On-shell amplitude techniques for the standard-model effective field theory

> Gauthier Durieux (CP3 – UCLouvain)

International Meeting on Fundamental Physics Benasque – 10 Sept. 2024

Particle physics landscape

Taking the SM to higher dimensions

- using established bricks (fields and symmetries)
- extension organised by relevance (dimension)
- including all deformations (theory space coverage)

Isolating subtle patterns of new physics

array of sensitive observables

- precise SM&EFT predictions
- precise measurements
 - \rightarrow correlate deviations

Building LHC's legacy

SMEFT progresses

ML optimisation for SMEFT

tZ + X process in the three-lepton signal region

- 1. discriminate $t\bar{t}Z$, tZj signals and backgrounds
- 2. train SM vs. $(c_{tZ}, c_{tW}, c_{\phi q}^3)$ from reweighted samples

Gauthier Durieux – International Meeting on Fundamental Physics – Benasque – 10 Sept. 2024

[CMS '21]

Beyond signal and background processes

[Valsecchi LHCP23]

- · leptons+b's+jets final state, p_T bins, 178 data points
- · contains tth, ttZ, ttW, tZq, tHq, diboson, etc.
- \cdot 26 top operator contributions from reweighting
- · towards publication of 26D likelihood

Gauthier Durieux - International Meeting on Fundamental Physics - Benasque - 10 Sept. 2024

[ATLAS '22]

ATLAS Higgs+diboson+EWPO combination

- · Higgs '21 STXS combination
- · diboson WW, WZ, 4ℓ , Zjj
- \cdot Z pole from LEP+SLC
- principal component analysis removing flat directions
- $\cdot\,$ fit results for 22 eigen-vectors
- \cdot lin results

ATLAS+CMS top combination

- · full likelihoods: · 4t ($n\ell$ ATLAS), 4t ($n\ell$ CMS), · $tt\gamma$ (1ℓ CMS), $tt\gamma$ (2ℓ CMS),
 - $\cdot tt\gamma$ (1 ℓ CMS), $tt\gamma$ (2 ℓ CM $\cdot ttZ$ ($n\ell$ ATLAS)
- \cdot 700^+ bin, ${\sim}20~{\rm processes}$
- \cdot 8 operators, lin & quad, also in *tth* and *ttW*
- uncorrelated systematics

Gauthier Durieux - International Meeting on Fundamental Physics - Benasque - 10 Sept. 2024

SMEFT at one loop

Gauthier Durieux – International Meeting on Fundamental Physics – Benasque – 10 Sept. 2024

Matching at one loop: the 2HDM

- EWPO constraints arising first at one-loop mild impact so far; more important with new Z pole?
- \cdot more accurate large-tan eta description

from Yukawa operators; probed with new Higgs measurements

Gauthier Durieux - International Meeting on Fundamental Physics - Benasque - 10 Sept. 2024

On-shell amplitude techniques

beside Hilbert series, field geometry, double copy, etc.

On-shell amplitudes

bypass unphysical fields, operators, Lagrangians avoid gauge and field redefinition redundancies

