

LHCb experimental results

Antonio Romero Vidal antonio.romero@usc.es

Instituto Galego de Física de Altas Enerxías (IGFAE) Universidade de Santiago de Compostela (USC), Spain

LI – International Meeting on Fundamental Physics, Benasque, Spain. 10th September 2024

The run1+2 LHCb detector

- LHCb originally designed for the study of CP violation in beauty and charm.
- In pp collisions b/b pairs produced with very small opening angle → LHCb is a forward spectrometer (2<η<5).
- Vertex detector (VELO):
 - Excellent vertex resolution: **20 μm** resolution on impact parameter.
 - Decay time resolution ~45 ps.
- Tracking system (plus a 4T magnet):
 - Momentum resolution
 Δp/p~0.4%-0.6%.
- **RICH** detectors:
 - Excellent $K/\pi/p$ separation.
- Calorimeter systems:
 - Energy measurement (i.e: π^0 , γ).
- Muon system:
 - Very high efficiency for muons.

Detector operation

- LHCb designed to run at lower instantaneous luminosity £ than ATLAS and CMS.
- pp beams displaced to reduce *L* (Run1+Run2).
- Mean number of interactions per bunch crossing ~1.

- 3 fb⁻¹ of pp collisions at 7-8 TeV in Run 1 (2010-2012).
- 6 fb⁻¹ of pp collisions at **13 TeV** in **Run 2** (2015-2018).
- 8 fb⁻¹ of pp collisions at 14.6 TeV in Run 3 (Upgrade I: 2022- ...).

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2024

• Other configurations: pPb, PbPb, fixed-target mode.

Evolution of LHCb Physics programme CGFAE

More than 700 papers published

103 institutes and 1766 members

Selected LHCb results

1. Spectroscopy:

- **χ**_{c1}(3872)
- Pentaquarks

4. CKM:

- $\sin(2\beta)$ with $B^0 \rightarrow \psi K_{S^0}$
- $\phi_{\rm s}$ with $B_{\rm s}^0 \rightarrow J/\psi \phi$
- $\phi_s^{s\bar{s}s}$ with $B_s^0 \rightarrow \phi \phi$
- $\Delta\Gamma_s$ with $B_s^0 \rightarrow J/\psi \eta'$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$
- Simultaneous determination of γ

2. Rare decays:

- Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$
- Search for :
 - $B_s^0 \longrightarrow \mu^+ \mu^- \gamma$
 - $B^{*0}_{(s)} \longrightarrow \mu^+ \mu^-$
 - $B_{s}^{0} \rightarrow \phi \mu^{\pm} \tau^{\mp}$
 - $D^0 \longrightarrow \mu^+ \mu^-$
 - $D^{*0} \rightarrow \mu^+ \mu^-$

5. Electroweak:

3. CPV in Charm:

• CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

6. Semileptonics:

 LFU in semitauonic B decays: R(D⁺)/R(D^{*+})

7. Upgrade I

effective leptonic

mixing angle

 $sin^2 \theta_{eff}^{\ell}$

1. Spectroscopy:

- χ_{c1}(3872)
- Pentaquarks

Spectroscopy

- Only 1 fundamental particle discovered at the LHC (the Higgs boson, CMS+ATLAS).
- But many new hadrons discovered.

 $\chi_{c1}(3872)$ in B⁺ $\rightarrow J/\psi \pi^+\pi^-K^+$ decays

 $\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-$ discovered in 2003 by Belle in $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decays.

20 years after since discovery ~200 x more data.

Amplitude analysis of $\chi_{c1}(3872) \rightarrow J/\psi \pi^+\pi^-$ decays shows a sizeable ω contribution.

$\chi_{c1}(3872)$ production in pp collisions

• $\chi_{c1}(3872) \rightarrow J/\psi \pi^+\pi^-$ production studied as a function of p_T and **event multiplicity** (number of tracks in vertex detector). • $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ used as normalisation channel:

$$R = \frac{\sigma_{\chi_{cl}(3872)}}{\sigma_{\psi(2S)}} \frac{B(\chi_{cl}(3872) \rightarrow J/\psi\pi^{+}\pi^{-})}{B(\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-})}$$

Study of production in other configurations (pPb, etc...) ongoing.

Probing the nature of the $\chi_{c1}(3872)$

- χ_{c1}(3872) mass just below the sum of the D⁰ and D^{*0} masses (D⁰D^{*0} molecule?).
- The ratio $R_{\psi\gamma}$ used as a tool to study the nature of the $\chi_{c1}(3872)$.
- R_{ψγ} different from zero indicates some compact component (charmonium or tetraquark).

 $R_{\psi\gamma} = \frac{\Gamma_{\chi_{c1}(3872) \to \psi(2S)\gamma}}{\Gamma_{\chi_{c1}(3872) \to J/\psi\gamma}} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$

- Generally inconsistent with calculations based on pure D⁰ and D^{*0} molecule.
- Agrees with wide range of predictions, including cc̄ charmonium, cc̄qq̄ tetraquark and molecules mixed with substantial compact component.

