX AND TRACKER DETECTORS AT THE DIFFERENT CONCEPTS

VERTEX

All use pixel silicon detectors

 ~ 5-6 layers @Barrel and up to 6 @endcap. single or double layer
 Pixel size ≤ 25μm

TRACKER

Two different approaches

Full silicon system

FUTURE DETECTORS - M.C FOUZ

- Strips or large pixels
- Gaseous detector souronded by a layer of Silicon detector

Several gaseous TPC detectors options Drift Chambers

14

TRACKER OPTIONS

SiD	Silicon Strips
CLICdet	Silicon Pixels
CLD	Silicon Pixels
ALLEGRO	Drift chambers + Silicon Strips or <mark>Silicon Pixels</mark>
CEPC baseline	TPC + Silicon Strips or <mark>Silicon Strips</mark>
ILD	TPC + Silicon Strips
IDEA	Drift Chamber + Silicon Strips
4 th Concept	TPC + Silicon Strips or Drift Chamber + Silicon Strips

VERTEX AND TRACKING SILICON DETECTORS - HYBRID

some examples of options under development

in **two** separate chips Connected by "bump bonding"

Concerns: Material Budget, interconnection

Different interconnect technologies are under study for future-collider detectors:

- Single-die bump-bonding process
- Hybridization with Anisotropic Conductive Films (ACF)

For picosecond timing -> LGAD (Low Gain avalanche Photodiode) https://arxiv.org/abs/2210.02132

https://arxiv.org/abs/2210.13046

https://indico.cern.ch/event/995633/ contributions/4259345/attachments/ 2210031/3740113/LCWS_2021.pdf

<u>.</u> *2* 124

320 μ m Thickness \rightarrow 0.3% X₀ Pitch 25 μ m \rightarrow hit resolution ~7.2 μ m 92 mm strip length An integrated (bump-bonding) pitch adapter and digital readout ASIC: KPiX

CLICpix2 ASIC bump-bonded to an active edge silicon sensor

128×128

25×25 μm² 65 nm CMOS

FUTURE DETECTORS - M.C FOUZ

16

VERTEX AND TRACKING SILICON DETECTORS - MONOLITHIC

Different types are under development

MONOLITHIC

Sensor and readout electronic in the same chip

SOI (Silicon-on-Insulator)

NIMA 623(2010)186

Layer structure: thin layer of silicon (SiO₂) placed on top of an insulating material

Thin and fast, can be fully depleted

CMOS – MAPS & DMAPS (MAPS= Monolithic Active Pixel Sensor)

(CMOS=Complementary Metal-Oxide-Semiconductor) silicon pixel)

SEMI-MONOLITHIC

DEPFET - Depleted field-effect transistor

Amplification integrated but subsequent processing in an external ASIC Large signal even for thin detectors Fast signal rise time (ns)

MONOLITHIC SILICON DETECTORS – FEW EXAMPLES OVERVIEW

There are many developments on going, here some examples. Many advances last years but still R&D needed

SOI (Silicon-on-Insulator)

30x30 µm2 pixel size https://doi.org/10.1016/j.nima.2020.164897

FPIX2 DSOI : Double silicon-o<u>n-insulator</u>

DSOI = 2 layers of Si separated by insulator

DEPFET

18

BELLE II vertex detector and ILC central vertex

DEPTFET all-silicon ladder for Belle II Metal layer on top of the sensor Thinker area visible oin the mirrow image underneath the ladder

MONOLITHIC SILICON DETECTORS – FEW EXAMPLES OVERVIEW

There are many developments on going, here some examples. Many advances last years but still R&D needed

MAPS/DMAPS

Depletion region increase when reverse bias is increased. Difficult to expand laterally

DMAPS: Faster, higher charge collectionsharing, better S/N, better radiation tolerance, less cross-pixel charge

Chronopixel

Time-stamping capability Hit accompanied by a time tag (precision to assign BX of ILC) occupancy reduction to <10⁻⁴ per pixel