e.g. g	graviton Feynman rules	[De Witt '67]			
	5 ⁸ S				
	δφ,,,δφ,,,δφ,,				
	$\mathrm{Sym} [-\tfrac{1}{4} P_3 (p \cdot p' \eta^{\mu\nu} \eta^{\sigma\tau} \eta^{\rho\lambda}) - \tfrac{1}{4} P_6 (p^{\sigma} p^{\tau} \eta^{\mu\nu} \eta^{\rho\lambda}) + \tfrac{1}{4} P_3$	$(p \cdot p' \eta^{\mu\sigma} \eta^{\tau\tau} \eta^{\rho\lambda}) + \frac{1}{2} P_{\theta}(p \cdot p' \eta^{\mu\sigma} \eta^{\tau\rho} \eta^{\tau\lambda}) + P_{\theta}(p^{\sigma} p^{\lambda} \eta^{\mu\sigma} \eta^{\tau\rho})$			$(1, 2, 3, 3, 3, 3, 3)^2$
3 pt.	$-\frac{1}{2}P_{3}(p^{\tau}p^{\prime s}\eta^{rs}\eta^{s\lambda})+\frac{1}{2}P_{3}(p^{s}p^{\prime \lambda}\eta^{ss}\eta^{rs})+\frac{1}{2}P_{4}(p^{s}p^{\lambda}\eta^{ss}\eta^{ss}\eta^{ss})$	$r^{\sigma}\eta^{r\sigma}$ + $P_4(p^{\sigma}p'^{\lambda}\eta^{\tau\mu}\eta^{r\rho})$ + $P_3(p^{\sigma}p'^{\mu}\eta^{\tau\rho}\eta^{\lambda\rho})$	1/1 terms	VS.	([12] ³ /[23][31])
	84S	$-P_{z}(p\cdot p'\eta^{rs}\eta^{rs}\eta^{\lambda s})],$			(
	δφμιδφοιτόφριτιλιδφιτικτ				
	$\mathrm{Sym} [-\tfrac{1}{8} P_6 (p \cdot p' \eta^{\mu\nu} \eta^{\sigma\tau} \eta^{\rho\lambda} \eta^{\iota s}) - \tfrac{1}{8} P_{12} (p^{\sigma} p^{\tau} \eta^{\rho\sigma} \eta^{\rho\lambda} \eta^{\iota s})$	$-\frac{1}{4}P_{\mathfrak{s}}(p^{\epsilon}p'^{\mu}\eta^{\nu\pi}\eta^{\mu\lambda}\eta^{\iota\epsilon})+\frac{1}{8}P_{\mathfrak{s}}(p\cdot p'\eta^{\mu\sigma}\eta^{\nu\pi}\eta^{\mu\lambda}\eta^{\iota\epsilon})$			
	$+\frac{1}{4}P_6(p \cdot p'\eta^{\mu\nu}\eta^{\nu\tau}\eta^{\rho_1}\eta^{\lambda\epsilon})+\frac{1}{4}P_{12}(p^{\sigma}p^{\tau}\eta^{\mu\nu}\eta^{\rho_1}\eta^{\lambda\epsilon})+\frac{1}{2}P_6$	$(p^{\tau}p'^{\mu}\eta^{\nu\tau}\eta^{\rho\iota}\eta^{\lambda\epsilon}) - \frac{1}{4}P_{\epsilon}(p \cdot p'\eta^{\mu\epsilon}\eta^{\nu\tau}\eta^{\rho\iota}\eta^{\lambda\epsilon})$			
	$+\frac{1}{4}P_{24}(p \cdot p' \eta^{\mu\nu} \eta^{\tau\rho} \eta^{\tau\lambda} \eta^{\iota\epsilon}) + \frac{1}{4}P_{24}(p^{\sigma} p^{\tau} \eta^{\mu\rho} \eta^{\tau\lambda} \eta^{\iota\epsilon}) + \frac{1}{4}P_{24}(p^{\sigma} p^{\tau} \eta^{\tau\mu} \eta^{\tau\lambda} \eta^{\iota\epsilon}) + \frac{1}{4}P_{24}(p^{\sigma} p^{\tau} \eta^{\tau\mu} \eta^{\tau\lambda} \eta$	$^{b}_{12}(p^{\rho}p^{\prime\lambda}\eta^{\mu\sigma}\eta^{\nu\tau}\eta^{\prime\epsilon}) + \frac{1}{2}P_{24}(p^{\sigma}p^{\prime\rho}\eta^{\tau\mu}\eta^{\nu\lambda}\eta^{\prime\epsilon})$			
	$-\frac{1}{2}P_{12}(p \cdot p' \eta^{r\rho} \eta^{\lambda\rho} \eta^{\lambda\rho} \eta^{i\epsilon}) - \frac{1}{2}P_{12}(p^{\sigma} p'^{\rho} \eta^{\lambda\rho} \eta^{\lambda\sigma} \eta^{i\epsilon}) + \frac{1}{2}p_{12}(p^{\sigma} p'^{\rho} \eta^{\lambda\rho} \eta^{\lambda\rho} \eta^{\lambda\rho} \eta^{i\epsilon})$	$P_{12}(p^rp^{\rho}\eta^{\tau\lambda}\eta^{\mu\nu}\eta^{\iota\epsilon}) - \frac{1}{2}P_{24}(p \cdot p'\eta^{\mu\nu}\eta^{\tau\rho}\eta^{\lambda\epsilon}\eta^{\epsilon r})$			
4 pt.	$-P_{12}(p^{\sigma}p^{\tau}\eta^{\tau\rho}\eta^{\lambda_{1}}\eta^{\epsilon\mu}) - P_{12}(p^{\rho}p^{\prime\lambda}\eta^{\prime\epsilon}\eta^{\epsilon\sigma}\eta^{\tau\mu}) - P_{24}(p_{\sigma}p^{\prime\lambda}\eta^{\epsilon\mu}\eta^{\epsilon\mu}\eta^{\epsilon\mu})$	$p^{\prime\rho}\eta^{\tau_i}\eta^{\epsilon\mu}\eta^{\epsilon\lambda}) - P_{12}(\rho^{\rho}\rho^{\prime_i}\eta^{\lambda\sigma}\eta^{\tau\mu}\eta^{\epsilon\theta})$	2850 terms	VS.	$[12]^4 \langle 34 \rangle^4 / stu$
	+ $P_{\epsilon}(p \cdot p' \eta^{r_p} \eta^{\lambda \sigma} \eta^{\tau_1} \eta^{\epsilon \mu}) - P_{12}(p^{\epsilon} p^{\rho} \eta^{\mu \sigma} \eta^{\tau_1} \eta^{\epsilon \lambda}) - \frac{1}{2}P_{12}(p^{\epsilon} q^{\rho} \eta^{\mu \sigma} \eta$	$p \cdot p' \eta^{\mu\rho} \eta^{r\lambda} \eta^{r_1} \eta^{r_2} - P_{12}(p^r p^{\rho} \eta^{r\lambda} \eta^{\mu_1} \eta^{r_2})$			
	$-P_6(p^sp'^i\eta^{\lambda\epsilon}\eta^{\mu\sigma}\eta^{\prime\tau}) - P_{24}(p^{\sigma}p'^{\rho}\eta^{\tau\mu})$	$\eta^{\prime i} \eta^{\epsilon \lambda}$) $- P_{12}(p^{\epsilon} p^{\prime \mu} \eta^{\tau \mu} \eta^{\lambda i} \eta^{\epsilon \nu}) + 2P_6(p \cdot p^{\prime} \eta^{\tau \mu} \eta^{\tau \mu} \eta^{\lambda i} \eta^{\epsilon \mu})].$			