Charmonium Pentaquarks discovery

- Observation of J/ψp resonances consistent with pentaquarks in 2015.
- Clean $\Lambda_b^0 \rightarrow J/\psi pK^-$ signal, almost background-free.
- Clear structure in m(J/ ψ p), indicating the presence of **exotic contributions**.
- Fit without $J/\psi p$ resonances cannot describe the data.
- Two P_{cc}⁺ states needed to get a reasonable fit. But fit is not perfect.

IGFAE

Latest on Charmonium Pentaquarks

IGFAE Instituto Galego de Física de Altas Enerxías

- Four years later (2019) : ~10 x more data.
- Structures in Dalitz plot more evident.

State	M [MeV]	Γ [MeV]	(95% C.L.)	${\mathcal R}$ [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$	(<27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(<49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	(<20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

- 3 peaks right below the $\Sigma_c^+D^0$ and $\Sigma_c^+D^{*0}$ thresholds.
- Full angular analysis necessary to determine quantum numbers (work in progress). Coupledchannel analyses of line shapes may be necessary.

Charmonium Pentaquarks to Open Charm?

- Observation of $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^{(*)0} K^-$ and $\Lambda_b^0 \rightarrow \Lambda_c^+ D_s^{*-}$ decays.
- Determined ratios of branching fractions:

$$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow J/\psi \, p \, K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \, \overline{D}^{0} \, K^{-}\right)} = 0.152^{+0.032}_{-0.028}$$
$$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow J/\psi \, p \, K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \, \overline{D}^{*0} \, K^{-}\right)} = 0.049^{+0.011}_{-0.009}$$

Possible P_{cc}⁺ contributions to these decays? Amplitude analysis needed.

2. Rare decays:

- Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$
- Search for :
 - $B_s^0 \longrightarrow \mu^+ \mu^- \gamma$
 - $B^{*0}_{(s)} \longrightarrow \mu^+ \mu^-$
 - $B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$
 - $D^0 \longrightarrow \mu^+ \mu^-$
 - $D^{*0} \rightarrow \mu^+ \mu^-$

$b \rightarrow s \ell^+ \ell^-$ transitions

Decays mediated by $b \rightarrow s\ell^+\ell^-$ quark transitions suppressed in the SM due to the absence of **Flavour Changing Neutral Currents (FCNC)**. \rightarrow Can only occur at **loop** level.

- But this is not necessarily true in a NP scenario.
- Measurements of the properties are sensitive to new particles with masses up to ~100 TeV:
 - Branching fractions.
 - Angular analysis of $B \to K^{(*)}\ell^+\ell^-$ decays.
 - LFU tests: $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}$.

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$

- First angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ decays in the central q^2 region $(q^2 = m^2(e^+e^-))$.
- Dataset: Full Run1+Run2 (9 fb⁻¹) statistics.
- 4D unbinned fit to the B mass and angular distributions.

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\bar{\Omega}} = \frac{9}{32\pi} [\frac{3}{4}(1 - F_L)\sin^2\theta_k + F_L\cos^2\theta_k + \frac{1}{4}(1 - F_L)\sin^2\theta_k\cos 2\theta_l + \frac{1}{4}(1 - F_L)\sin^2\theta_k\cos 2\theta_l + C_F_L\cos^2\theta_k\cos 2\theta_l + S_3\sin^2\theta_k\sin^2\theta_l\cos 2\phi + S_4\sin^2\theta_l\cos 2\phi + S_4\sin^2\theta_l\cos \phi + S_5\sin 2\theta_k\sin\theta_l\cos \phi + \frac{4}{3}A_{\rm FB}\sin^2\theta_k\cos\theta_l + S_7\sin 2\theta_k\sin\theta_l\sin\phi + \frac{4}{3}A_{\rm FB}\sin^2\theta_k\cos\theta_l + S_9\sin^2\theta_k\sin^2\theta_l\sin\phi + S_8\sin 2\theta_k\sin 2\theta_l\sin\phi + S_9\sin^2\theta_k\sin^2\theta_l\sin 2\phi_l\sin 2\phi_l$$

 S_i : CP-averaged observables. $P_i^{(\prime)}$: Optimized observables (reduced form-factor uncertainties).

$$P_5' = \frac{S_5}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}$$

 Q_i : LFU observables. Obtained by comparing results with already published muon analysis.

$$Q_i = P_i^{(\mu)} - P_i^{(e)}$$

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$

• Projections of the model from a 4D unbinned fit to the B mass and angular distributions.

 Angular observables measured in the q² region [1.1,6.0] GeV²/c⁴.

• Good agreement with SM predictions.

LHCb-PAPER-2024-022 in preparation

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$

• $P_i^{(\prime)}$ based on F_L , A_{FB} and $S_i \rightarrow$ Reduced form-factor uncertainties.

- LFU in angular observables.
- $Q_i = P_i^{(\mu)} P_i^{(e)}$
- Obtained by comparing with $B^0 \rightarrow K^{*0}\mu^+\mu^-$ analysis (<u>PRL 132 (2024) 131801</u>).

