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QCD and collectivity
Standard Model built/discovered looking for the highest possible degree of simplicity

All particle content and interactions of the Standard Model discovered using this principle  
— greatest success of the reductionistic approach in Physics 

Also very successful — Complex systems with emerging behavior 
[Strongly-coupling many body systems; quantum entanglement with many d.o.f…] 

Region of transition — largely unknown 
QCD — rich dynamical content, with emerging dynamics  

that happens at scales easy to reach in collider experiments

Best available tool to study the first levels of complexity

Equilibrium AND non-equilibrium dynamics
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QCD phase diagram
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Experimental tools 
High-energy heavy-ion coll. [high T, low nB]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) 
RHIC — pp, dAu, AuAu, CuCu, UU,… 

Medium energies HIC [moderate T, high nB]
RHIC Beam Energy Scan 
FAIR at GSI 
NICA at Dubna 

Cosmological observations — notably GWs
Neutron star coalescence - low T, high nB  
Future — access to QCD transition in early Universe?

QCD — rich dynamical content, with emerging dynamics  
that happens at scales easy to reach in collider experiments — e.g. EoS
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QCD — rich dynamical content, with emerging dynamics  
that happens at scales easy to reach in collider experiments — e.g. EoS

Cosmo/GW

GW???
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High energy heavy ion collisions:

How do we extract QGP properties from data?
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But also…
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(A possible)Time evolution of a HIC
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In contrast to usual HEP, time and distance are relevant variables in heavy-ion collisions 
Building collectivity in extended (macroscopic) systems
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PHOTONS AS PROBES OF THE QGP
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Electromagnetic probes emerge from entire space time volume

Hadrons emerge from the freeze-out surface
LI IMFP - Benasque 2024.                                                                                                                                                                                                 Heavy-Ion Collisions at the LHC

[Jean-François Paquet - talk at Initial Stages 2021] 

AuAu @ RHIC
IPGlasma KøMPøST Hydrodynamics
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(A possible)Time evolution of a HIC
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Questions accessible in HIC
nucleus A

What is the structure of the colliding objects?
 Small-x region of the nuclear (hadron) wave function 
 Fix out-of-equilibrium initial stages with well-controlled theoretical framework 

What is the dynamics at the initial stages after the collision?
 Mechanism of isotropization/equilibration/thermalization — classical/quantum 
 When/how/why hydrodynamics apply? 

 What are the properties of the produced medium?
 identify signals to characterize the medium with well-controlled observables 
 what are the building blocks and how they organize? 
 is it strongly-coupled? quasiparticle description? phases?

Initial State

Final State
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Questions accessible in HIC
nucleus A

What is the structure of the colliding objects?
 Small-x region of the nuclear (hadron) wave function 
 Fix out-of-equilibrium initial stages with well-controlled theoretical framework 

What is the dynamics at the initial stages after the collision?
 Mechanism of isotropization/equilibration/thermalization — classical/quantum 
 When/how/why hydrodynamics apply? 

 What are the properties of the produced medium?
 identify signals to characterize the medium with well-controlled observables 
 what are the building blocks and how they organize? 
 is it strongly-coupled? quasiparticle description? phases?

Initial State

Final State

First ~5 yoctoseconds or 1.5fm/c
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Processes with large virtualities probe the inner part of the nucleons as usual — nuclear PDFs — Dilute regime  

At smaller scales, however, the partons are densely packed — Dense regime — this regime determines the 
production of the dense system
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“Dilute” regime - usual DGLAP
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Fig. 8 The EPPS21 nuclear modifications of average nucleons in Carbon (two leftmost columns) in Lead (two rightmost
columns) at the initial scale Q2 = 1.69GeV2 and at Q2 = 10GeV2. The central results are shown by thick black curves, and
the nuclear error sets by green dotted curves. The blue bands correspond to the nuclear uncertainties and the purple ones to
the full uncertainty (nuclear and baseline errors added in quadrature).

Nuclear PDFs extracted in DGLAP global fits - as usual proton PDFs
[Normally ratios w.r.t. proton PDFs fitted]

2

has already been considered within the NNPDF frame-
work: In the NNPDF4.0 [16] analysis of the free-proton
PDFs the nuclear-PDF uncertainties were considered
as correlated uncertainties following Ref. [17]. In the
nNNPDF2.0 analysis [9], on the other hand, the un-
certainties from the free-proton PDFs were propagated
into nuclear PDFs. In the present work, we will now
carry out the latter within a Hessian prescription. Even-
tually, in a complete analysis, both the free- and bound-
proton PDFs should be fitted simultanously and the
first steps towards this direction have also recently been
taken [18].

2 Nuclear PDFs and proton baseline

2.1 Parametrization of nuclear modifications

We write the bound-proton PDF f
p/A
i (x,Q2) as a prod-

uct of the nuclear modification R
p/A
i (x,Q2) and the free

proton PDF f
p

i (x,Q
2),

f
p/A
i (x,Q2) = R

p/A
i (x,Q2)fp

i (x,Q
2) . (1)

Here A denotes the mass number of the nucleus and
i indexes the parton flavour. Our proton baseline here
is the recent set CT18ANLO [19]. The CT18A di↵ers
from the default CT18 in that it includes also the AT-
LAS 7TeV data on W±- and Z-boson production [20].
The inclusion of these data was found to impact pri-
marily the strange-quark PDF and to worsen the de-
scription of the neutrino-iron dimuon data [21] in which
the strange-quark PDF plays a central role. By adopt-
ing the version version “A” our strange-quark baseline
PDF is thus less sensitive to the data on heavy nuclei.

The PDFs of a bound neutron f
n/A
i (x,Q2) follow

from the bound-proton PDFs by virtue of the approxi-
mate isospin symmetry,

f
n/A
u (x,Q2) = f

p/A
d (x,Q2),

f
n/A
d (x,Q2) = f

p/A
u (x,Q2),

f
n/A
u (x,Q2) = f

p/A

d
(x,Q2), (2)

f
n/A

d
(x,Q2) = f

p/A
u (x,Q2),

f
n/A
i (x,Q2) = f

p/A
i (x,Q2) for other flavours.

The full nuclear PDFs that enter the cross-section cal-
culations are always linear combinations that depend
on the number of protons Z and number of neutrons
N = A� Z,

f
A
i (x,Q2) = Zf

p/A
i (x,Q2) +Nf

n/A
i (x,Q2) . (3)

We define the nuclear modifications of the full nuclear
PDFs by

R
A
i (x,Q

2) =
Zf

p/A
i (x,Q2) +Nf

n/A
i (x,Q2)

Zf
p

i (x,Q
2) +Nf

n

i (x,Q
2)

. (4)

As in our earlier fits, we prefer to parametrize the
nuclear modifications Rp/A

i (x,Q2

0
) instead of the abso-

lute PDFs f
p/A
i (x,Q2

0
). The two options are of course

fully equivalent but since most of the observables in the
analysis are normalized to measurements involving ei-
ther the free proton or deuteron (whose nuclear e↵ects
we neglect), the relative di↵erences with respect to the
free proton PDF are what truly matter.