25x25 μm2 pixel size, 90 nm technology Zero suppression

Digital readout \rightarrow simplifies electronics

19

MATERIAL BUDGET OPTIMIZATION - COMPONENTS

Material Budget is dominated by cooling, supports, and cabling

How to reduce it? Taking a look to the approach for the ALICE ITS3

FUTURE DETECTORS - M.C FOUZ

MATERIAL BUDGET OPTIMIZATION – BENT SENSORS – ALICE ITS 3

column

30 mm

[0,0] 15 mm row

Silicon is flexible

Flex embedded sensors

-pitaxial layer

MATERIAL BUDGET OPTIMIZATION – BENT SENSORS & STITCHING Cilindrical Structural Shell **– ALICE ITS 3** Replace 3 innermost layers of the ITS2 with a new detector

Reduction of the radiation length per layer from 0.35% X_0 to 0.75% X_0 layer More uniform distribution

Cooling and mechanical structures are minimized Silicon sensors only component in the active area

Half

Beam Pip

barrels

Radius innermost layer reduced from 22mm to 18mm

Cooling by air flow \rightarrow Power limit 20mW/cm2

Power supply and transfer data cannot be on the chip ==> Circuits located at the short edges of the chip

Use Stitching!!

Stitching technique

TRACKING - TPC

Proposed for ILD, CEPC Baseline and 4th Concept

24

No clear its capabilities to cope with the Z-pole conditions for circular colliders

Several studies ongoing at LC-TPC and ILD collaborations

The concern is the ion back flow that at Z pole could increases too much as for producing field distortions on the drift region \rightarrow more R&D needed

FUTURE DETECTORS - M.C FOUZ

Also happens in ALICE TPC with the GEM readout upgrade for Run 3 Expected 1% ions drifting back and O(5-10 cm) distortions Effects corrected by software with proper calibrations going down to $O(100 \mu \text{m})$

ILC gating scheme using GEM Gap opens 50 μs before the first bunch and closes 50μs after

NIM A918 (2019) 41-53

Gating cannot be used at circular colliders due to the continuous beam

SEP. 2024

TRACKING - TPC SENSOR OPTIONS

Different options for the readout have been studied along years A setup available at DESY allows tests with beam with different detectors

> GEM Resistive MICROMEGAS GRIDPIX

FUTURE DETECTORS - M.C FOUZ

New devices combining GEM and Micromegas have been also designed to control the ion back flow

TRACKING - TPC SENSOR OPTIONS

Reduces the ion back flow a factor 10 with respect to GEM, MICROMEGAS or GEM MICROMEGAS hybrid detector

NIMA 1051 (2023) 168134

GRIDPIX

combines a high density pixelized readout ASIC with a Micromegas gas amplification stage

Timepix ASIC with a pixel pitch of $55 \times 55 \ \mu\text{m2}$

FUTURE DETECTORS - M.C FOUZ

TRACKING - DRIFT CHAMBER

112 Layers in total: 14 co-axial super-layers (8 layers each) Gas: He:iC4H10 (90/10) Inner radius 0.35m Outer radius 2m Length 4m Drift length ~1cm Drift time ~150ms σxy<100mm σz < 1mm

TRACKING - DRIFT CHAMBER: COUNTING CLUSTERS FOR PID

Using dE/dx

Many fluctuations

Driven by the "intrinsecal" Landau fluctuations

It is NOT full simulation

Poisson distribution Small fluctuations

FUTURE DETECTORS - M.C FOUZ

TRACKING - DRIFT CHAMBER: COUNTING CLUSTERS IMPLEMENTATION

Record the arrival time of every cluster generated in every single ionization. Reconstruct the most likely positions

Several algorithms developed

Waveform

Test beam data from H8/CERN 2021 Using drift tubes

FUTURE DETECTORS - M.C FOUZ

CALORIMETERS - REQUIREMENTS

Electromagnetic calorimeters:

Resolution:

10%/VE is probably enough for most of the physics studies But B physics will probably need go down to at least 5%/VE

Very good transversal granularity is required for τ physics

Hadronic calorimeters

Hadronic final states are very relevant players, opening sometimes the access to rare process and helping on increasing statistics Precision on the jet energy determination plays a very important role

30%/VE is needed, and this represents ~a factor 2 with respect to the present experiment. The value is driven by the precise separation of Z and W in their hadronic decays and it is comparable to the natural width of Z and W

The measurement of jets with the needed precision is the main challenge for the calorimeters

Many R&D activities are ongoing, approaching the problems in different ways

Two main different methods to achieve the needed jet resolution for e+e- colliders:

High granular calorimeters with embedded electronics to apply PFA (Particle Flow Algoritms). Developed by the CALICE
 Collaboration along more than 20 years (approach also used for the upgrade of the CMS endcap calorimeter for the HL-LHC).
 Several technologies as active medium under study: Silicon detectors, scintillators, gaseous detectors

Concepts with PFA fully oriented calorimeters CEPC Baseline, CLD, CLIC, ILD, SiD, FST,

 Dual readout Calorimeter Concepts with Dual Readout IDEA

FACING THE CALORIMETER CHALLENGES – PFA

Particle Flow Algorithms - PFA

Reconstruct every single particle in the event and measure it only with the detector providing the best resolution

Average jet composition	PFA reconstruction
60% charged	Measured on the tracker, negligible resolution
30% photons (from π^0 decay)	Measured at ECAL ~10-20% / $\sqrt{(E)}$
10% neutral hadrons (n, K _L)	Measured at HCAL ~60-100% / $\sqrt{(E)}$

Very high granularity is needed

FUTURE DETECTORS - M.C FOUZ

SEP. 2024

FACING THE CALORIMETER CHALLENGES – PFA

Particle Flow Algorithms - PFA

Reconstruct every single particle in the event and measure it only with the detector providing the best resolution

Average jet composition	PFA reconstruction
60% charged	Measured on the tracker, negligible resolution
30% photons (from π^0 decay)	Measured at ECAL ~10-20% / $\sqrt{(E)}$
10% neutral hadrons (n, K _L)	Measured at HCAL ~60-100% / $\sqrt{(E)}$

FACING THE CALORIMETER CHALLENGES – DUAL READOUT CONCEPT

Remember that in a hadronic calorimeter there are two components

Signal = $S_{em} + S_{had} = ef_{em}E + hf_{had}E$ $f_{had} = 1 - f_{em}$

If it could be possible to distinguish in the calorimeter the electromagnetic fraction , compensation is not needed

This can be achieved by using two different materials for producing different light type:
 1. Cherenkov light, produced by relativistic particles dominated by electromagnetic components (80% of the hadronic component is not relativistic)

2. Scintillator light

It can be implemented for example using fibers embedded in the calorimeter absorber

A combination of dual-readout + PFA could also be envisaged

FACING THE CALORIMETER CHALLENGES – POWER CONSUMPTION

5

C

lutio

0

5

At e⁺e⁻línear collíders

FACTS

- The huge number of channels, two orders of magnitude higher with respect actual calorimeters, implies a large power consumption.
- The need of compact devices with electronics embedded on the detector planes and large power consumption increase the heat.

Use of power pulsing electronics profiting from the duty cycle (1%)

ILC provides bunches with a rate of 3 - 5MHz for a period of Ims, followed by an inactive gap of 199ms.

Switch off / stand-by the the front-end electronics during the gaps in between the bunch trains

Already implemented and successfully tested at some CALICE prototypes

At Circular colliders

Continuous rate of collisions Active cooling could be needed if the electronics power consumption cannot be reduce

Challenging to maintain compactness and uniformity

(important for high performance)

TOWARDS 5D CALORIMETERS?

Precise time information was not a requirement for calorimeters, but it could be very useful for the future.

Timing in calorimeters could mitigate backgrounds/pileup, be used for ToF measurements, or eventually recognize signatures for neutral long live particles.

But it can be also useful at the calorimeter reconstruction level when having a highly segmented calorimeter which reconstruct individual hits and gives an image of the shower.

- Can be used for distinguish hits from different showers, improving the efficiency and resolution for reconstruction close by particles
- Can be used for improving the single particle resolution by taking into account the timing of the different particles in the shower

10 GeV neutral from 30 GeV charged particle

SEP. 2024

FUTURE DETECTORS - M.C FOUZ

A lot of developments on going on calorimeters, detector concepts still open to different options or different implementations

CANNOT BE FULLY REVIEW IN THIS TALK

JUST AN OVERVIEW

FUTURE DETECTORS - M.C FOUZ

HIGHLY SEGMENTED IMAGING CALORIMETERS OPTIMIZED FOR PFA

Sandwich calorimeters

Tungsten absorber for ECAL.