LHCb-PAPER-2024-022 in preparation

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

$B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ vs } B_s^0 \rightarrow \mu^+ \mu^-$

- $\mathfrak{B}(B^0_s \rightarrow \mu^+ \mu^- \gamma) \sim \mathfrak{B}(B^0_s \rightarrow \mu^+ \mu^-)$, but larger theoretical • uncertainties.
- Worse mass resolution due to the photon reconstruction.
- Theoretical prediction (JHEP 11(2017) 184): •
 - $\mathfrak{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{low q^2(<8.64 \, GeV^2/c^4)} = (8.4 \pm 1.3) \times 10^{-9}$

 $[q^2=m^2(\mu^+\mu^-)]$

 $\mathfrak{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{high q^2 (>15.84 \, GeV^2/c^4)} = (8.90 \pm 0.98) \times 10^{-10}$

Indirect search from $B_s^0 \rightarrow \mu^+ \mu^-$ analysis

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

- Dataset: 5.4 fb⁻¹ of Run2 data (2016-2018).
- Direct search in 3 q² bins.
 - **Bin I** : low q^2 (with ϕ vetoed).
 - **Bin II** : middle q^2 .
 - **Bin III** : high q^2 .

Mass fit in all q^2 bins

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

Differential branching fraction $B_s^0 \rightarrow \mu^+ \mu^- \gamma$

- No significant excess is observed. Upper limits on the branching fractions (at 90 %(95%) C.L.): $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\mathrm{I}} < 3.6 (4.2) \times 10^{-8},$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\mathrm{II}} < 6.5 (7.7) \times 10^{-8},$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\mathrm{III}} < 3.4 (4.2) \times 10^{-8},$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\mathrm{I, with } \phi \text{ veto}} < 2.9 (3.4) \times 10^{-8},$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\mathrm{comb.}} < 2.5 (2.8) \times 10^{-8},$
- First direct search of $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ at low q^2 .

Search for $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ in $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays

- $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ can provide constraints on WC complementary to $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays.
- SM prediction $\mathfrak{B} \sim 10^{-11}$ (PRL 116 (2016) 141801).
- First search for $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ decays.

$$\mathcal{R}_{B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+}/J/\psi\pi^{+}} \equiv \frac{\mathcal{B}(B_{c}^{+} \to B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+})}{\mathcal{B}(B_{c}^{+} \to J/\psi\pi^{+})}$$

- Full Run1+Run2 dataset (9 fb⁻¹).
- Search within the $B_c^+ \rightarrow B_{(s)}^{*0} \pi^+ \rightarrow \mu^+ \mu^- \pi^+$ decay chain.
- Exploit displaced B_c^+ vertex to suppress background.
- Simultaneous fit to $m(\mu^+\mu^-)$ and $m(\pi^+\mu^+\mu^-)$.
- $\begin{array}{l} \mathcal{R}_{B^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 3.8\,(5.2) \times 10^{-5} \text{ at } 90\,(95)\%\,\mathrm{CL}\,, \\ \mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0\,(6.3) \times 10^{-5} \text{ at } 90\,(95)\%\,\mathrm{CL}\,. \\ \mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0\,(6.3) \times 10^{-5} \text{ at } 90\,(95)\%\,\mathrm{CL}\,. \\ \mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0\,(6.3) \times 10^{-5} \text{ at } 90\,(95)\%\,\mathrm{CL}\,. \end{array}$

Search for the LFV $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^{\pm}\tau^{\mp}$

- Possible in SM with neutrino oscillation (\mathfrak{B} <10⁻⁵⁰).
- In some NP scenarios could be as large as $\mathfrak{B} \sim 10^{-11}$.
- First search of the decay $B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$.
- Data from full Run1+Run2 sample (9 fb⁻¹).
- Signal reconstruction with $\phi(\rightarrow K^+K^-)$ and $\tau \rightarrow 3\pi\nu$ (including $\tau \rightarrow 3\pi\pi^0\nu$).

• The model includes four different background shapes.

Search for LFV $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^{\pm}\tau^{\mp}$ igrae

- No excess observed over background-only hypothesis.
- First upper limit on this decay mode.

Sensitivity comparable with other $b \rightarrow s\mu\tau$ searches.

 $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.0 \times 10^{-5} \text{ at } 90\% \text{ CL},$ $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.1 \times 10^{-5} \text{ at } 95\% \text{ CL}.$

Search for the rare $D^0 \rightarrow \mu^+ \mu^-$ decay

W±

- Very rare flavour changing neutral current (FCNC) decay:
 - GIM mechanism stronger in charm than in beauty decays. $\bar{u} \rightarrow \bar{W}^{\pm}$

 D^0

- Helicity suppressed.
- SM prediction $\mathfrak{B}(D^0 \rightarrow \mu^+ \mu^-) \sim 10^{-11}$.
- Sensitivity to NP, e.g. contribution from leptoquarks.
- Search using $D^{*+} \rightarrow D^0 \pi^+$ decays.
 - Two normalisation channels: $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+\pi^-$ decays.
- World best upper limit:

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 3.1(3.5) \times 10^{-9}$ at 90(95)%C.L.