The nuclear modifications are parametrized at the
charm mass thresholdQ0 = mcharm = 1.3GeV. Coming
up with a decent functional form for the parametriza-
tion and deciding which parameters can be free is among
the biggest challenges in the entire global analysis of nu-
clear PDFs. On one hand the parametrization should
be flexible enough in regions where there are data con-
straints. On the other hand, the outcome of the fit
should be physically feasible. For example, it is rea-
sonable to expect that the nuclear e↵ects are broadly
larger in heavy nuclei like lead than what they are in a
light nucleus like carbon. A feature like this is easily lost
if too much flexibility is given for the parametrization.
Coming up with the functional form finally used in the
present analysis is a combination of experience from a
entire chain of global fits we have performed in the past
[22–25,1], and trial and error. Our parametrization is a
piecewise-smooth function defined as,

R
A
i (x,Q

2

0
) = (5)

8
>>><

>>>:

a0 + a1

�
x� xa

�h
e
�xa2/xa � e

�a2

i
, x  xa

b0x
b1
�
1� x

�b2
e
xb3 , xa  x  xe

c0 + c1 (c2 � x) (1� x)��
, xe  x  1.

In comparison to EPPS16, we have made some ad-
justments to the parametrization. First, the small-x
part involves the additional factor e�xa2/xa�e

�a2 , which
increases the flexibility at small x [23]. Second, at in-
termediate values of x we use a functional form that is
often used to parametrize the absolute PDF. The first
derivatives are taken to be zero at the matching points
xa and xe corresponding to the locations of the antic-
ipated antishadowing maximum and EMC minimum.
This fixes four parameters. Apart from the new small-
x parameter a2 and the large-x parameter c0, rest of
the parameters ai, bi, ci are expressed in terms of ya, ye
and y0 which correspond to the values of the function
at x = xa, x = xe and x = 0. The parametrization is

Excellent description of data (not shown) - universality of nuclear PDFs

[Fit I.C. with experimental data]
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Fig. 8 The EPPS21 nuclear modifications of average nucleons in Carbon (two leftmost columns) in Lead (two rightmost
columns) at the initial scale Q2 = 1.69GeV2 and at Q2 = 10GeV2. The central results are shown by thick black curves, and
the nuclear error sets by green dotted curves. The blue bands correspond to the nuclear uncertainties and the purple ones to
the full uncertainty (nuclear and baseline errors added in quadrature).

Nuclear PDFs extracted in DGLAP global fits - as usual proton PDFs
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has already been considered within the NNPDF frame-
work: In the NNPDF4.0 [16] analysis of the free-proton
PDFs the nuclear-PDF uncertainties were considered
as correlated uncertainties following Ref. [17]. In the
nNNPDF2.0 analysis [9], on the other hand, the un-
certainties from the free-proton PDFs were propagated
into nuclear PDFs. In the present work, we will now
carry out the latter within a Hessian prescription. Even-
tually, in a complete analysis, both the free- and bound-
proton PDFs should be fitted simultanously and the
first steps towards this direction have also recently been
taken [18].

2 Nuclear PDFs and proton baseline

2.1 Parametrization of nuclear modifications

We write the bound-proton PDF f
p/A
i (x,Q2) as a prod-

uct of the nuclear modification R
p/A
i (x,Q2) and the free
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2),
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i (x,Q2) = R

p/A
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2) . (1)

Here A denotes the mass number of the nucleus and
i indexes the parton flavour. Our proton baseline here
is the recent set CT18ANLO [19]. The CT18A di↵ers
from the default CT18 in that it includes also the AT-
LAS 7TeV data on W±- and Z-boson production [20].
The inclusion of these data was found to impact pri-
marily the strange-quark PDF and to worsen the de-
scription of the neutrino-iron dimuon data [21] in which
the strange-quark PDF plays a central role. By adopt-
ing the version version “A” our strange-quark baseline
PDF is thus less sensitive to the data on heavy nuclei.

The PDFs of a bound neutron f
n/A
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u (x,Q2),

f
n/A
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The full nuclear PDFs that enter the cross-section cal-
culations are always linear combinations that depend
on the number of protons Z and number of neutrons
N = A� Z,

f
A
i (x,Q2) = Zf

p/A
i (x,Q2) +Nf

n/A
i (x,Q2) . (3)

We define the nuclear modifications of the full nuclear
PDFs by

R
A
i (x,Q

2) =
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i (x,Q2) +Nf
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Zf
p
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As in our earlier fits, we prefer to parametrize the
nuclear modifications Rp/A

i (x,Q2

0
) instead of the abso-

lute PDFs f
p/A
i (x,Q2

0
). The two options are of course

fully equivalent but since most of the observables in the
analysis are normalized to measurements involving ei-
ther the free proton or deuteron (whose nuclear e↵ects
we neglect), the relative di↵erences with respect to the
free proton PDF are what truly matter.

The nuclear modifications are parametrized at the
charm mass thresholdQ0 = mcharm = 1.3GeV. Coming
up with a decent functional form for the parametriza-
tion and deciding which parameters can be free is among
the biggest challenges in the entire global analysis of nu-
clear PDFs. On one hand the parametrization should
be flexible enough in regions where there are data con-
straints. On the other hand, the outcome of the fit
should be physically feasible. For example, it is rea-
sonable to expect that the nuclear e↵ects are broadly
larger in heavy nuclei like lead than what they are in a
light nucleus like carbon. A feature like this is easily lost
if too much flexibility is given for the parametrization.
Coming up with the functional form finally used in the
present analysis is a combination of experience from a
entire chain of global fits we have performed in the past
[22–25,1], and trial and error. Our parametrization is a
piecewise-smooth function defined as,
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In comparison to EPPS16, we have made some ad-
justments to the parametrization. First, the small-x
part involves the additional factor e�xa2/xa�e

�a2 , which
increases the flexibility at small x [23]. Second, at in-
termediate values of x we use a functional form that is
often used to parametrize the absolute PDF. The first
derivatives are taken to be zero at the matching points
xa and xe corresponding to the locations of the antic-
ipated antishadowing maximum and EMC minimum.
This fixes four parameters. Apart from the new small-
x parameter a2 and the large-x parameter c0, rest of
the parameters ai, bi, ci are expressed in terms of ya, ye
and y0 which correspond to the values of the function
at x = xa, x = xe and x = 0. The parametrization is

Excellent description of data (not shown) - universality of nuclear PDFs

[Fit I.C. with experimental data]

Figure 1.1. The NNPDF4.0 NNLO PDFs at Q = 3.2 GeV (left) and Q = 102 GeV (right).

the NOMAD neutrino dimuon structure functions, and the HERA DIS jet data. Then in Sect. 8 we assess
the dependence of PDFs on the methodology and verify the robustness of our results, by comparing with
PDFs obtained using the previous NNPDF3.1 methodology and by studying the impact of new positivity
and integrability constraints, checking the independence of results of the choice of PDF parametrization,
discussing the impact of independently parametrizing the charm PDF, and studying the role of nuclear
corrections. We finally present a first assessment of the implications of NNPDF4.0 for LHC phenomenology
in Sect. 9, by computing PDF luminosities, fiducial cross-sections, and di↵erential distributions for repre-
sentative processes. In Sect. 10 we summarize and list the NNPDF4.0 grid files that are made available
through the LHAPDF interface [32] and provide a summary and outlook.

A brief overview of the NNPDF fitting code is presented in App. A, while a more extensive description is
provided by the companion publication [31]. In App. B we compare the NNPDF4.0 dataset to that adopted
in other PDF determinations.