 $\lambda_{I}/X_{0} \sim 9 \Rightarrow$ excellent photon–hadron separation. Important for PFA

 $X_0 \sim 3.5 \text{ mm}$ (vs 1.76 cm in iron) \rightarrow Compact

Tungsten has been considered as HCAL absorber only for CLIC Compact detector for very high energetic particles (problem: very expensive)

SOME GENERAL CONCEPTS ON CALICE CALORIMETERS

CALICE calorimeters are oriented to be used with PFA. → High granularity is a must

Large segmentation, longitudinal and transversal

What large means?

The longitudinal segmentation is 1 layer sampling every ~0.1 X_0 for ECAL and ~0.1 λ_I for HCAL

The transversal segmentation goes, from 25 μ m x 100 μ m Pixels in **DMAPS ECAL** till ~3x3cm² pads in **AHCAL**

FE electronics is embedded into the layer structure (at least on final design, intermediate prototypes could be not fully optimized)

PCB boards Bottom has the pads/strips Top has ASIC chips

experiments

The number of channels is

orders of magnitude bigger than the ones in the present

SDHCAL 1×1 cm² pads 500K Channels

More channels in this prototype than in the LHC calorimeters all together

• Final electronics implements power pulsing mode, but now looking also to other options in view of circular colliders

 Dead spaces must be minimize, this includes tiny space between each detector and the absorber → High precission mechanics needed

39

SILICON BASED SANDWICH CALORIMETERS SI-W ECAL – PROTOTYPES UNDER DEVELOPMENT Embedded electronics

Mature technology developed by CALICE since years Adapted for the CMS HGCAL upgrade calorimeter

SiW-ECAL
15 layers 18×18 cm²
0.5×0.5 cm² Si cells
2.8+5.6 mm W (21 X₀)
100 kg, 0.4×0.4×80 cm³
15k channels

FUTURE R&D STEPS

Metallization on detector from

KPix to cable

- Moving from power pulsing to continuous redout for circular colliders. Power consumption, cooling
- Addition of timing (dedicated layers or full device)

Bump Bonds

DIF = Detector InterFace: SL Board

Hexagonal sensor Wafers 1 KPIX ASIC (1024 ch) per Wafer Optimized for ILC (power pulsing, multihit)

ASIC SKIROC2

ASU = ASIC+PCB+SiWafer

Silicon sensors glue onto PCI

LONG SLAB

~150cm

7 ASU

200

9 Silicon layers ~6X0

1 1.11

ASIC and cable bonded to sensor Tungsten plates thermal bridge to edge cooling

SILICON BASED SANDWICH CALORIMETERS DMAPS ECAL

Monolithic Active Pixel Sensors (MAPS) as sensor with Digital Readut Si diodes and readout combined in the pixel and build with standard CMOS process

- ➔ Bump-bonding not needed (easier, cheaper)
- → Fine granularity of pixels (better separation of showers)

EPICAL-2 prototype

And the second second

28 layers ALPIDE CMOS sensors. Active cross section 3x3cm²

41

SILICON BASED SANDWICH CALORIMETERS FOR FORWARD CALORIMETERS

LC FORWARD CALORIMETERS

Similar still to be developed for FCCee

REQUIREMENTS

Same and the state of the same state of the

- Finely segmented and compact (Small Molière radius)
- Mechanical precision (polar angle measurement)
- Fast readout
- Radiation hard (BeamCal)

LumiCal: Precise luminosity measurement(Bhabha) (10⁻³) at 500 GeV. SiW ECAL

BeamCal : Instantaneous luminosity measurement, beam diagnostics very high radiation load (up to IMGy/ year)

W + radiation hard sensors (GaAs, CVD Diamon, Sapphire)

LHCaL: Extends the calorimeter measurements to small polar angles SiW or Si+iron

15 Detector planes FLAME ASIC 2020 @ DESY

FLAME FcaL Asic for Multiplane rEadout

OPTICAL BASED SANDWICH CALORIMETERS: SCW-ECAL

OPTICAL BASED SANDWICH CALORIMETERS: AHCAL

Mature technology developed by CALICE since years Also adapted for the CMS HGCAL upgrade calorimeter

SEP. 2024

Many technical developments after the first prototype used as a probe of concept

First prototype

1 plane. Diferent sizes: 3x3cm2 (30x30 cm2 core) 6x6cm2 12x12 cm2 (external)