Search for the rare $D^{*0} \rightarrow \mu^+ \mu^-$ decay

- Complementary search to $D^0 \rightarrow \mu^+ \mu^-$.
- No helicity suppression (vector meson).
- Search of $D^{*0} \rightarrow \mu^+ \mu^-$ in $B^+ \rightarrow \pi^+ D^{*0}$ decays (\mathfrak{B} =4.9 x 10⁻³).
- Signature:
 - Reconstruct $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays.
 - Search for **simultaneous peaks** in $\mu^+\mu^-$ and $\pi^+\mu^+\mu^-$ invariant masses.
- Normalisation channel: $B^+ \rightarrow K^+ J/\psi (\rightarrow \mu^+ \mu^-)$.
- Main backgrounds: combinatorial background and mis-ID $B^+ \rightarrow K^+ \mu^+ \mu^-$.
- First result in this decay mode:

 $\mathcal{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 \,(3.4) \times 10^{-8}$ at 90 (95)% CL.

3. CPV in Charm:

• CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

CP violation in charm

A. Romero Vidal

- In the SM, CP violation in charmed hadrons expected to be very small $(10^{-4} 10^{-3})$.
- Theoretical predictions difficult to compute due to lowenergy strong interaction effects.
- LHCb'19: First observation of CP violation in charm (<u>PRL 122, 211803 (2024)</u>).
 - Time-integrated CP asymmetries in $D^0 \rightarrow K^+K^$ and $D^0 \rightarrow \pi^+\pi^-$ decays.

 $A_{CP}(f;t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)}$

 $\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) = (-15.4 \pm 2.9) \times 10^{-4}$

5.3 σ deviation from no CPV hypothesis

• LHCb'22: Measurement of $A_{CP}(K^+K^-)$ (<u>PRL 131</u> <u>091802 (2023)</u>).

 $\mathcal{A}_{CP}(K^{-}K^{+}) = [6.8 \pm 5.4(\text{stat}) \pm 1.6(\text{syst})] \times 10^{-4}$

$$a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4} \quad (1.4\sigma) \qquad (\varrho = 0.88)$$
$$a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4} \quad (3.8\sigma)$$

- First evidence of direct CPV in a specific decay.
- U-spin $(d \leftrightarrow s)$ symmetry $(a_{K^-K^+}^d + a_{\pi^-\pi^+}^d = 0)$ violated at 2.7 σ level: $a_{K^-K^+}^d + a_{\pi^-\pi^+}^d = (30.8 \pm 11.4) \times 10^{-4}$

Time-dependent CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ IGFAE

 Time-dependent CP asymmetry can be expanded as:

$$A_{CP}(f_{CP},t) \equiv \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\overline{D}^0 \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\overline{D}^0 \to f_{CP}}(t)} \approx a_{f_{CP}}^{\mathrm{dir}} + \Delta Y_{f_{CP}} \frac{t}{\tau_{D^0}}$$

- f_{CP} : self-conjugated final state $(\pi^+\pi^-\pi^0)$.
- τ_{D^0} : D^0 lifetime.
- Neglecting direct CPV $(a_{f_{CP}}^{dir})$, the gradient $\Delta Y_{f_{CP}}$ becomes independent of the final state.
- Dataset: 2012+Run2 (7.7 fb⁻¹).
- D^0 reconstructed from $D^{*+} \rightarrow D^0 \pi^+$ decays.
- Sample divided depending on t, data-taking period, magnet polarity and $\pi^0 \rightarrow \gamma \gamma$ category (resolved or merged photons.)
- Fit of A_{Cp} vs time to measure ΔY .

- Consistent with no CPV.
- Statistically limited.
- First measurement of time-dependent CPV in a decay with π^0 in final state at hadron collider.

4. CKM:

- $sin(2\beta)$ with $B^0 \rightarrow \psi K_S^0$
- $\phi_{\rm s}$ with $B_{\rm s}^{0} \rightarrow J/\psi \phi$
- $\phi_s^{s\bar{s}s}$ with $\mathsf{B}_s^0 \longrightarrow \phi \phi$
- $\Delta\Gamma_s$ with $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$
- Simultaneous determination of γ

The CKM matrix

• Quark flavour mixing determined by the CMK matrix. It connects weak to mass eigenstates.

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• Unitarity of CKM matrix leads to the **unitarity relations** that form **triangles** in the complex plane.

$$\sum_{k} V_{ik} V_{jk}^* = 0$$

• **CP violation** in the SM comes from a **complex phase** in the CKM matrix.

$$\gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$$

$$\beta = \arg(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*})$$

Measurement of sin(2 β) with B⁰ $\rightarrow \psi$ ($\rightarrow \ell^+ \ell^-$)K_S⁰($\rightarrow \pi^+ \pi^-$)