2 Experimental and theoretical input

We present the NNPDF4.0 dataset in detail. After a general overview, we examine each of the processes for
which new measurements are considered in NNPDF4.0, we present the details of the measurements, and,
for each dataset, we describe how the corresponding theoretical predictions are obtained. In NNPDF4.0,
theoretical predictions for data taken on nuclear targets are supplemented by nuclear corrections, which
are specifically discussed in a dedicated section. Experimental statistical and systematic uncertainties are
treated as in previous NNPDF determinations: see in particular Sect. 2.4.2 of Ref. [14] for a detailed
discussion.

The global dataset presented in this section is the basis for the final NNPDF4.0 dataset, which will
be selected from it by applying criteria based on testing for dataset consistency and compatibility, and for
perturbative stability upon the inclusion of electroweak corrections. The selection of the final dataset will
be discussed in Sect. 4 below.

2.1 Overview of the NNPDF4.0 dataset

The NNPDF4.0 dataset includes essentially all the data already included in NNPDF3.1, the only exceptions
being a few datasets that are replaced by a more recent final version, and single-inclusive jet datasets which
are now partly replaced by dijet data, as we discuss below. All the new datasets that were not included
in NNPDF3.1 are more extensively discussed in Sect. 2.2. For all those already included in NNPDF3.1 we
refer to Sect. 2 of Ref. [5] for a detailed discussion. Nevertheless we give a summary below.

The NNPDF3.1 dataset included data for lepton-nucleon, neutrino-nucleus, proton-nucleus and proton-
(anti)proton scattering processes. The bulk of it consisted of deep inelastic scattering (DIS) measurements:
these included fixed-target neutral current (NC) structure function data from NMC [33,34], SLAC [35] and
BCDMS [36], fixed-target inclusive and dimuon charged current (CC) cross-section data from CHORUS [37]

6

Proton PDFs 
NNPDF 2021



“Dense” regime - non-linear needed
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Experimental data from ALICE in “centrality” and energy

Huge multiplicities for central PbPb collisions

Multiplicity of charged particles in Pb-Pb

9

• Multiplicity measured using charged tracks at mid-rapidity

• Energy dependence in line with expectation from lower energies

• Results in agreement with other experiments

Run 3

Abhi Modak 18/07/24, 09:55
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Saturation - Color Glass Condensate
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Color Glass Condensate 
Large occupation numbers - classical fields

Quantum Corrections - evolution eqs. 

`Bottom-up´ thermalization for over-occupied gluons

J. Berges

S
ören S

chlichting

Baier, Muller, Schiff, Son, PLB (2001) Evolution stages of initially over-occupied gluons:

Berges, Boguslavski, Schlichting, Venugopalan, PRD (2014); Kurkela, Zhu, PRL (2015); Keegan, Kurkela, 
Mazeliauskas, Teaney, JHEP (2016); Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney, PRL (2019)

o talk by Aleksas Mazeliauskas

Color Glass Condensate provides a general 
framework to compute initial stages

This equation can be explicitly inverted in the light cone gauge

A− = −A+ = 0 (15)

We find

ψ− =
1√
2P+

γ0(̸Pt + M)ψ+ (16)

The fermion contribution to the action is therefore

SF = −ψ†
+P−ψ+ +

1

2
ψ†

+(M− ̸Pt)
1

P+
(M+ ̸Pt)ψ+ (17)

where we have rescaled ψ → 1
21/4ψ. In terms of these variables, we see that ψ†

+ is

the light cone momentum canonically conjugate to ψ+.

To analyze the vector contribution to the action, we first write explicitly

F 2 = F 2
t − 4Fk+Fk− + 2F+−F+− (18)

In light cone gauge, we have

F+− = ∂+A− − ∂−A+ − ig[A−, A+] = −∂−A+, (19)

Fk+ = ∂kA+ − ∂+Ak − ig[Ak , A+], (20)

and

Fk− = Ek = −∂−Ak (21)

The equations of motion for the vector field are

DµFµν = Jν (22)

In particular, the equation for the + component of the current is a constraint

equation for A− on a fixed x+ surface,

− ∂2
−A− = J+

F + DkE
k (23)

6
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A picture for equilibration`Bottom-up´ thermalization for over-occupied gluons

J. Berges

S
ören S

chlichting

Baier, Muller, Schiff, Son, PLB (2001) Evolution stages of initially over-occupied gluons:

Berges, Boguslavski, Schlichting, Venugopalan, PRD (2014); Kurkela, Zhu, PRL (2015); Keegan, Kurkela, 
Mazeliauskas, Teaney, JHEP (2016); Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney, PRL (2019)

o talk by Aleksas Mazeliauskas
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`Bottom-up´ thermalization for over-occupied gluons

J. Berges

+

(I) (II) (III)

(I)

(II)

(III) AMY gluon kinetic theory:
Kurkela, Zhu, PRL (2015)

Kurkela, Mazeliauskas, 
Paquet, Schlichting, 
Teaney, PRC (2019)

Non-equilibrium towards hydrodynamics

Evolution of homogenous boost invariant system in QCD kinetic theory

pµ@µf(x, p) = C2$2[f ] + C1$2[f ]

Kurkela, Zhu PRL 115 (2015) 182301; Keegan,Kurkela,Mazeliauskas,Teaney JHEP 1608 (2016) 171; 
Kurkela, Mazeliauskas, Paquet, SS, Teaney  PRL 122 (2019) no.12, 122302; PRC 99 (2019) no.3, 034910 
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Classical fields Kinetic theory

Qs

psoft

Soft  
stabilization

Mini-jet 
parton shower

Initial production &  
 longitudinal squeeze

Soft 
radiation

⌧/⌧Hydro ⇠ 0.1 ⌧/⌧Hydro ⇠ 0.3 ⌧/⌧Hydro ⇠ 1

Kinetic equilibration ``bottom-up” via radiative break-up 8

[Arnold, Moore, Yaffe 2001; Kurkela, Zhu 2015; Keegan, Kurkela, 
Mazeliauskas, Teaney 2016; Kurkela Mazeliauskas, Paquet, 

Schlichting, Teaney 2019…] 

Evolution of boost-invariant system with kinetic eqs.

[Bottom-up thermalization — Baier, Mueller, Schiff, Son 2001]

[Classical statistical/lattice gauge theory…] 



Most of the theoretical progress in the last years:
 Viscosity corrections and consistency 
 Fluctuations in initial conditions 
 Emergence of hydro from kinetic eqs, holography, etc…

Far from equilibrium initial state needs to equilibrate fast (~1 fm or less)
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+ initial time  
+ freeze-out 
temperature



EoS — high temperature
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A robust tool: Lattice QCD

τ∈
[0
,1
/T
]

x,y,z

Gauge*fields*as*links:**Uμ(x)=exp[*i g*Δxμ Aμ(x)*]

Well*established*nonBperturbative 1st principles*approach*to*QCD

Finite*extend*in*imaginary time:*1/T =*β*=*Nτ aτ

hOi = 1

N
lim

N!1

NX

k=1

O(Uk) P[U] / e-SE[U, , ̄]

Dynamical*fermions*ψ(x)*with*realistic*masses

ψ

(Pseudo)critical*temperature:*154±9*MeV

Successful*at*T>0:*QCD*medium

Equation*of*state*as*input*for*hydroBdynamics
Trace*anomaly*Tμμ =*εB3p*strong*coupling*at*TC

