

ATLAS & CMS: Physics Highlights

Carmen Diez Pardos (U. Siegen) LI - International Meeting on Fundamental Physics 10 September 2024

Where do we stand?

- Higgs-like particle with a mass of 125 GeV, properties match the Standard Model (SM) Higgs
 - Not the end but a whole new window of experimental and theoretical possibilities!
- Excellent agreement between very precise measurements of SM processes and predictions (lots of progress on the theory side also!)
- Few anomalies in flavour physics, g-2, etc. but no clear sign that the SM *breaks*
- The SM is not the end of the story! Many open questions!
 - With the *completion* of the SM: No certainty and no clear indication of the energy scale of new phenomena

The tasks of the ATLAS and CMS experiments

What?

- Study with highest precision what has not yet been scrutinized in depth: Higgs boson, the top quark
- Revisit areas of previous precision experiments with a great deal of scrutiny: Electroweak, QCD, flavour
- Explore the unknown: Extend the scope of searches for new phenomena at high energies: new data-taking strategies, new triggers, new AI applications

How?

- Exploiting the LHC collisions at the energy frontier (searches at the TeV scale) and the intensity frontier (Higgs and EW precision program)
- Exploting the capabilities of the experiments as flavour experiments (top quark physics + dedicated data streams for b, c, and τ), heavy ion experiments (PbPb and pPb LHC runs) and photon-photon collider experiments (ultra-peripheral heavy ion collisions, proton tagging in pp, ...)

\rightarrow Here: just a (tiny) selection of latest results in QCD, EWK, top quark, Higgs and BSM searches!

Where are we now? Run 3 data taking

- First phase of the LHC program to be completed soon
- Reach already the goal of >300 fb⁻¹ (Run2 + Run3) by the end of 2025!
- Nearly 100 fb⁻¹ of delivered proton-proton luminosity at 13.6 TeV this year
- Working on upgrading the detector for the High-Luminosity phase (target is 3000 fb⁻¹ by 2041)
- Pushing detectors beyond their limits: Recording up to 63 simultaneous collisions/event (2.5x design, 45% of HL-LHC)

Few words on performance

Improvements in precison, reach of searches driven by improvements in trigger, performance, methods (huge progress thanks to ML)

- New trigger strategies
 - Gain in acceptance with looser ParticleNet b-trigger
 - Lower threshold for large-radius jets with scouting (trigger-level object reconstruction)
- Flavour tagging performance transformed through the use of advanced ML techniques
 - 4x background rejection improvement with graph neural network tagger (GN2) compared to Run 2 in ATLAS
 - Also huge improvements in CMS by using graph-nets and transformers
- ... and many more!

Measurements of SM processes

• Scrutinising the SM predictions over O(10) orders of magnitude in cross section

Status: October 2023

• Increasing precision, observation of rare processes

Standard Model Production Cross Section Measurements

QCD and Electroweak (precision) Physics

Jet Physics

Jet physics

- QCD multijet production: dominant high-p_T process at hadron colliders
- Test of QCD at highest available energies in the laboratory → signs of new physics?
- Sensitive to the strong coupling constant and its running at much higher energy scales than other strategies
- Important inputs to parton distribution function (PDF) fits (high-x gluon PDF)
- Important background at the LHC: many other processes with multijet signatures (top quark, Higgs, ...)

Jet Physics

م 10⁶ [bp/de/ 10⁶ [bp/de/

 10^{4}

10³

10

10-4

10 10-4

10-5 10-6

Data

TeV, 140 ft

PH+Pvthia

Sherpa PH+Herwia7 Pythia

Herwia7

Sherpa Lund

Jet cross-section ratios [arXiv:2405.20206]

- Measure jet cross-section ratios between bins of jet multiplicity
- Double differential: Dijet invariant mass or angular radiation (< 10%precision)
- Triple differential: scalar sum of p_{T} of two leading jets, H_{T2} (< few %)
- Relies on improved JES uncertainty (< 1%)

Testing the Electroweak sector

Rich variety of electroweak interaction derived from symmetry principles $SU(2)_L \times U(1)_Y \to W^{\pm}, Z, \gamma$

• Mass of electroweak gauge bosons and interaction strength predicted precisely from g, g', v, λ

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W}$$

- Testing the EWK theory
 - Precision measurements of single W/Z bosons
 - At high energy in multiboson production

[ATL-PHYS-PUB-2024-011]