- Measurement using Run2 data (6 fb⁻¹).
- Three decay modes:
 - $B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K_S^0(\rightarrow \pi^+\pi^-)$, 306k events.
 - $B^0 \rightarrow J/\psi(\rightarrow e^+e^-)K_S^0(\rightarrow \pi^+\pi^-)$, 42k events.
 - $B^0 \rightarrow \psi(2S)(\rightarrow \mu^+ \mu^-) K_S^0(\rightarrow \pi^+ \pi^-)$, 23k events.
- Time-dependent analysis.
- Measure CP violating parameters **S** and **C**:

S, C, $\mathcal{A}_{\Delta\Gamma}$: CP violating parameters

 $\Delta m_d : B^0 - \bar{B}^0$ mixing oscillation frequency

 $\Delta \Gamma_d$: B^0 mass eigenstate decay width difference. **Compatible with zero**.

$$\mathcal{A}_{CP} = \frac{\Gamma(\bar{B}^0 \to f) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to f) + \Gamma(B^0 \to f)} = \frac{S\sin(\Delta m_d t) - C\cos(\Delta m_d t)}{\cosh\left(\frac{1}{2}\Delta\Gamma_d t\right) + \mathcal{A}_{\Delta\Gamma}\sinh\left(\frac{1}{2}\Delta\Gamma_d t\right)}$$

 $\mathcal{A}_{CP} \approx \mathbf{S} \sin(\Delta m_d t) - \mathbf{C} \cos(\Delta m_d t)$

$$S \approx sin(2\beta + \Delta \phi_d + \Delta \phi_{NP})$$

$$\beta = \arg\left[-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right]$$

 $\Delta \phi_d$: contributions from penguin decays. CKM supressed. Small in SM.

 $\Delta \phi_{NP}$: possible contributions from NP.

PRL 132, 021801 (2024)

Measurement of $\sin(2\beta)$ with $B^0 \rightarrow \psi(\rightarrow \ell^+ \ell^-) K_S^0(\rightarrow \pi^+ \pi^-)$

- Fit to decay time distribution to measure S and C.
- Single most precise determination of CKM phase β .
- Statistically dominated.

 $S_{\psi K_S^0} = 0.717 \pm 0.013(ext{stat}) \pm 0.008(ext{syst})$ $C_{\psi K_S^0} = 0.008 \pm 0.012(ext{stat}) \pm 0.003(ext{syst})$

PRL 132, 021801 (2024)

10/9/24

Measurement of ϕ_s with $B_s^0 \rightarrow J/\psi \phi$

- A golden mode for the study CP violation.
- Probe of CKM phase β_s .
- Neglecting sub-leading loop contributions:
 - $\phi_s^{c\bar{c}s} = -2\beta_s$
 - $\beta_s = \arg\left[-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right]$
- SM prediction very precise:
 - $-2\beta_s^{SM} = -0.037 \pm 0.001 \, rad$

Measurement of ϕ_s with $B_s^0 \rightarrow J/\psi \phi$

Consistent with SM. 10/9/24

~350k events.

 K^{-}

 B_s^0

 K^+K^-

 K^+

 $\phi_{s}^{c\bar{c}s}$

=

-0.5

0.5

0

 $\cos\theta_{\mu}$

LHCb Run 2, 6 fb⁻¹

0.5

LHCb Run 2, 6 fb⁻¹

+ Data

— Total fit

--- CP-even

-CP-odd

S-wave

2

0

 $cos\theta_{\kappa}$

0

 ϕ_{h} [rad]

-2

Measurement of $\phi_s^{s\bar{s}s}$ with $\mathsf{B}_s^0 \longrightarrow \phi \phi$

- Another golden channel of LHCb.
- Probe of CP violation in penguindominated decays.
- Experimentally very clean.
- CP violation in mixing and decay predicted to cancel in the SM.

 $\phi_s^{s\bar{s}s} = \phi^{mixing} - \phi^{decay} \approx 0$ (upper limit 0.02 rad, <u>arXiv:0810.0249</u>)

• Significant deviation from zero would be a clear signature of BSM physics.

Measurement of $\phi_s^{s\bar{s}s}$ with B_s^0 -

- Value of $\phi_s^{s\bar{s}s}$ extracted from a 4D fit to decay time and 3 helicity angles.
- Fit result using full Run2 dataset yields ~16k events.

(MeV/c²)

Candidates / 11.25

 $\phi_s^{s\bar{s}s}$

10⊧

5200

dominated B decays to date.

5300

5400

Consistent with zero and SM prediction. 10/9/24

Measurement of $\Delta \Gamma_s$ with $B_s^0 \rightarrow J/\psi \eta'$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

IGFAE

• **Tension** between measurements of $\Delta\Gamma_s$ using $B_s^0 \rightarrow J/\psi\phi$ decays from. LHCb, ATLAS and CMS.

- Since ϕ_s is small, to good approximation:
 - CP-even decay measures light lifetime.
 - CP-odd decay measures heavy lifetime.
- $\Delta\Gamma_s$ measured from decay-width difference between:
 - **CP-even** decay: $B_s^0 \rightarrow J/\psi \eta'$.
 - **CP-odd decay**: $B_s^0 \to J/\psi \pi^+ \pi^-$, which is CP-odd via $B_s^0 \to J/\psi f_0(980) (\to \pi^+ \pi^-)$.
- **Independent cross-check** of the measurement of $\Delta\Gamma_s$.