WB*JHEP*1009*(2010)*073*B HotQCD PRD85*(2012)*054503

HotQCD*PRD90*(2014)*094503*B WB*PLB730*(2014)*99B104

cont.*lim

TC

(ε-3p)/T4

p/T4

s/4T4

 
 
 

0

1

2

3

4

130 170 210 250 290 330 370

T [MeV]

stout HISQ

Nσ/Nτ=4*Nf=2+1*Mπ=160MeV

H
ot
Q
C
D
PR
D
90
*(2
01
4)
*0
94
50
3*

XXVIIth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions –Venice,  Italy – 13/05/2018

QUARKONIUM

hO(U)i =
Z
DUO(U) e-SQCD

E [U]

 0

 1

 2

 3

 4

 5

 100  200  300  400  500  600  700  800  900  1000

(ρ
-3

p
)/

T
4

T [MeV]

HTLpt
2+1 flavor continuum

2+1+1 flavor continuum

 0

 1

 2

 3

 4

 5

 100  200  300  400  500  600  700  800  900  1000

(ρ
-3

p
)/

T
4

T [MeV]

HTLpt

 0

 1

 2

 3

 4

 5

 6

 7

 100  200  300  400  500  600  700  800  900  1000

p
re

ss
u

re
/T

4

T [MeV]

HTLpt
2+1 flavor continuum

2+1+1 flavor continuum

 0

 1

 2

 3

 4

 5

 6

 7

 100  200  300  400  500  600  700  800  900  1000

p
re

ss
u

re
/T

4

T [MeV]

HTLpt

Figure S4: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories. We also give
the four flavor NNLO HTL result at high temperatures [S1].

S3.2 Charm mass threshold in the QCD equation of state

Thanks to the lattice data that we have generated, we can present non-perturbative results for the charm
quark contribution. It is instructive to study the inclusion of the charm quark in detail. This way we can
design an analytical technique for the inclusion of the bottom quark, for which the standard formulation
of lattice QCD is computationally not feasible.

The quark mass threshold for the charm quark entering the EoS has already been estimated in
Ref. [S61]. There, the e↵ect of a heavy quark was calculated to a low order of perturbation theory.
This e↵ect was expressed as a pressure ratio between QCD with three light and one heavy flavor and QCD
with only three light flavors. When that paper was completed the lattice result for the QCD equation of
state was not yet available, but the perturbative methods were already in an advanced state.

Despite the known di�culties of perturbation theory the estimate of Ref. [S61] is very close to our
lattice result if we plot the ratio of the pressure with and without the charm quark included. We show
our lattice data together with the perturbative estimate in Fig. S6.

Though the individual values for the 2+1+1 and 2+1 flavor pressures of [S61] are not very accurate,
their ratio describes well the lattice result. This is true both for the leading and for the next-to-leading
order results (See Fig. S6).

The tree-level charm correction is given by

p(2+1+1)(T )

p(2+1)(T )
=

SB(3) + FQ(mc/T )

SB(3)
(S8)

where SB(nf ) is the Stefan Boltzmann limit of the nf flavor theory, and FQ(m/T )T 4 is the free energy
density of a free quark field with mass m. In this paper we used the MS mass mc(mc) = 1.29 GeV [S68].

Order g2 in the ratio of Fig. S6 starts to be important correction below a temperature of about
2� 3TQCD

c temperature. Near 2Tc the di↵erence between the two approximations is 3%. The di↵erence
reduces to 0.2% at 1 GeV up to which point we have lattice data.

S3.3 Bottom mass threshold in the QCD equation of state

In the previous discussion we saw that even the tree-level quark mass threshold gives a correct estimate
for the equation of state. This allows us to introduce the bottom threshold along the same lines.

First, we remark that one can write the charm threshold relative to the 2 + 1 + 1 flavor theory:

p(2+1+1)(T )

p(2+1+1)(T )|mc=0

=
SB(3) + FQ(mc/T )

SB(4)
. (S9)
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Figure S4: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories. We also give
the four flavor NNLO HTL result at high temperatures [S1].

S3.2 Charm mass threshold in the QCD equation of state

Thanks to the lattice data that we have generated, we can present non-perturbative results for the charm
quark contribution. It is instructive to study the inclusion of the charm quark in detail. This way we can
design an analytical technique for the inclusion of the bottom quark, for which the standard formulation
of lattice QCD is computationally not feasible.

The quark mass threshold for the charm quark entering the EoS has already been estimated in
Ref. [S61]. There, the e↵ect of a heavy quark was calculated to a low order of perturbation theory.
This e↵ect was expressed as a pressure ratio between QCD with three light and one heavy flavor and QCD
with only three light flavors. When that paper was completed the lattice result for the QCD equation of
state was not yet available, but the perturbative methods were already in an advanced state.

Despite the known di�culties of perturbation theory the estimate of Ref. [S61] is very close to our
lattice result if we plot the ratio of the pressure with and without the charm quark included. We show
our lattice data together with the perturbative estimate in Fig. S6.

Though the individual values for the 2+1+1 and 2+1 flavor pressures of [S61] are not very accurate,
their ratio describes well the lattice result. This is true both for the leading and for the next-to-leading
order results (See Fig. S6).

The tree-level charm correction is given by

p(2+1+1)(T )

p(2+1)(T )
=

SB(3) + FQ(mc/T )

SB(3)
(S8)

where SB(nf ) is the Stefan Boltzmann limit of the nf flavor theory, and FQ(m/T )T 4 is the free energy
density of a free quark field with mass m. In this paper we used the MS mass mc(mc) = 1.29 GeV [S68].

Order g2 in the ratio of Fig. S6 starts to be important correction below a temperature of about
2� 3TQCD

c temperature. Near 2Tc the di↵erence between the two approximations is 3%. The di↵erence
reduces to 0.2% at 1 GeV up to which point we have lattice data.

S3.3 Bottom mass threshold in the QCD equation of state

In the previous discussion we saw that even the tree-level quark mass threshold gives a correct estimate
for the equation of state. This allows us to introduce the bottom threshold along the same lines.

First, we remark that one can write the charm threshold relative to the 2 + 1 + 1 flavor theory:

p(2+1+1)(T )

p(2+1+1)(T )|mc=0
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Equation of state at      =0 is rather well known by 
lattice at moderate temperature — reasonably good 

matching with perturbative at 
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Harmonics: the golden measurement 
[simplified discussion]
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Remember the Euler eqs. — and use conformal EoS                
Transverse plane 
of the collision

Initial state 
spatial 

anisotropies

Final state 
momentum 

anisotropies

@�

dt
= � c2

✏+ P
rP / �r✏

✏ = 3P

These final state momentum anisotropies are measurable, e.g.