Analyticity and unitarity

loops cut into lower loops

+ rational terms

trees cut into smaller trees

+ contact terms

recursive construction from the simplest amplitudes or more direct extraction of various quantities

On-shell techniques for SMEFT

operator enumeration

[Shadmi, Weiss '18], [Ma, Shu, Xiao '19], [Falkowski '19], [GD, Machado '19] [Li, Ren, et al. '20, '20], [Harlander, Kempkens, Schaaf '23]

kinematics characterisation

[Aoude, Machado '19], [GD, Kitahara, Shadmi, Weiss '19], [GD et al. '20]
 [Balkin et al. '21], [Dong, Ma, Shu, Zheng '21, '22], [De Angelis '22]
 [Bradshaw, Chang, Chen, Liu, Luty '22, '23], [Liu, Ma, Shadmi, Waterbury '23]

anomalous dimensions

[Cheung, Shen '15], [Azatov et al. '16], [Bern et al. '19, '20], [Jiang et al. '20], [Elias Miró et al. '20, '21] [Baratella et al. '20, '20, '21][Accettulli Huber, De Angelis '21], [Delle Rose et al. '22], [Baratella '22] [Machado, Renner, Sutherland '22], [Chala '23]

matching to UV theories

[De Angelis, GD '23]

Operator enumeration

Massless helicity spinors

As square and angle brackets

$$u_{i^+} = \begin{pmatrix} 0 \\ i \end{bmatrix}$$
, $u_{i^-} = \begin{pmatrix} i \\ 0 \end{pmatrix}$ for m