JHEP 05(2024) 253

- Analysis uses de full Run1+Run2 (9 fb⁻¹) LHCb dataset.
- Lifetime divided in 8 bins. For each bin, fit to the B mass distribution.

• First time-dependent measurement of $\Delta \Gamma_s$ using $B_s^0 \rightarrow J/\psi \eta'$ decays.

 $\Delta \Gamma_s = 0.087 \pm 0.012 \pm 0.009 \, \mathrm{ps}^{-1}$

• In agreement with LHCb $B_s^0 \rightarrow J/\psi \phi$ result and HFLAV averages.

• $\Delta\Gamma_s$ determined from a χ^2 fit to the ratio:

$$R_{i} = \frac{N_{\rm L}}{N_{\rm H}} \propto \frac{\left[e^{-\Gamma_{s}t(1+y)}\right]_{t_{1}}^{t_{2}}}{\left[e^{-\Gamma_{s}t(1-y)}\right]_{t_{1}}^{t_{2}}} \cdot \frac{(1-y)}{(1+y)}, \quad y = \Delta\Gamma_{s}/2\Gamma_{s}$$

NL: yield of CP-even decays in $[t_1,t_2]$ bin N_H: yield of CP-odd decays in $[t_1,t_2]$ bin

Simultaneous determination of the CMK angle γ

• γ is the only angle that can be measured purely from tree-level decays.

- Theoretically clean.
- Can be measured by exploiting interference effects in $B \rightarrow DK$ decays (and others).
- Any discrepancy between direct and indirect measurements would be a clear sign of BSM physics.

LHCb-CONF-2024-004

Simultaneous determination of the CMK angle γ

• *γ* determined from a combination of:

- 11 LHCb B decay measurements (4 new, 3 superseded).
- 9 LHCb D decay measurements (1 new, 1 superseded).

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	[35]	Run 1&2	As before
$B^{\pm} ightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	Run 1&2	New
$B^{\pm} ightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[36]	Run 1&2	As before
$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h'^{\mp} \pi^0$	[37]	Run 1&2	As before
$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[38]	Run 1&2	As before
$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$	[39]	Run 1&2	As before
$B^{\pm} ightarrow D^{*}h^{\pm}$	$D \to h^{\pm} h'^{\mp}$ (PR)	[35]	Run 1&2	As before
$B^{\pm} ightarrow D^{*}h^{\pm}$	$D \rightarrow K_{ m S}^0 h^+ h^- ~({ m PR})$	[20]	Run 1&2	New
$B^{\pm} ightarrow D^{*}h^{\pm}$	$D \to K_{ m S}^0 h^+ h^- ~({ m FR})$	[21]	Run 1&2	New
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	$[22]^{\dagger}$	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	$[22]^{\dagger}$	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	$[22]^{\dagger}$	Run 1&2	New
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before
$B^0 ightarrow DK^{*0}$	$D ightarrow h^{\pm} h'^{\mp}$	[23]	Run 1&2	Updated
$B^0 ightarrow DK^{*0}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	[23]	Run 1&2	Updated
$B^0 ightarrow DK^{*0}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[24]	Run 1&2	Updated
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[41]	Run 1	As before
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	$[25,42]^\dagger$	Run 1&2	Updated
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[43]	$\operatorname{Run}1\&2$	As before

- 27 auxiliary inputs from LHCb, HFLAV, CLEO-c and BESIII (1 new, 2 updated).
- Many Beauty and Charm measurements share parameters and provide complementary information.
- Produces a single LHCb value for 29 physics parameters (+ nuisance parameters).

D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [13]
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[41-43]	Run 1&2	As before
$D^0 ightarrow K^+ K^-$	$A_{C\!P}(K^+K^-)$	[43-45]	Run 2	As before
$D^0 ightarrow h^+ h^-$	$y_{C\!P}-y_{C\!P}^{K^-\pi^+}$	[46, 47]	Run 1&2	As before
$D^0 ightarrow h^+ h^-$	ΔY	[48-51]	Run 1&2	As before
$D^0 \to K^+ \pi^-$ (double tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[52]	Run 1	As before
$D^0 \to K^+ \pi^-$ (single tag)	$R_{K\pi},A_{K\pi},c_{K\pi}^{(\prime)},\Delta c_{K\pi}^{(\prime)}$	[27, 53]	Run 1&2	Updated
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[54]	Run 1	As before
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	x,y	[55]	Run 1	As before
$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[56]	Run 1	As before
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[57, 58]	Run 2	As before
$D^0\!\to\pi^+\pi^-\pi^0$	$\Delta Y^{ m eff}$	[26]	Run 2	New

LHCb-CONF-2024-004

Simultaneous determination of the CMK angle γ

 $\gamma = (64.6 \pm 2.8)^{\circ}$

LHCb-CONF-2024-004

- 0.7° (20%) improved precision with respect to LHCb 2022 combination.
- Reduced tension between B_s⁰ measurements.
- Consistent with global CKM fit predictions.
- Statistically limited. Run3 data will improve the precision.