16
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FIG. 6. (Color online) Flow coefficients in 200 GeV Au+Au (a), 2.76 TeV Pb+Pb (b), 5.023 TeV Pb+Pb (c), and 5.44 TeV
Xe+Xe (d) collisions. The experimental data are from the STAR [86, 87] and ALICE collaborations [88, 89].

v2{2} in 2.76 TeV Pb+Pb collisions while also repro-
ducing v2{2} in central to mid-central 200 GeV Au+Au
collisions. The most essential feature of the dynamical
freeze-out is that the smaller collision systems freeze out
earlier in the hadronic phase. This means that there
is less time for the initial state eccentricities to convert
to the momentum space anisotropies in peripheral colli-
sions. Indeed, as seen in Fig. 6, all pT -integrated flow
coefficients for the ⌘/s = dyn parametrization are sig-
nificantly smaller in peripheral collisions than the re-
sults of the ⌘/s parametrizations from the earlier works
that used a constant-temperature decoupling surface. As
can be seen from the comparison to measurements, the
⌘/s = dyn parametrization reproduces well the central-
ity dependence of all flow coefficients in all LHC collision
systems and clearly improves the results from the earlier
ones in peripheral collisions. The biggest discrepancy
with the data and the model calculation is the 40 � 80%
-centrality range in 200 GeV Au+Au collisions. In this

region especially the predictions for the flow coefficients
v3{2} and v4{2} are well outside of the error bars of the
measurements. There are multiple possible reasons for
this. First of all, due to the lower multiplicity in the
200 GeV Au+Au collisions it is reasonable to expect sig-
nificantly larger non-flow effects compared to the LHC
systems. Additionally, the �f -corrections to the parti-
cle spectra are much larger at RHIC than at LHC which
adds additional uncertainty to the RHIC results. Lastly,
we do not include any nucleon substructure [90], initial
flow or non-zero ⇡µ⌫ to our initial state model and ef-
fects of these modifications are still under investigation.
We note that other groups report very similar flow coeffi-
cients in peripheral RHIC collisions, see e.g. Refs. [19, 91]

The change in the magnitude of the flow coefficients is
quite modest from 2.76 TeV to 5.023 TeV Pb+Pb colli-
sions, and a better way to quantify the change is to plot
the ratio of the coefficients between the two collision ener-
gies. The ratio is also a more robust prediction from fluid

[Hirvonen, Eskola, Niemi 2022]
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C. Viscosity estimation and model accuracy for combined
RHIC & LHC data

Reviewing Figs. 4 and 5 we find that the observables at the
LHC give stronger constraints on the slope of the specific shear
viscosity at large temperature. It is the general expectation that
higher psNN collisions at the LHC are more sensitive to the
transport coe�cient at high temperature. This conclusion was
verified quantitatively in previous Bayesian parameter estima-
tion [24, 146]. For the present analysis, we do caution that we
currently use a di�erent number of observables at RHIC and
the LHC; consequently, we are not in a position to compare
systematically the constraining power of the two collision en-
ergies at the moment. We do expect RHIC and LHC data to
be complementary, and we proceed to a combined Bayesian
parameter estimation for Pb-Pb at psNN = 2.76TeV and Au-
Au at psNN = 200GeV collisions. For this combined anal-
ysis, the viscosity posterior for the Grad viscous correction is
shown in Fig. 6.

FIG. 6. The posterior for specific bulk (left) and shear (right) vis-
cosities resulting from a model parameter estimation using combined
data for Au-Au collisions at psNN = 200 GeV and Pb-Pb collisions
at psNN = 2.76 TeV.

As discussed in Section V A, all parameters are held the
same for the two systems except for their overall normaliza-
tions of the initial conditions — N [2.76 TeV] and N [0.2 TeV].
Recall that model parameters being kept constant does not im-
ply that the e�ective physical quantities are the same at RHIC
and the LHC. For example, the transport coe�cients are tem-
perature dependent, and the free-streaming time depends on
p
sNN and centrality through the total energy of the event.
The information gained by fitting both systems slightly re-

duces the width of the credible intervals for the specific shear
and bulk viscosities at temperatures above 250 MeV; the 90%
confidence band in the posterior for specific shear and bulk
viscosity is slightly smaller than the credible intervals given by
calibrating against either one of these two systems alone. This
illustrates the added constraining power accessed by combin-
ing the two data sets.

The simultaneous fit to experimental observables is shown
in Fig. 7, where we have plotted the emulator prediction for
the observables at one hundred parameter samples drawn ran-
domly from the posterior. Note that, in spite of some undeni-
able tension in the simultaneous fit of ALICE and STAR data

FIG. 7. The observables predicted by the Grad viscous correction
emulator, drawn from the posterior resulting from the combined fit
of ALICE data (left) for Pb-Pb collisions at psNN = 2.76 TeV and
STAR data (right) for Au-Au collisions at psNN = 200 GeV. The
simultaneous fit yields model observables which agree within ⇠20%
of experimental measurements.

(for example in the mean transverse momenta of kaons), our
hybrid model can describe simultaneously all of the observ-
ables we considered for the two systems to within 20% of the
experimental results. As discussed earlier, this is important:
our confidence in the significance of this section’s parameter
estimates rests on a good description of the experimental data
when sampling model parameters according to their posterior
probability distribution.

As a final emulator validation, we have calculated the Maxi-
mum A Posteriori (MAP) parameters of the Grad viscous cor-
rection model. Using these parameters, we simulated 5,000
fluctuating events and performed centrality averaging. The
comparison between the hybrid model prediction at the MAP
parameters and the experimental data are shown in Fig. 8, and
MAP parameters for the Grad, Chapman-Enskog and Pratt-
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FIG. 6. (Color online) Flow coefficients in 200 GeV Au+Au (a), 2.76 TeV Pb+Pb (b), 5.023 TeV Pb+Pb (c), and 5.44 TeV
Xe+Xe (d) collisions. The experimental data are from the STAR [86, 87] and ALICE collaborations [88, 89].

v2{2} in 2.76 TeV Pb+Pb collisions while also repro-
ducing v2{2} in central to mid-central 200 GeV Au+Au
collisions. The most essential feature of the dynamical
freeze-out is that the smaller collision systems freeze out
earlier in the hadronic phase. This means that there
is less time for the initial state eccentricities to convert
to the momentum space anisotropies in peripheral colli-
sions. Indeed, as seen in Fig. 6, all pT -integrated flow
coefficients for the ⌘/s = dyn parametrization are sig-
nificantly smaller in peripheral collisions than the re-
sults of the ⌘/s parametrizations from the earlier works
that used a constant-temperature decoupling surface. As
can be seen from the comparison to measurements, the
⌘/s = dyn parametrization reproduces well the central-
ity dependence of all flow coefficients in all LHC collision
systems and clearly improves the results from the earlier
ones in peripheral collisions. The biggest discrepancy
with the data and the model calculation is the 40 � 80%
-centrality range in 200 GeV Au+Au collisions. In this

region especially the predictions for the flow coefficients
v3{2} and v4{2} are well outside of the error bars of the
measurements. There are multiple possible reasons for
this. First of all, due to the lower multiplicity in the
200 GeV Au+Au collisions it is reasonable to expect sig-
nificantly larger non-flow effects compared to the LHC
systems. Additionally, the �f -corrections to the parti-
cle spectra are much larger at RHIC than at LHC which
adds additional uncertainty to the RHIC results. Lastly,
we do not include any nucleon substructure [90], initial
flow or non-zero ⇡µ⌫ to our initial state model and ef-
fects of these modifications are still under investigation.
We note that other groups report very similar flow coeffi-
cients in peripheral RHIC collisions, see e.g. Refs. [19, 91]

The change in the magnitude of the flow coefficients is
quite modest from 2.76 TeV to 5.023 TeV Pb+Pb colli-
sions, and a better way to quantify the change is to plot
the ratio of the coefficients between the two collision ener-
gies. The ratio is also a more robust prediction from fluid

[Hirvonen, Eskola, Niemi 2022]
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C. Viscosity estimation and model accuracy for combined
RHIC & LHC data

Reviewing Figs. 4 and 5 we find that the observables at the
LHC give stronger constraints on the slope of the specific shear
viscosity at large temperature. It is the general expectation that
higher psNN collisions at the LHC are more sensitive to the
transport coe�cient at high temperature. This conclusion was
verified quantitatively in previous Bayesian parameter estima-
tion [24, 146]. For the present analysis, we do caution that we
currently use a di�erent number of observables at RHIC and
the LHC; consequently, we are not in a position to compare
systematically the constraining power of the two collision en-
ergies at the moment. We do expect RHIC and LHC data to
be complementary, and we proceed to a combined Bayesian
parameter estimation for Pb-Pb at psNN = 2.76TeV and Au-
Au at psNN = 200GeV collisions. For this combined anal-
ysis, the viscosity posterior for the Grad viscous correction is
shown in Fig. 6.