[Mangano, Parke '91] [Dreiner, Haber, Martin '08] [Helvang, Huang '13] [Dixon '13] [Schwartz '14] [Cheung '17]

for massless particle *i*

Rewritting momenta

 $p^i_\mu \sigma^\mu_{\alpha\dot{lpha}} \equiv p^i_{\alpha\dot{lpha}} = \epsilon_{lphaeta} \ ^{eta} i \rangle [i_{\dot{lpha}}$ 2-by-2 matrix of rank 1

Trivialising $p_i^2 = \det(p_{\alpha\dot{\alpha}}^i) = \langle ii \rangle [ii]/2 = 0$

$$\langle ii \rangle = \epsilon_{\alpha\beta} i \rangle^{\alpha} i \rangle^{\beta} = 0, \qquad [ii] = \epsilon^{\dot{\alpha}\dot{\beta}} i]_{\dot{\alpha}} i]_{\dot{\beta}} = 0$$

Gauthier Durieux - International Meeting on Fundamental Physics - Benasque - 10 Sept. 2024

Massless three points

fully determined by little-group covariance

$$\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = g \begin{cases} [12]^{h_1+h_2-h_3} & [23]^{h_2+h_3-h_1} & [31]^{h_3+h_1-h_2} & \text{for } h > 0\\ \langle 12 \rangle^{-h_1-h_2+h_3} \langle 23 \rangle^{-h_2-h_3+h_1} \langle 31 \rangle^{-h_3-h_1+h_2} & \text{for } h < 0 \end{cases}$$

up to a constant coefficient

$$f^{+}f^{+}s \ [12]$$

$$v^{+}v^{+}s \ [12]^{2}$$

$$f^{+}f^{-}v^{+} \ [13]^{2}/[12] \qquad [g] = 1 - |h|$$

$$v^{+}v^{+}v^{-} \ [12]^{3}/[23][31]$$

$$t^{+}t^{+}t^{-}([12]^{3}/[23][31])^{2}$$

Massless higher-point contact terms

Multiple independent structures for given helicities

non-vanishing Lorentz invariants $(s_{ij} \equiv 2 p_i \cdot p_j, \epsilon_{ijkl} \equiv \epsilon_{\mu\nu\rho\sigma} p_i^{\mu} p_j^{\nu} p_k^{\rho} p_l^{\sigma})$

solving · little-group covariance

- · momentum conservation
- Schouten identity [12][34] [13][24] + [14][23] = 0

Massless higher-point contact terms

Multiple independent structures for given helicities

non-vanishing Lorentz invariants $(s_{ij} \equiv 2 p_i \cdot p_j, \epsilon_{ijkl} \equiv \epsilon_{\mu\nu\rho\sigma} p_i^{\mu} p_j^{\nu} p_k^{\rho} p_l^{\sigma})$

solving · little-group covariance

- momentum conservation
- Schouten identity [12][34] [13][24] + [14][23] = 0

e.g. GR-SM-EFT up to dim-8:

[GD, Machado '19]

$$\begin{array}{rcl} t^{+}t^{+}t^{+}t^{+}:& [12]^{4}[34]^{4}+[13]^{4}[24]^{4}+[14]^{4}[23]^{4} \\ t^{+}t^{+}v^{+}v^{+}:& [12]^{4}[34]^{2}, [12]^{2}[13][14][24][23] \\ t^{+}v^{+}f^{+}f^{-}:& [12]^{2}[13][12] \\ t^{+}f^{+}f^{+}f^{+}f^{+}:& [12][13][14][15] \\ \dots & \dots \end{array}$$

also from Hilbert series: [Ruhdorfer et al. '19]

Kinematics characterisation

Massive spinors

Two massless for one massive $p^{i}_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}} = q^{i}\rangle[q^{i} + k^{i}\rangle[k^{i} = i^{J}\rangle[i_{J}$ with $k^{2}_{i} = 0 = q^{2}_{i}, J = 1, 2$ $2k^{i} \cdot q^{i} = m^{2}_{i}$