FUTURE DETECTORS - M.C FOUZ

44

OPTICAL BASED SANDWICH CALORIMETERS: AHCAL PROTOTYPES UNDER DEVELOPMENTS/TESTS

and the second state of th

Two similar prototypes built. Several beam tests and data under analysis Both uses power pulsing electronics

Prototype for CEPC

Tiles **4x4**x0.3 cm³ **40** layers 0.72 x 0.72 m² **~13.000** channels

CEPC AHCAL CERN SPS Test Beam Pion @100GeV 2023-05-05 12:22:03 CEST

HBU: HCAL Base Unit

144 channels

SPIROC₂E ASIC

36 cm

HBU₂

Prototype for ILC Tiles **3x3**x0.3 cm³ **38** layers 0.72 x 0.72 m² **~22.000** channels

Full extension 1 slab = 6 HBU2

²¹⁶ cm

80 GeV pion

0.18 0.16 0.14 0.12 0.10 0.06 0.10 0.06 0.10 0.06 0.10 0.06 0.10 0.06 0.10 0.06 0.10 0.06 0.06 0.10 0.06

GAS BASED SANDWICH CALORIMETERS TSDHCAL – TOWARDS A 5D-SDHCAL CALORIMETER

Contraction of the Contract States of the Contract of

47

Goal: Time resolution better than 100 ps/mip

RPC are replaced by MultiGap RPC -MRPC (faster)
 Semi-digital electronics (HARDROC) is replaced by low-time jitter PETIROC (> 20 ps @Q> 300 fC)

New Boards designed

Several MPRC developments

DOUBLE READOUT FIBER CALORIMETER

Geometry based on metal capillaries acting as absorber with inserted fibers

Absorber: brass or steel Sensor: Scintillator + cherenkov Fibers

Readout: SIPM/MCP-PMT Dual readout

Readout with a SiPM or PMT

Several prototypes under development

HCAL size $65 \times 65 \times 250$ cm³. $\rightarrow 80$ minimodules.

DOUBLE READOUT CRYSTAL CALORIMETER: SCEPCAL

SCEPCAL: Segmented Electromagnetic Precision CALorimeter

FT1,T2 Fast and bright Scintillator (e.g LYSON:Ce Crystals) MIP tagging 20 ps

EI,E2: Dense crystal with dual-readout capabillitites (PBWO4, BFP, BSO) Precise measurement EM showers

Scintillator and Cherenkov from the same active medium, disentangle using optical filters

FUTURE DETECTORS - M.C FOUZ

NOBLE LIQUID CALORIMETER Based o LiAr ATLAS Calorimeter

Absorber: Lead/Tungsten (2mm) Sensor: LíAr(LíKr) (1.2-2.4mm) Readout: Strips PCB FCC-hh, FCC-ee Good energy resolution (sampling term ~10%) Low systematics PID Capabilities Radiation hardness

Target 10–15 times higher granularity than ATLAS for PFA in high pile-up environment. (ATLAS Cu/Kapton electrode but PCB allows high granularity)

Low mass cryostats needed CERN R&D: CFRP/Metal interfaces SEP. 2024

CFRP: Carbon Fibre Reinforced Plastic

OPTICAL BASED HOMOGENEOUS HIGH GRANULARITY EM CRYSTAL CALORIMETER - HGCCAL

High density Scintillating Crystal (BGO/PWO) Readout: SiPM Higgs Factories

First Module

FUTUR

Design 1: Short bars

Small crystal cubes: fine segmentation longitudinal & transversal. → PFA

Single-ended readout SiPM

200

0.5

🕂 40cm BGO

- 60cm BGO

<Amp> [mV]

SILICON BASED SANDWICH CALORIMETERS FOR FORWARD CALORIMETERS

LC FORWARD CALORIMETERS

Similar still to be developed for FCCee

REQUIREMENTS

Same and the state of the same state of the

- Finely segmented and compact (Small Molière radius)
- Mechanical precision (polar angle measurement)
- Fast readout
- Radiation hard (BeamCal)

LumiCal: Precise luminosity measurement(Bhabha) (10⁻³) at 500 GeV. SiW ECAL

BeamCal : Instantaneous luminosity measurement, beam diagnostics very high radiation load (up to IMGy/ year)