FIG. 6. The posterior for specific bulk (left) and shear (right) vis-
cosities resulting from a model parameter estimation using combined
data for Au-Au collisions at psNN = 200 GeV and Pb-Pb collisions
at psNN = 2.76 TeV.

As discussed in Section V A, all parameters are held the
same for the two systems except for their overall normaliza-
tions of the initial conditions — N [2.76 TeV] and N [0.2 TeV].
Recall that model parameters being kept constant does not im-
ply that the e�ective physical quantities are the same at RHIC
and the LHC. For example, the transport coe�cients are tem-
perature dependent, and the free-streaming time depends on
p
sNN and centrality through the total energy of the event.
The information gained by fitting both systems slightly re-

duces the width of the credible intervals for the specific shear
and bulk viscosities at temperatures above 250 MeV; the 90%
confidence band in the posterior for specific shear and bulk
viscosity is slightly smaller than the credible intervals given by
calibrating against either one of these two systems alone. This
illustrates the added constraining power accessed by combin-
ing the two data sets.

The simultaneous fit to experimental observables is shown
in Fig. 7, where we have plotted the emulator prediction for
the observables at one hundred parameter samples drawn ran-
domly from the posterior. Note that, in spite of some undeni-
able tension in the simultaneous fit of ALICE and STAR data

FIG. 7. The observables predicted by the Grad viscous correction
emulator, drawn from the posterior resulting from the combined fit
of ALICE data (left) for Pb-Pb collisions at psNN = 2.76 TeV and
STAR data (right) for Au-Au collisions at psNN = 200 GeV. The
simultaneous fit yields model observables which agree within ⇠20%
of experimental measurements.

(for example in the mean transverse momenta of kaons), our
hybrid model can describe simultaneously all of the observ-
ables we considered for the two systems to within 20% of the
experimental results. As discussed earlier, this is important:
our confidence in the significance of this section’s parameter
estimates rests on a good description of the experimental data
when sampling model parameters according to their posterior
probability distribution.

As a final emulator validation, we have calculated the Maxi-
mum A Posteriori (MAP) parameters of the Grad viscous cor-
rection model. Using these parameters, we simulated 5,000
fluctuating events and performed centrality averaging. The
comparison between the hybrid model prediction at the MAP
parameters and the experimental data are shown in Fig. 8, and
MAP parameters for the Grad, Chapman-Enskog and Pratt-
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SUMMARY

Flow measurements in CMS with
• Collision system size scan: PbPb, pPb, pp, γp collisions
• Particle species scan: Charged hadrons, strange/charm/bottom 
hadrons, Jets, Z boson

Charged 
hadron Strange Prompt

J/Ψ bà J/ψ Prompt 
D0 bà D0 Υ(1S/2S) Dijet Z boson

PbPb Yes Yes Yes Yes Yes Yes No Yes No

pPb Yes Yes Yes Yes No No

pp Yes Yes Yes

Do we see flow signals?

Shengquan Tuo parallel 08/07
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v
2
 in UPC

● Nonzero v
2
 seen in γA collisions!

● Dominated by resolved photon interactions
● No direct control over initial photon energy

● Large range of effective collision energies 

● At higher Q2, can control kinematics and interaction process better
● Does v

2
 persist in DIS region?

See talk by B. Seidlitz yesterday
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Introduction

pp pPb PbPb

p

p

● Origin of ridge in small systems still uncertain
● Initial state effect (CGC)
● Flowing mini Quark Gluon Plasma
● MPIs
● “Escape” mechanism

● Complications from complexity of hadronic events
● Hadron structure
● Gluon ISR
● Beam remnants

● Can we simplify the system?

Hydrodynamics seem to work (too) well in all colliding systems for large multiplicities
But time scales and occupancies in small systems are small 

For some classes of problems hydro equations have attractors 
[universal solutions, independent on initial conditions]

Hydro models able to describe the harmonics from these data
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Hits of a ridge in (reanalysed) 
high multiplicity ALEPH data?

Yen-Jie Lee (MIT)

Hadronic e+e- Events at LEP 2 (Ntrk>=50)

17Two-Particle Correlation in e+e- Collisions at 91-209 GeV with Archived ALEPH Data 

!!!

Janice Chen

• A long-range near-side correlation signal 
shows up at high multiplicity

Yen-Jie Lee Parallel 09/07

What does it mean?
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Jet quenching 
Quarkonia suppression 
Open heavy flavor 
EW probes
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ū̄ūu
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Fig. 8 The EPPS21 nuclear modifications of average nucleons in carbon (two leftmost columns) in lead (two rightmost
columns) at the initial scale Q2 = 1.69GeV2 and at Q2 = 10GeV2. The central results are shown by thick black curves, and
the nuclear error sets by green dotted curves. The blue bands correspond to the nuclear uncertainties and the purple ones to
the full uncertainty (nuclear and baseline errors added in quadrature).

Proton PDF uncertainties
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[Several different teams: EPPS, nNNPDF, nCTEQ, TUJU, DSSZ, HKN, KA]
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 Simple intuitive picture [Matsui & Satz 1986] 

 Potential screened at high-T 
 Quarkonia suppressed 
 Sequential suppression of excited states 
 Quarkonia as a thermometer

Ágnes Mócsy: Potential Models for Quarkonia 5

Fig. 5. The QGP thermometer.

In principle, a state is dissociated when no peak struc-
ture is seen, but the widths shown in spectral functions
from current potential model calculations are not physi-
cal. Broadening of states as the temperature increases is
not included in any of these models. At which T the peak
structure disappears then? In [27] we argue that no need
to reach Ebin = 0 to dissociate, but when Ebin < T a state
is weakly bound and thermal fluctuations can destroy it.
Let us quantify this statement.

Due to the uncertainty in the potential we cannot de-
termine the binding energy exactly, but we can never-
theless set an upper limit for it [27]: We can determine
Ebin with the most confining potential that is still within
the allowed ranges by lattice data on free energies. For
the most confining potential the distance where deviation
from T = 0 potential starts is pushed to large distances
so it coincides with the distance where screening sets in
[12]. From Ebin we can then estimate, following [28], the
quarkonium dissociation rate due to thermal activation,
obtaining this way the thermal width of a state Γ (T ).
At temperatures where the width, that is the inverse of
the decay time, is greater than the binding energy, that is
the inverse of the binding time, the state will likely to be
dissociated. In other words, a state would melt before it
binds. For example, already close to Tc the J/ψ would melt
before it would have time to bind. To quantify the dissoci-
ation condition we have set a more conservative condition
for dissociation: 2Ebin(T ) < Γ (T ). The result for differ-
ent charmonium and bottomonium states is shown in the
thermometer of figure 5. Note, that all these numbers are
to be though of as upper limits.