Testing the Electroweak sector

The precision frontier

 Radiative corrections modify propagators and decay vertices

$$m_W^2(1-rac{m_W^2}{m_Z^2})=rac{\pilpha}{\sqrt{2}G_F}(1+\Delta)$$

- $\sin^2 \theta_W \to \kappa_f \sin^2 \theta_W = \sin^2 \theta_{eff}^r$
- Sensitivity to a wide range of physics through quantum loops

The energy frontier

- Tests of the electroweak theory through gauge cancellations at high energy
- Deviations can lead to potentially large effects

from Nucl. Phys. B525 (1998) 27-50

W-boson properties [arXiv:2403.15085]

- First measurement of the W width at the LHC, together with an improved W mass using 7 TeV data
- Improved method: profile-likelihood fit of m_T and p_T^ℓ using $W \to \ell \nu$ events
- m_W = 80366.5 ± 15.9 MeV (CT18 parton distribution functions)
- Largest systematic uncertainties: calibration, the theoretical modeling and the PDFs

• From simultaneous measurement $m_W = 80354.8 \pm 16.1$ MeV and $\Gamma_W = 2198 \pm 49$ MeV

$Z/\gamma^* ightarrow \ell\ell$ and the weak mixing angle $_{[arXiv:2408.07622]}$

- Measured in bins of $y(\ell \ell)$ and $m(\ell \ell)$
- Sensitivity enhanced with extended acceptance for forward electrons
- Matches LEP/SLD precision
- Compatible with the SM precision

Electroweak physics

W-boson hadronic decay branching fractions [CMS-PAS-SMP-24-009]

• $R_c^W = \mathcal{B}(W \to cq)/\mathcal{B}(W \to q\bar{q}')$ from top quark pair $(t\bar{t})$ events in single-lepton final states

- Jets tagged as originating from the hadronization of c quarks by the presence of a muon inside the jet \rightarrow dedicated $c \rightarrow X \mu \tau$ tagger
- $R_c^W = 0.498 \pm 0.005(\text{stat}) \pm 0.019(\text{syst})$
 - Most precise measurement (4%)
 - Dominant systematic uncertainty: charm tagging efficiency
- Also measured $|V_{cs}| = 0.959 \pm 0.021$

Lepton flavour universality in W-boson decays [arXiv:2403.02133]

- Universality of the coupling of l[±] to W boson is a fundamental property of the SM
- Exploits clear selection of W boson in tt
 pairs
- Tested via $R(\mu/e) = B(W \rightarrow \mu\nu)/B(W \rightarrow e\nu)$
- R(µ/e) = 0.99995 ± 0.0045 higher precision than current world average!
- Complements $W \rightarrow \tau \nu$ results [e.g Nature Phys. 17 (2021) 7, 813-818]: Some disagreement (2.7 σ) of the on-shell $W \rightarrow \tau \nu$ results seen at LEP, but excellent agreement with LHC measurements

Production of τ -leptons from photons [arXiv:2406.03975]

Observed $\gamma\gamma \to \tau\tau$ production in pp collisions, for the first time

 Constrain anomalous magnetic and electric dipole moments: Probed τ g-2 with unprecedented precision

Top quark Physics

Top quark physics

- Most massive elementary particle known
- Short-lived, decays before hadronizing, allows studying the properties of a bare quark
- Precision tests of perturbative QCD (α_s, PDFs, m_t)
- Other properties: spin correlations, couplings, asymmetries predicted by the SM
- Essential to study Higgs properties, measure top Yukawa coupling
- Potential portal to New Physics: Production & decay sensitive to anomalous couplings, charged lepton flavour and baryon number violation, CP violation, flavour changing neutral currents...

Top quark cross sections

- All decay channels and centre-of-mass energies
- Stringent tests of pQCD via inclusive and differential cross sections

Top quark + X

- Evidence for rare(r) processes such as tWZ
- Moving towards combined measurements $t\bar{t}Z + tWZ$
- Detailed studies of less rare processes such as $t\bar{t}\gamma$

Associated top quark pair production $(t\bar{t}\gamma)$ [arXiv:2403.09452]

- Radiative production: probe structure of $t\gamma$ coupling
- NN to enhance separation between photons from production and decay
- Sensitive to top quark anomalous dipole moments, EFT interpretations (dim-6 operators - CtW, CtB)