LHCb 2024 γ combination per B decay

 γ [°]

5. Electroweak:

• effective leptonic mixing angle $sin^2 \theta_{eff}^{\ell}$

Measurement of the effective leptonic mixing angle $sin^2 \theta_{eff}^{\ell}$

- A fermion of charge Q and third weak-isospin component I₃ has both vector and axial vector couplings to the Z boson that depend on the weakmixing angle θ_W:
 - Vector coupling: $v = I_3 2Qsin^2\theta_W$
 - Axial-vector coupling: $a = I_3$
- Presence of vector and axial vector components introduces a forward-backward asymmetry A_{FB} .

• At tree level,
$$cos\theta_W = \frac{m_W}{m_Z} \Longrightarrow sin^2\theta_W = \left(1 - \frac{m_W^2}{m_Z^2}\right)$$

- $sin^2 \theta_{eff}^{\ell}$ accounts for **higher-order corrections**.
- Key parameter in the SM.
- Potential sensitivity to BSM processes.

Measurement of the effective leptonic mixing angle $sin^2\theta_{eff}^{\ell}$

- Analysis using Run2 dataset (2016-2018, 5.3 fb⁻¹).
- Main kinematic cuts applied:
 - $2.0 < \eta_{\mu} < 4.5$
 - $p_T^{\mu} > 20 \ GeV/c$
 - $66 < M_{\mu\mu} < 116 \ GeV/c^2$
- Background (~2 per mil of events) estimated from simulation and subtracted.
- Fit A_{FB} in 10 bins of $\Delta \eta$ ($cos\theta^* \sim tan\frac{\Delta \eta}{2}$). $\Delta \eta = \eta^- \eta^+$.
- Simulation shows that this binning improves sensitivity to the weak mixing angle by 14%.
- $sin^2 \theta_{eff}^{\ell}$ extracted using predictions at NLO in the strong and EW couplings using POWHEG-BOX.

• Compare data with predictions to extract the value of $sin^2\theta_{eff}^{\ell}$ that best corresponds to data. A χ^2 is computed.

• Result:

 $\sin^2 \theta_{\rm eff}^{\ell} = 0.23147 \pm 0.00044 \pm 0.00005 \pm 0.00023$

- Consistent with previous measurements and indirect determinations from global electroweak fit.
- Precision dominated by statistical uncertainty.
- Aim to improve precision with upgraded LHCb detector (~5x more instantaneous luminosity).

LHCb-PAPER-2024-028 in preparation

6. Semileptonics:

• LFU in semitauonic B decays

LFU in semitauonic B decays

- Branching fractions involving e, μ and τ leptons differ only due to their **different masses** (phase space and helicity suppressions).
- Some extensions of the SM predict new particles that can break LFU: W', Z', leptoquarks...

- In some NP scenarios, new particles couple preferentially to the third family → Important to study semitauonic B decays.
- Any significant deviation from LFU is a sign of NP.

- LFU can be tested by measuring ratios of branching fractions to final states with different lepton flavours $(\ell \in e, \mu)$. $R(D^{(*)}) = \frac{Br(B^0 \to D^{(*)}\tau\nu_{\tau})}{Br(B^0 \to D^{(*)}\ell\nu_{\ell})}$
- Very clean SM prediction due to partial cancellation of hadronic form-factor uncertainties in the ratio.
- Experimentally, also some systematics cancel.
- LHCb results on R(D*) based on two τ reconstruction methods:
 - Muonic mode $\tau^- \rightarrow \mu^- \bar{\nu}_{\mu} \nu_{\tau}$.
 - $R(D^*)$ and $R(D^0)$ (2023) [PRL 131, 111802 (2023)] (supersedes [PRL 115, 111803 (2015)]).
 - $R(D^{*+})$ and $R(D^{+})$ (2024) [arXiv: 2406.03387].
 - Hadronic mode $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$:
 - R(D*+) [PRD 108, 012018 (2023)] [PRD 109, 119902
 (2024) (E)].

LFU in semitauonic B decays

- Higher statistics.
- 3 missing neutrinos.

Hadronic mode $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$

- Tau decay vertex is reconstructed → Access to tau decay time (signal/background discrimination).
- Higher purity.
- 2 missing neutrinos.
- External inputs needed (branching fractions of normalisation modes).

Muonic $R(D^{*+})$ and $R(D^{+})$ (2024)

- First LHCb measurement of $R(D)/R(D^*)$ using $D^+ \rightarrow K^- \pi^+ \pi^+$.
 - Primary goal is to measure $R(D^+)$.
 - Feed-down from $D^{*+} \rightarrow D^+ \pi^0 / \gamma$ with not reconstructed π^0 or γ gives also access to $R(D^{*+})$.
- Data sample: 2 fb⁻¹ of 2015-2016 data at 13 TeV.
- 3D template fit to q^2 , energy of the muon in the B rest frame (E_{μ}^*) and the squared of the missing mass (m_{miss}^2) .

$$\begin{split} R(D^+) &= R(D) = 0.249 \, \pm \, 0.043_{stat} \pm \, 0.047_{syst} \\ R(D^{*+}) &= R(D^*) = 0.402 \, \pm \, 0.081_{stat} \pm \, 0.085_{syst} \\ \rho &= -0.39 \end{split}$$

- Compatible with SM at 0.78 σ level and wit previous WA at 1.09 σ .
- Main systematics from form-factors parameterisation and background modelling.
 A. Romer

New $R(D)/R(D^*)$ World Average

Tension with SM slightly reduced.