Spin s from 2s symmetrized spin 1/2 left implicit, e.g. $\langle 1'3^J \rangle [2^K 3^{J'}] + (J \leftrightarrow J')$ written as $\langle \mathbf{13} \rangle [\mathbf{23}]$

Leading high-energy limit is just unbolding

Three-point examples:

 $\begin{array}{ll} \textit{ffs} & [12], \ \langle 12 \rangle \\ \textit{vvs} & \langle 12 \rangle^2, \ \langle 12 \rangle [12], \ [12]^2 \\ \textit{ssv} & [3(1-2)3) \equiv [3(p_1-p_2)3) \\ \textit{ffv} & \langle 13 \rangle \langle 23 \rangle, \ \langle 13 \rangle [23], \ [13] \langle 23 \rangle, \ [13] [23] \\ \dots & \text{counting by spin irreps addition} \end{array}$

Three-point example: W^+W^-Z

$$\cdot$$
 8 combinations of $\begin{array}{c} \langle 12 \rangle \\ [12] \otimes \begin{array}{c} \langle 23 \rangle \\ [23] \end{array} \otimes \begin{array}{c} \langle 31 \rangle \\ [31] \end{array}$

· one non-trivial relation between them: $m_1\langle 12\rangle\langle 13\rangle[23] + m_2\langle 12\rangle[13]\langle 23\rangle + m_3[12]\langle 13\rangle\langle 23\rangle$ $= m_1[12] [13]\langle 23\rangle + m_2[12]\langle 13\rangle[23] + m_3\langle 12\rangle[13] [23]$

7 combinations expected from angular momentum $3\otimes 3\otimes 3=1\oplus 3\oplus 3\oplus 3\oplus 5\oplus 5\oplus 7$

· combinations growing like E^3 and E^2 can only arise at the non-renormalisable (tree) level Three-point example: W^+W^-Z

- \cdot one unique renormalisable structure
- · for identical vectors $(m_Z/m_W \rightarrow 1)$:
 - $\cdot\,$ no fully symmetric combination \rightarrow ZZZ vanishes
 - \cdot only fully antisymmetric combinations \rightarrow $W^a W^b W^c$ requires ϵ_{abc}

C is $1 \leftrightarrow 2$

Four-point example: *ffZh*

Twelve independent structures:

[GD, Kitahara, Shadmi, Weiss '19]

$$\begin{array}{c|c} |\mathbf{13}||\mathbf{23}| & [\mathbf{312}\rangle|\mathbf{13}| \\ \mathbf{\mathcal{M}}(\mathbf{1}_{f},\mathbf{2}_{f},\mathbf{3}_{Z},\mathbf{4}_{h}) \ni & \begin{bmatrix} |\mathbf{13}|\langle\mathbf{23}\rangle & \langle\mathbf{13}\rangle\langle\mathbf{23}\rangle & \langle\mathbf{321}|\langle\mathbf{23}\rangle \\ \langle\mathbf{13}\rangle[\mathbf{23}] & [\mathbf{12}]\langle\mathbf{3}(\mathbf{1}\pm\mathbf{2})\mathbf{3}] & [\mathbf{321}\rangle[\mathbf{23}] \\ \langle\mathbf{12}\rangle\langle\mathbf{3}(\mathbf{1}\pm\mathbf{2})\mathbf{3}] & \langle\mathbf{312}\rangle\langle\mathbf{13}\rangle \end{bmatrix} \times \mathsf{poly}(s_{ij})$$

Counted by Hilbert series numerators: [Gráf, Henning, Lu, Melia, Murayama '22]
[Bradshaw, Chang, Chen, Liu, Luty '22, '23]

$$\mathsf{H}_{\textit{ffZh}}(d) = rac{2d^5 + 6d^6 + 4d^7}{(1-d^2)^2}$$

\rightarrow fully characterised kinematics, beyond lowest operator dim.