W + radiation hard sensors (GaAs, CVD Diamon, Sapphire)

LHCaL: Extends the calorimeter measurements to small polar angles SiW or Si+iron

15 Detector planes FLAME ASIC 2020 @ DESY

FLAME FcaL Asic for Multiplane rEadout

A FAST SNAPSHOT ABOUT THE TYPE OF DETECTOR DEVELOPMENTS GOING ON IN SPAIN FOR FUTURE COLLIDERS

THE SPANISH COMMUNITY OF DETECTOR R&D FOR COLLIDERS HAS BEEN INVOLVED ON DETECTOR DEVELOPMENTS FOR

FUTURE e+e- SINCE AROUND 18 YEARS

MAIN CONTRIBUTIONS TO ILD DETECTOR (ILC AND NOW LOOKING ALSO FCCee) - LOI, DBD, TOP LEVEL COORDINATORS...

BUT ALSO AT CLIC

AND SOME GROUPS HAVE ALSO COLLABORATION WITH CEPC DIRECTLY ON INDIRECTLY

FUTURE DETECTORS - M.C FOUZ

MC Jiménez-Ramos et al. Sensors, 22-3,1080, 2022

CNA contact: Carmen Jiménez-Ramos (mcyjr@us.es)

Si ECAL hybridization / integration

Common R&D Short term

Current technological prototype solution for sensor-PCB connection is based on epoxy-silver glue.

- Mechanical strength, industrialization, durability, aging studies,...
- Silver → may be an issue on high radiation environments

Single SiW-ECAL electronic module: Tests of glue deposition (fake glue)

SILICON DETECTORS FOR CALORIMETRY

IFIC-Lab for ECAL hybridization

New facility and capabilities at IFIC

► Funding: CIDEGENT/ASFAE/CNS → In line with ECFA – R&D roadmap, DRD6, Future Colliders

▷ IFIC will become the hub for module hybridization R&D / production / commissioning for DRD6 Si-ECALs and for the LUXE experiment

FUTURE DETECTORS - M.C FOUZ

SEP. 2024

IN SUMMARY....

all.

BUT THERE IS PLENTY OF WORK AND FUN IN FRONT !!

FUTURE DETECTORS - M.C FOUZ

SEP. 2024

BACKUP

1257

100

ίπ.

OPTICAL BASED SPACAL CALORIMETER: PICOSecond SPACAL

And the second second

Absorber: Lead or Tungsten Sensor: Radiation hard Scintillator Fibers Readout: Light guides Fast photo detectors: MCD PMTs/SiPM LHCb, Higgs Factories FCC-hh 3D printed tungsten absorber Technical development in collaboration with industry

12x12 cm2

Garnet Crystal fibers + Tungsten

Polystyrene fibers + lead

OPTICAL BASED SHASLIK-LIKE CALORIMETER GRAINITA

Inorganic crystals have excellent energy resolution but expensive, limited granularity Sampling calorimeters worst resolution due sampling fraction

WLS Fibers

 χ^2 / ndf

Width

MPV

Area

GSigma

Liquid + crystals

53.28 / 39

 403 ± 3.1

 14.92 ± 1.70

55.86 ± 2.99

2.282e+04 ± 7.339e+02

um of 16 channe

GRAINITA:

High Z scintillator sub-millimetric inorganic scintillator crystals in a bath of high-density liquid.

Light collection by WLS fibers, as shaslik

Scintillator candidates:

- ZnW04 crystal gra ZnW04 grains (spontaneous crystallization method)
- **BGO** crushed crystals

Cosmic tests results - ZnW04 + different liquid

Cosmic tests Set-up

Scintillator grains in

transparent liquid

Higgs Factories

16 channel prototype

- SÍPM

Readout: WLS fibers

DOUBLE READOUT SANDWICH CALORIMETER

Higgs Factories

Alternating layers of heavy scintillator (e.g. PWO) and Cherekov medium (lead glass) Readout buy embedded electronic board with SiPMs

Status

Simulations & individual crystal material R&D

M.C Fouz

The luminosity monitor

Design largely inspired from FCAL study for linear colliders

- Same geometry works: "just" make it smaller and closer to the IP
 - Centred around the outgoing beam (measures the outgoing particle deviation)

FUTURE DETECTORS - M.C FOUZ