In summary, potential models utilizing a set of poten-
tials between the lower and upper limit constrained by
lattice free energy lattice data yield agreement with lat-
tice data on correlators in all quarkonium channels. Due
to this indistinguishability of potentials by the data the

precise quarkonium properties cannot be determined this
way, but the upper limit can be estimated. The decrease
in binding energies with increasing temperature, observed
in all the potential models on the market, can yield sig-
nificant broadening, not accounted for in the currently
shown spectral functions from these models. The upper
limit estimated using the confining potential predicts that
all bound states melt by 1.3Tc, except the Upsilon, which
survives until 2Tc. The large threshold enhancement above
free propagation seen in the spectral functions even at high
temperatures, again observed in all the potential models
on the market, compensates for melting of states (yielding
flat correlators), and indicates that correlation between
quark and antiquark persists. Lattice results are thus con-
sistent with quarkonium melting.

And What’s Next?

Implications of the QGP thermometer of figure 5 for heavy
ion collisions should be considered by phenomenological
studies. This can have consequences for the understanding
of the RAAmeasurements, since now the Jψ should melt
at SPS and RHIC energies as well. The thermometer also
suggests that the Υ will be suppressed at the LHC, and
that centrality dependence of this can reveal whether this
happens already at RHIC. So measurements of the Υ can
be an interesting probe of matter at RHIC as well as at
the LHC.

The exact determination of quarkonium properties the
future is in the effective field theories from QCD at finite
T. First works on this already appeared [14] and both real
and imaginary parts of the potential have been derived
in certain limits. In these works there is indication that
most likely charmonium states dissolve in QGP due ther-
mal effects, such as activation to octet states, screening,
Landau-damping.

The correlations of heavy-quark pairs that is embedded
in the threshold enhancement should be taken seriously
and its consequences, such as possible non-statistical re-
combination taken into account in dynamic models that
attempt the interpretation of experimental data [24].

All of the above discussion is for an isotropic medium.
Recently, the effect of anisotropic plasma has been con-
sidered [29]. Accordingly, quarkonium might be stronger
bound in an anisotropic medium, especially if it is aligned
along the anisotropy of the medium (beam direction).
Qualitative consequences of these are considered in an up-
coming publication [30]. Also, all of the above discussion
refers to quarkonium at rest. Finite momentum calcula-
tions are under investigation. It is expected that a moving
quarkonium dissociates faster.
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Dynamical picture: 
 different effects:  

 screening / rescattering / recombination 
 Induced transition between quarkonia states 

Quarkonia as an open quantum system

[Bambrilla, Soto, Escobedo, Vairo, Ghiglieri, Petreczky, Strickland, Blaizot, 
Rothkopf, Kaczmarek, Asakawa, Katz, Gossiaux, Kajimoto, Akamatsu, Borghini …]

We have compared the best fit of the properly derived
Gauss law expression to that obtained with the legacy
formulation of [29]. Within the combined statistical and
systematic errors, both satisfactorily reproduce the lattice
data. That is, the uncertainty in the available values of ReV
does not yet allow us to favor one over the other. We note
that the two best fit solutions start to deviate from each other
for r≳ 0.6 fm (the QGP phase), leading to differences in
their asymptotic values. This in turn translates into quanti-
tative differences in the precise temperature dependence of
the open-heavy flavor threshold and thus the binding energy
of the in-medium quarkonium states. It will require future
high precision lattice determinations of ReV to distances up
to r ∼ 1 fm) to resolve this phenomenologically relevant
ambiguity.

E. Extension to a running coupling

In anticipation of upcoming high resolution lattice QCD
computations of the in-medium heavy quark potential, it is
prudent to consider the effects of a running coupling in the
Gauss law parametrization. While in the simulation data
deployed in the previous section the short distance regime
was still well described by a naive Cornell potential, more
recent lattice studies of heavy quark interactions [42] have
shown that at shorter resolved distances the running will
manifest itself. Thus we consider the strong coupling

parameter of our Cornell potential to become a function
of distance α̃s → α̃sðrÞ and write

α̃sðrÞ ¼ $ $ $ þ α̃ð−1Þs

r
þ α̃ð0Þs þ α̃ð1Þs rþ α̃ð2Þs r2 þ $ $ $ : ð34Þ

Note that in the context of the vacuum potential in Eq. (4),
we have already implicitly included the terms α̃ð1Þs and α̃ð2Þs
by absorbing them into the other vacuum parameters.
In a thermal setting, this would necessitate including ra

terms other than a ¼ −1; 1 in the formulation of the in-
medium potential. To do this, we must use the generalized
Gauss law operator Ga given in the left-hand side of Eq. (8),
but with a modified right-hand side that includes the real-
space complex permittivity (following the procedure in
Sec. II A)

−
1

raþ1
∇2VðrÞ þ 1þ a

raþ2
∇VðrÞ ¼ 4πqε−1ðr;mDÞ: ð35Þ

With the real space expressions given in Eqs. (13) and (14),
a computer algebra program will give a general solution for
general a as follows:

ReVaðrÞ ¼ c0 þ ca
ra

a

−
q

ðmDÞa
½Γða;mDrÞ þ Γð1þ a;mDrÞ'; ð36Þ

TABLE II. Results for the in-medium potential parameters.

β 6.8 6.9 7 7.125 7.25 7.3 7.48

T=Tc 0.86 0.95 1.06 1.19 1.34 1.41 1.66
mD=

ffiffiffi
σ

p
0.153(13) 0.403(33) 0.537(42) 0.769(56) 1.062(72) 1.081(72) 1.297(79)

mD=T 0.473 1.143 1.401 1.818 2.273 2.229 2.334

FIG. 2. (Left) The real part of the Gauss law model fitted to lattice QCD results. The three vacuum parameters are determined from
T ¼ 0 lattice data (gray). The finite temperature lattice data (colored points) are reproduced by tuning themD parameter. Solid lines give
the best fit results and the shaded regions the corresponding errors that arise from uncertainty both in the initial lattice data and in our
vacuum parameters. (Right) Prediction of the in-medium imaginary part from the Gauss law model (solid lines) fixed by the values of
mD obtained from ReV. Tentative lattice QCD results for ImV show excellent agreement.