EW symmetry from perturbative unitarity [GD, Kitahara, Shadmi, Weiss '19]

S-Matrix Derivation of the Weinberg Model¹ [Llewellyn-Smith '73] SATISH D. JOGLEKAR [Joglekar '73] [Conwall et al. '73, '74] Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11790 Received June 18, 1973 37 3_Z $\mathbf{1}_{f}$ $\mathbf{3}_Z$ $f f Z h \sim$ 24 2. $\mathbf{4}_{h}$ 2_f $\mathbf{4}_{h}$ factorisable s, t, u channels contact terms $\xrightarrow{\text{high}} \begin{cases} \frac{|12|}{m_Z} \left(c_{ffZ}^{\text{left}} - c_{ffZ}^{\text{right}} \right) \left(c_{ffh}^{\text{right}} - c_{ZZh} \frac{m_f}{2m_Z} \right) \\ \frac{\langle 12 \rangle}{m_Z} \left(c_{ffZ}^{\text{left}} - c_{ffZ}^{\text{right}} \right) \left(c_{ffh}^{\text{left}} - c_{ZZh} \frac{m_f}{2m_Z} \right) \end{cases}$

Anomalous dimensions & selection rules

Anomalous dimensions

- \cdot In a massless theory, any (log $\mu^2)$ comes with a $(-\log s_l)$
- A dilation $z^{D/2}$ with $D \equiv \sum_i p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}}$ captures all Mandelstam logs in a single $(-\log z)$ and disregards logs of s_l/s_J ratios

· Dilated form factors $\hat{\mathcal{F}}(z) \equiv z^{D/2} \mathcal{F}$ only have singularities at positive z's

at $\sum_k \alpha_k \textit{m}_k^2 / \sum_{\textit{I}} \alpha_{\textit{I}} \textit{s}_{\textit{I}}$ in Feynman parameterisation

Non-renormalisation

vanishing tree helicity amp. \Rightarrow vanishing one-loop divergences

define (anti)holomorphic weights $\overline{w} \equiv n \mp h$ renormalisable trees: $\overline{w}_{SM}^{tree} \ge 4$ for $n \ge 4$ (except for e.g. Yukawa amps) from cut: $\vec{w}_{\text{EFT}}^{\text{loop}} = \vec{w}_{\text{EFT}}^{\text{tree}} + \vec{w}_{\text{SM}}^{\text{tree}} - 4$ so $\widehat{W}_{\text{EET}}^{\text{loop}} > \widehat{W}_{\text{EET}}^{\text{tree}}$

		F^3	$F^2 \phi^2$	$F\psi^2\phi$	ψ^4	$\psi^2 \phi^3$	$ \bar{F}^3$	$\bar{F}^2 \phi^2$	$\bar{F}\bar{\psi}^2\phi$	$\bar{\psi}^4$	$\bar{\psi}^2 \phi^3$	$\bar{\psi}^2 \psi^2$	$\bar{\psi}\psi\phi^2 D$	$\phi^4 D^2$	ϕ^6
\checkmark	(w, \bar{w})	(0, 6)	(2, 6)	(2, 6)	(2, 6)	(4, 6)	(6, 0)	(6, 2)	(6, 2)	(6, 2)	(6, 4)	(4, 4)	(4, 4)	(4, 4)	(6, 6)
F^3	(0, 6)			×	×	×			×	×	×	×	×	×	×
$F^2 \phi^2$	(2, 6)				×	×				×	×	×			×
$F\psi^2\phi$	(2, 6)									×				×	×
ψ^4	(2, 6)	×	×			×	×	×	×	×	×	y^2		×	×
$\psi^2 \phi^3$	(4, 6)	×*									y^2				×
\bar{F}^3	(6, 0)			×	×	×			×	×	×	×	×	×	×
$\bar{F}^2 \phi^2$	(6, 2)				×	×				×	×	×			×
$\bar{F}\bar{\psi}^2\phi$	(6, 2)				×									×	×
$\bar{\psi}^4$	(6, 2)	×	×	×	×	×	×	×			×	\bar{y}^2		×	×
$\bar{\psi}^2 \phi^3$	(6, 4)					\bar{y}^2	×*								×
$\bar{\psi}^2 \psi^2$	(4, 4)		×		\bar{y}^2	×		×		y^2	×			×	×
$\bar{\psi}\psi\phi^2 D$	(4, 4)														×
$\phi^4 D^2$	(4, 4)				×					×		×			×
ϕ^6	(6, 6)	×*		×	×		\times^*		×	×		×			