3.17 σ tension with SM

Measurement of $F_L(D^*)$ in $B^0 \to D^{*-}\tau^+\nu_{\tau}$ if GFAE

- New Physics (NP) can be detected in angular coefficients even if R(D*) is compatible with the SM.
- Full angular decay rate for $\overline{B} \to D^*(\to D\pi)\ell\nu$ as a function of $cos\theta_\ell$, $cos\theta_D$ and χ :

- $F_L(D^*)$ can be computed as: $F_L^{D^*} = \frac{a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}{3a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}$
- a_{θ} and c_{θ} are linear combinations of the angular coefficients.

- Analysis dataset: Run1+2015+2016 data (5 fb⁻¹).
- *F_L(D*)* determined from a 4D fit to:
 cosθ_D, tau lifetime, *q*², anti-*D*⁺_s BDT.

• Compatible with Belle measurement and SM.

arXiv:2311.05224

7. Upgrade I

The LHCb Run3 detector

- At Run3: 5x higher luminosity than in Run2 \rightarrow pile-up of ~5.
 - Major upgrade (Upgrade I) of all sub-detectors and readout.
 - Re-designed trigger system.

Limitations of the Run2 trigger system

Run2 trigger system:

- Hardware trigger (L0).
- Two-stage software trigger (HIt1 + HIt2).
- Tight p_T/E_t requirements by L0 \rightarrow Trigger rates saturate with luminosity for fully hadronic decay modes.
- Run3 trigger system:
 - Removal of the hardware L0 trigger.
 - Run Hlt1 directly at the collision rate (30MHz).

arXiv:2305.10515

HIt1

- Based on GPUs.
- Partial event reconstruction at 30 MHz.
 - Track reconstruction (Patter recognition and track fitting).
 - Vertex reconstruction (Primary and secondary decay vertices).
 - Electron clustering and bremsstrahlung recovery.
 - Muon identification.
- Event selection to reduce date rate by a factor ~30.
- Significant improvements in trigger efficiencies at HIt1 level.
 - Huge gain at low- p_T .
 - Muon channels at similar performance as in Run2.
 - Large impact for electron channels.

LHCB-FIGURE-2024-014 LHCB-FIGURE-2024-006 LHCB-FIGURE-2024-007

HIt2

- <u>+</u> 2024, μ=3.5 PIDe Efficiency for 2brem etag PIDe>: - 2018 Ξ^{400} ਿ Efficiency 크 350 LHCb Preliminary 300 Resolution 250 200 150 0.6 0.4 PIDe DLLe>0 u=1 PIDe DLLe>0 u=3 PIDe DLLe>0 µ=5 100 0.2 PIDe DLLe>5 µ=1 PIDe DLLe>5 µ=3 **50**E LHCb Preliminary 2024 PIDe DLLe>5 μ =5 0.0 0 10 20 50 60 20 number of tracks in Primary Vertex Momentum [GeV/c] efficiency $p_T(\mu) > 0.8 \text{ GeV/}c$ $J/\psi \rightarrow \mu^+ \mu^-$ K) 1 - Run 2 $\eta \in [2.0, 4.9]$ R Run 3 2022 MagDown 0.9 OII uon U p ∈ [3, 150] GeV $N_{PV} \in [5, 10]$ Efficiency 10^{-1} LHCb Preliminary 2024 $\langle \mu \rangle = 1$ LHCD THCD 0.7 $(IsMuon == 1) \& (PID_{\mu} > -2.5)$ $\langle \mu \rangle = 3$ $\langle \mu \rangle = 5.5$ 10^{-1} 0.6 0.9 0.8 0.7 10 100 6 Efficiency $(K \rightarrow K)$ Muon momentum [GeV/c] LHCB-FIGURE-2024-010 LHCB-FIGURE-2024-011 A. Romero Vidal
- Based on CPUs.
- Full event reconstruction (including PID) at ~0.5 MHz.
- Dedicated trigger selections representing the broad • LHC physics programme.
 - ~2700 selections developed by analysts.
- Excellent vertex resolution.
- Particle identification (PID) by combining information from different sub-detectors:
 - Difference in Log-Likelihood between different ٠ hypothesis.
 - Stable PID performance for hadrons, muons and ٠ electrons.

10/9/24

LHCB-FIGURE-2023-019

57

Conclusions

- Presented a selection of LHCb physics results.
- LHCb physics programme in constant evolution.
- Many measurements make use of the full legacy Run1+Run2 dataset.
- In Run3, detector stably operating.
- Expected improvement in trigger efficiencies for hadronic channels.