C. Diez Pardos

Top quark mass

- Indirect measurements from cross section: $\sim 1\%$ precision (clear interpretation)
- Direct measurements from top quark decays: better precision
 - Mass from boosted top-jet: Future prospects in precision & theoretical interpretability
 - Alternative measurements: sensitive to different systematics

Run-1 top quark mass combination [arXiv:2402.08713]

- Combination of 15 input measurements (6 ATLAS + 9 CMS)
- Detailed study of correlations
- Consistency checks among measurements

C. Diez Pardos

Top quark physics

Observation of top quark entanglement [arXiv:2406.03976,arXiv:2311.07288]

- Sufficient condition for entanglement from spin correlation matrix
 - Using diagonal elements: $\Delta = \mathit{C}_{33} + |\mathit{C}_{11} + \mathit{C}_{22}| > 1$
 - Entanglement proxy $D = -\Delta/3 = -Tr[C]/3$ (for small $m_{t\bar{t}}$) can be extracted from angle between decay products $\frac{1}{\sigma} \frac{d\sigma}{d\cos\phi} = \frac{1}{2}(1 - D\cos\phi)$

 $ightarrow \ D < -1/3$ established at 5σ level

Taking it a step further [CMS-PAS-TOP-23-007]

- Measuring the correlation matrix in single-lepton $t\bar{t}$ events
- All coefficients of polarization vectors and correlation matrix from fit to the angles of two decay products
- Using NN to reconstruct the $t\bar{t}$ system
- Δ from the full matrix, or from two proxies: D and $\tilde{D} = 3(C_{33} - C_{11} - C_{22})$ for high masses
- Higher $m_{t\bar{t}}$ reach why is it relevant?
 - Large fraction of events with space-like separation
 - Prospects for Bell inequality tests

Charged-lepton-flavour violation (cLFV) [CMS-PAS-TOP-22-011]

- Lepton flavour conservation arises due to an accidental symmetry of the SM
- Violation possible in the SM via neutrino mixing at loop level ($BR(\mu \rightarrow e\gamma) < 10^{-55}!$)
- cLFV featured in several BSM models (leptoquarks, SUSY, 2HDM) and interpreted in terms of EFT
- Searches for *eµtq* and *τµtq* vertices, both in production and decay

C Diez Pardos

Baryon number violation (BNV) [PRL 132 (2024) 241802]

- Search for BNV interactions in top quark production (first time) and decay
- Selection: two oppositely-charged leptons (e, μ), exactly one b-tagged jet and high missing transverse momentum
- Upper limits on the strength of the BNV couplings and translated to limits on the BRs for the BNV top quark decays

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- $\bullet~BSM$ can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- $\bullet~BSM$ can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- $\bullet~BSM$ can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- $\bullet~BSM$ can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- $\bullet~BSM$ can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- $\bullet~BSM$ can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

C. Diez Pardos

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- $\bullet~BSM$ can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

Top quark couples to up-type quark (u or c) and neutral boson (γ , Z, H, g)

- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression
- BSM can enhance FCNC BRs up to $\sim 10^{-4}$
- Any observation of FCNC can indicate new physics!

No signs of flavour physics associated to top quarks, approaching sensitivity to BSM

The Higgs sector

The SM Higgs boson: status

- Mass from Run 1+2 ATLAS combination: $m_H = 125.11 \pm 0.11 \text{ GeV} \text{ (syst: } 0.09 \text{ GeV)}$
- Indirect Higgs width from offshell: $\Gamma_H = 4.6^{+2.6}_{-2.5}$ MeV
- Probe couplings by measuring accessible production and decay modes
- Ongoing studies include:
 - Detailed kinematic studies of observed modes
 - Searches for rarer production/decay modes (bbH, tH, cc and μμ)
 - Higgs self-couplings

Nature 607 (2022) 60-68, Nature 607, 52-59 (2022)

SM Higgs boson production and decay

[Nature 607 (2022) 60-68, Nature 607, 52-59 (2022)]

 $\bullet\,$ Main production and decay processes observed, measured with better precision than 10-20%

Higgs bosons at 13.6 TeV [CMS-PAS-HIG-24-013, CMS-PAS-HIG-23-014]

- Inclusive/differential measurements in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
- Using data from 2022: measurements statistically limited