+ angular momentum selection rules

[Jiang, Shu, Xiao, Zheng '20]

Non-interference

massless tree four-point amplitudes involving transverse bosons do not overlap in helicity at dim-4 and dim-6

A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	4,2
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2
$\psi\psi\psi\psi\psi$	2,0	2,0
$\psi\psi\phi\phi$	0	0
$\phi\phi\phi\phi\phi$	0	0

interference mass- or loop- suppressed, recovered in the azimuthal angle of decay products or through extra radiation

[Azatov, Elias-Miro, Reyimuaji, Venturini '17] [Azatov, Barducci, Venturini '19] [Panico, Riva, Wulzer '17]

[Bern, Parra-Martinez, Sawyer '19, '20]

Non-renormalisation beyond one loop

 $\mathsf{length}(\mathcal{O}_i) > \mathsf{length}(\mathcal{O}_j) - \#\mathsf{loops}$

only maximal cut, between tree amplitudes, at minimal L order

	F^3	$\phi^2 F^2$	$F\phi\psi^2$	$D^2 \phi^4$	$D\phi^2\psi^2$	ψ^4	$\phi^3\psi^2$	ϕ^6		
F^3		\times_1	(2)	\times_2	\times_2	\times_2	\times_3	\times_3		\cdot
$\phi^2 F^2$							(2)	\times_2		$\cdot \mathbf{Q} \mathbf{Q}$
$F\phi\psi^2$							\times_1	\times_3	(c)	(d)
$D^2 \phi^4$							\times_1	\times_2		
$D\phi^2\psi^2$							\times_1	(3)		
ψ^4							(2)	(4)		
$\phi^3 \psi^2$								(2)		
ϕ^6										

UV-EFT matching

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi '06]

Positivity constraints

Gauthier Durieux - International Meeting on Fundamental Physics - Benasque - 10 Sept. 2024

Dispersive EFT matching

 \cdot equate $\mathcal{F}^{\mathsf{EFT}}$ and $\mathcal{F}^{\mathsf{UV}}$ order by order in the zero-momentum expansion · dilate (with $z^{D/2}$) and enforce $\operatorname{Res}_{z=0} \frac{\hat{\mathcal{F}}^{\text{EFT}}(z)}{z^{n+1}} = \operatorname{Res}_{z=0} \frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}}$ • EFT: Res_{z=0} $\frac{\mathcal{F}^{\text{EFT}}(z)}{z^{n+1}} = c_n \operatorname{poly}_n(s_l)$ with $\mathcal{F}_{\text{tree}}^{\text{EFT}} = \sum_k c_k \operatorname{poly}_k(s_l)$ $\cdot \text{ UV: } \operatorname{Res}_{z=0} \frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}} = \oint_{z=0} dz \ \frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}} = \left[\sum_{n} \operatorname{Res} + \int_{\infty} \operatorname{Disc} + \int_{\infty} \right] \frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}}$ $\int_{-\infty}^{\infty} \log(M_J^2 - z s_J)$ Im z EFT matching from just cuts! →Rez $\frac{M_J^2}{G}$ $\frac{M_l^2}{s_l}$ $\frac{\hat{\mathcal{F}}^{UV}(z)}{z+1}$

Gauthier Durieux – International Meeting on Fundamental Physics – Benasque – 10 Sept. 2024

Simple toy $\Phi \phi^3$ example

- $\cdot\,$ all EFT orders obtained at once
- nothing to know about, or compute in, the EFT
- · fewer legs and loops

On-shell amplitude techniques for the SMEFT

SMEFT is becoming the framework of choice for collider data interpretations.

It allows to isolate subtle patterns of heavy new physics and to encode the LHC legacy.

On-shell amplitude techniques bring new understanding and facilitate computations:

to construct operator bases, and characterise kinematics to arbitrary high dimension.

to understand the structure of anomalous dimensions, and to match on UV models.