Open questions where the Higgs boson can help

- What is the origin of quark and lepton masses?
 - Fermion flavour violating Higgs boson decays
 - Are there modified Higgs couplings to other particles
- Why is the EW interaction much stronger than gravity?
 - Are there anomalies in interactons with W, Z bosons?
 - New particles at the TeV scale
 - Is the Higgs boson elementary?
- What is dark matter?
 - Can the Higgs boson provide a portal to dark matter?
 - New decay modes of the Higgs boson?
 - Higgs lifetime consistent with the SM?
- Why is there more matter than antimatter?
 - Higgs boson self-coupling: strong first-order Electroweak Phase Transition?
 - Are there multiple Higgs sectors?
 - Are there CP-violating Higgs boson decays

From N. Berger, ICHEP2024 based on G. Salam et al, Nature 607, 41-47 (2022)

Precision Higgs - VH to bb/cc [ATLAS-CONF-2024-010]

- $H \rightarrow bb$: largest Higgs BR (58%)
- $H \rightarrow cc$: largest BR to 2nd gen. fermions (2.9%)
- Require b-jets or c-jets, split signal in $N_\ell = 0$ $(Z \to \nu \nu)$, 1 $(W \to \ell \nu)$ or 2 $(Z \to \ell \ell)$
- Cross-check analysis: observation of VZ(bb), VZ(cc)

CMS Results with similar sensitivity PRD 109 (2024) 092011

Search for $pp ightarrow H(ightarrow \gamma\gamma) + c$ production [CMS-PAS-HIG-23-010]

- Potential to constrain κ_c , also large contributions from non- κ_c -dependent diagrams
- Large backgrounds: focus on $H \rightarrow \gamma \gamma$ decay
- $\sigma(cH) \sim 90 \text{ fb} imes \mathsf{BR}(H o \gamma \gamma) \sim 0.2\% \to 0.2 \text{ fb}$
- κ_c -dependent part: $\mu_{cH} < 243$ (355), $|\kappa_c| < 38.1$ (72.5) at 95% CL
- Also new ATLAS measurement, target inclusive H + c: $\sigma(H + c) = 5.2 \pm 3.0$ pb (SM: 2.9 pb), < 10.4 pb at 95% CL [arXiv:2407.15550]

Higgs width from $t\bar{t}t\bar{t}$ + on-shell Higgs [arXiv:2407.10631]

- Higgs couplings from on-shell cross-sections and BRs: assume SM Higgs width (4.1 MeV) or an SM-like dependence
- Processes like tttt with an off-shell Higgs have negligible width dependence: width-free determination of couplings

→ Combined on- and off-shell measurements: constraint on the Higgs width (Nature 607, 52-59 (2022) + EPJC 83 (2023) 496, EPJC 84 (2024) 156)

Assuming loop-induced coupling modifiers are parametrized independently of tree level ones (minimal model dependence)

Higgs boson pair production at the LHC

HH production to directly probe Higgs self-coupling and hence electroweak symmetry breaking (EWSB) mechanism

Access to shape of the Higgs potential

Nature 607, 41-47 (2022)

See new result: CMS-PAS-HIG-24-001

Higgs boson self-coupling [arXiv:2406.09971]

- Focusing on the two major production modes: gluon-gluon fusion (ggF) and vector boson fusion (VBF)

	bb	ww	π	zz	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
zz	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

• Using cut-based and multivariate techniques

Higgs boson self-coupling: Results [arXiv:2406.09971]

- Close to within 1σ of the SM
 - μ_{HH} < 2.9 (obs) and 2.4 (exp) at 95% CL
 - Sensitivity dominated by ggF mode
 - Also Effective field theory interpretation to probe low energy dynamics of EWSB with 3 Wilson coefficients

Observed limit (95% CL)

Search for $HH \rightarrow b\bar{b}VV$ [CMS-PAS-HIG-23-012]

- Search for $HH \rightarrow b\bar{b}VV$ production in fully hadronic final states (unexplored before)
- Boosted regime: merged large-radius jets

- Use $H
 ightarrow bar{b}$ and new $H
 ightarrow VV
 ightarrow qar{q}qar{q}$ taggers
- $\mu_{HH} < 142$ (69 exp.) and $-0.04 < \kappa_{2V} < 2.05$ at 95% CL
- ATLAS: search in VBF $HH \rightarrow b\bar{b}b\bar{b}$, 0.55 $< \kappa_{2V} < 1.49$ at 95% CL [arXiv:2404.17193]

B-only Post-Fit VBF Region

Searches

* Courtesy of J. Knolle (LHCP2024)

LHC experiments search strategies

- Precision measurements & searches for rare process and unconventional final states
 - No BSM evidence yet: sensitivity on a wide range of phase space established
- Gain in luminosity and improvements in detector technology enhance potential for discoveries during Run 3
 - Probing various scenarios: Dark Sector, exotic signatures, heavy particles
 - Exploiting standard and exotic signatures: Boosted jets, disappearing jets, emerging jets (with AI taggers), showers in muon detector, etc
 - Data scouting / trigger analysis level allows to extend reach in the low masses regime (heavy neutral leptons, long-lived light particles...)

In pictures: Search for BSM processes

Selected ATLAS results

C Diez Pardos

Search for long-lived heavy neutrinos [JHEP 06 (2024) 183]

- Search for HNLs in B decays
- Based on the special data stream recorded in 2018, designed to collect O(10¹⁰) bb events

- Parametric NN for optimal signal/background separation to different HNL masses
- Limits set in Dirac and Majorana scenarios

Strongest limits on sum of squares of light-heavy mixing amplitudes from a collider for $1~{\rm GeV}{<}~m_N{<}1.7~{\rm GeV}$

Resonances decaying to displaced jets [CMS-PAS-EXO-23-013]

- Search for displaced jets with Run 3 data (2022)
- Model: Higgs boson decay to two long-lived neutral scalars
- Sensitivity significantly improved thanks to
 - displaced vertex reconstruction
 - novel displaced dijet identification based on graph NNs

Dark mesons decaying to top and bottom quarks [arXiv:2405.20061]

• πD pair production in $t\bar{t}b\bar{b}$ and $t\bar{t}t\bar{b}$ final states

 $300 < m(\pi_D) < 1200$ GeV, $0.15 < m(\pi_D)/m(
ho_D) < 0.45$

• Using large-radious reclustered jets

LI - International Meeting on Fundamental Physics

Magnetic monopole pair production [arXiv:2408.11035]

 Search for magnetic monopole pair production as highly ionizing particles in ultraperipheral Pb+Pb collisions

New data from 2023 with new triggers
 → Up to x8 improvement at masses
 below 120 GeV

Summary and outlook

- Well into Run 3 with very efficient data taking in 2024, excellent performance
- Improvements in operations and performance play a key role to fully exploit the potential of the LHC data
- Entering the era of precision measurements
 - Several results on EWK physics now competitive with those from e^+e^-
 - Investigating subtle effects as in $t\bar{t}$ spin correlations
- Continue to search for physics beyond the SM
 - Exploring new areas of phase space
 - Exploiting novel performance and analysis techniques
- In parallel, good progress with HL-LHC upgrades transitioning into production mode

BACK UP

This is just the beginning

- Phase-II upgrade activities continually progress into production
- The phase of testing, integration, and planning for the installation is starting

Upgrade of Muon system

- <u>Additional trigger layers of RPC</u> and replacement of MDT with sMDT in barrel inner station
- Additional TGC layers in endcap inner station
- Upgrade trigger/readout electronics

- Full silicon tracker covering up to eta = 4 with at least 9 layers on individual tracks
- Less material, finer segmentation

* From Y. Okumura, ICHEP2024

This is just the beginning

- Phase-II upgrade activities continually progress into production
- The phase of testing, integration, and planning for the installation is starting

L1-Trigger

https://cds.cern.ch/record/2714892

- Tracks in L1-Trigger at 40 MHz
- Particle Flow selection
- 750 kHz L1 output
- 40 MHz data scouting

Calorimeter Endcap -

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker

https://cds.cern.ch/record/2272264

- · Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to η = 3.8

MIP Timing Detector https://cds.cern.ch/record/2667167

- Precision timing with: • Barrel layer: Crystals + SiPMs
- Barrel layer: Crystals + SIPN
 Endcap layer:
- Low Gain Avalanche Diodes

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

- Beam abort & timing
- Beam-induced background
- Bunch-by-bunch luminosity: 1% offline, 2% online
- Neutron and mixed-field radiation monitors

Credits and more information

- Latest CMS results: https://cms.cern/news/cms-ichep-2024
- ATLAS results: https://atlas.cern/tags/physics-results
- Nice ATLAS and CMS overview talks at the LHCP24 and ICHEP24 conferences:
 M. Pierini, M. Dunford, W. Adams, H. Gray, N. Berger, P. Sommer, etc.

Upgrade

Precision Higgs - VH to bb/cc [ATLAS-CONF-2024-010]