IMPROVED GAUSS LAW MODEL AND IN-MEDIUM HEAVY … PHYS. REV. D 101, 056010 (2020)

056010-9

[Lafferty, Rothkopf 2020]
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Recent Experimental Results on Heavy Quarkonia in QGP 14 / 36

Bottomonia in PbPb Collisions at LHC

Contributions from regeneration e↵ects expected to be much weaker for ⌥ states

z LHC measurements of ⌥(1S) RAA much more suppressed than J/ RAA

z Bottomonia shows little dependence on pT compared to ALICE charmonia results
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J/ in AA Collisions at RHIC (LHC)

STAR J/ mid-rapidity RAA shows stronger suppression than ALICE mid-rapidity results

z Regeneration e↵ects modify charmonia measurements at LHC energies

At RHIC energies, regeneration not as significant ! J/ flow consistent with zero
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Bottomonia
sequential suppression

Charmonia
Mass is small enough so that many charm 

quarks are produced and almost thermalize. 
Charmonia is “regenerated” 
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A QCD jet evolving 
in the medium

The size of the 
medium is ~10fm

Most of the jet evolution 
happens inside the medium 

Most of the structure decided 
in the initial times

https://gsalam.web.cern.ch/gsalam/panscales/videos.html
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A QCD jet evolving 
in the medium

The size of the 
medium is ~10fm

Most of the jet evolution 
happens inside the medium 

Most of the structure decided 
in the initial times

https://gsalam.web.cern.ch/gsalam/panscales/videos.html


Fig. 3. (Colour online) Structures of jet-induced medium response in (a) Coupled Jet-Fluid model, (b) Coupled LBT-Hydro, (c) LBT
model, and (d) BAMPS. Adapted from Refs. [26, 27, 35, 9].

Fig. 4. (Colour online) Nuclear modification factor for jet shape function in central Pb+Pb collisions at 2.76 A TeV from (a) Coupled
Jet-Fluid model, (b) LBT model, (c) MARTINI, and (d) JEWEL. (a), (c), and (d) are the results for inclusive jet, and (b) is the result
for γ-jet. Adapted from Refs. [26, 35, 22, 36].

with hydrodynamic medium response and from LBT with recoils are shown in Fig. 5. The contribution of
the hydrodynamic medium response in Fig 5 (a) becomes larger by increasing the value of r and finally
dominates the jet shape in the large-r region (r > 0.5). The result with the hydrodynamic medium response
provides a good description of the experimental data from CMS [37]. The recoil contribution in Fig 5 (b)
shows the similar behavior and significantly broadens the jet shape in a wide range of r.

The jet broadening due to the medium response effect can be seen also in the cone-size dependence of
jet energy loss. Shown in Figure 6 (a-1) is the average pjet

T loss from Coupled Jet-Fluid model. The amount
of the pjet

T loss with the hydrodynamic medium response is smaller than that without the hydrodynamic
medium response. The similar recovery of jet energy is shown in the results from LBT model with the
recoil effect [Fig. 6 (a-2)]. We can also see the increase of the cone size dependence due to the contribution
of the hydrodynamic medium response in Fig. 6 (a-1): large jet cones catch more energy and momentum
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Fig. 5. (Colour online) Jet shape function in central Pb+Pb collisions at 2.76 A TeV for (a) subleading jet in dijet events from Coupled
Jet-Fluid model, and for (b) γ-jet from LBT model. Adapted from Refs. [26, 20].
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In-medium parton propagation
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Scattering amplitudes

27
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Intra-jet color coherence

28
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Intra-jet color coherence
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Vacuum-like emissions

29

Hard splittings with small formation time  cannot be resolved by the medium
First hard splitting + DLA — most of the cascade is vacuum-like (with energy loss on top)

tf ≪ td
3
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FIG. 1. Schematic representation of the phase-space available
for VLEs, including an example of a cascade with “1” the last
emission inside the medium and “2” the first emission outside.

(ii) First emission outside the medium The gluons
produced inside the medium are not yet on-shell: their
virtualities are as large as their transverse momenta,
themselves bound by the multiple scattering inside the
medium: k2? �

p
!q̂ � ⇤2, with ⇤ the QCD confine-

ment scale. These partons will thus continue radiating,
but their next VLE must occur outside the medium, with
a large formation time 2/(!✓2) � L, i.e. with an energy
! ⌧ !L(✓) ⌘ 2/(L✓2). This implies the existence of a
gap in the energy of the VLEs, between the lower limit
!0(✓) on the last gluon emitted inside the medium, and
the upper limit !L(✓) on the first gluon emitted outside
the medium. Since !0(✓) = !L(✓) = !c for ✓ = ✓c the
gap exists only for ! < !c, as shown in Fig. 1.

No angular ordering. Besides the gap in the phase-
space, the medium has another important e↵ect: the first
emission outside the medium can violate angular order-
ing. (A similar idea appears in [18].) Indeed, all the in-
medium sources with ✓ � ✓c satisfy tcoh(✓) ⌧ L and thus
lose color coherence after propagating over a distance L
in the medium. These sources can then radiate at any
angle.2 On the contrary, the sources with angles smaller
than ✓c (hence ! & !c; see Fig. 1), are not a↵ected by
the medium. They behave as if they were created outside
the medium and can radiate only at even smaller angles.

Energy loss after formation. After being created in-
side the medium via VLEs, the partons cross the plasma
over a distance of order L and hence lose energy via
medium-induced radiation — essentially, as independent
colour sources. Whereas this is the main mechanism for
the energy loss by the jet as a whole, it is less impor-
tant for the jet fragmentation. Indeed, the typical gluons

2 Notice the di↵erence in this respect between in-medium sources
emitting inside or outside the medium.

produced via medium-induced radiation are soft, with
! . ↵̄2

s!c. Via successive democratic branchings [4, 5],
they transfer their energy to many very soft quanta prop-
agating at large angles ✓ > ✓qq̄ [19–21]. Hence, such emis-
sions do not matter for the particle distribution inside
the jet.3 Furthermore, they do not significantly a↵ect
the sources for VLEs: the energy loss is important only
for the sources in a small corner of the phase-space, at
low energies ! . ↵̄2

s!c and large angles, ✓2 & (1/↵̄3
s)✓

2
c ,

cf. Eq. (1). We have checked that the e↵ect of introduc-
ing a lower limit ↵̄2

s!c on the energies of the VLEs is
numerically small. A complete phenomenological picture
of jet evolution in the medium would include medium-
induced emissions but, since they go beyond our current
level of approximation, we leave this for future work.
(iii) Emissions from sources created outside the

medium. After a first emission outside the medium, the
subsequent emissions follow, of course, the usual pattern
of vacuum-like cascades, with angular ordering (and en-
ergy ordering in our DLA approximation). The evolution
stops when the transverse momentum k? ' !✓ becomes
comparable to the hadronisation scale ⇤. This implies a
lower boundary, ! & !⇤(✓) ⌘ ⇤/✓, on the energy of the
produced gluons, shown in Fig. 1 together with the other
boundaries introduced by the medium. The most inter-
esting region for gluon production — the most sensitive
to medium e↵ects highlighted above — is the “outside
medium” region at energies ! < !c.
Gluon distribution. Within the present approxima-

tion, it is straightforward to compute the gluon distri-
bution generated by VLEs. To that aim we compute the
double di↵erential distribution,

T (!, ✓) ⌘ !✓2
d2N

d!d✓2
, (4)

which describes the gluon distribution in both energies
and emission angles. Consider a point with coordinates
(!, ✓) outside the medium. A generic contribution to
T (!, ✓) can be expressed as the product of a vacuum-like
cascade inside the medium, up to an intermediate point
(!1, ✓1), followed by a first emission outside the medium,
from (!1, ✓1) to (!2, ✓2) and, finally, by a genuine vac-
uum cascade, from (!2, ✓2) to the measured point (!, ✓).
This particular contribution yields (at large Nc)

T (!, ✓) = ↵̄s

Z ✓2
qq̄

✓2
c

d✓21
✓21

Z E

!0(✓1)

d!1

!1
Tvac(!1, ✓1|E, ✓qq̄)

Z min( 2
!L ,✓2

qq̄)

✓2

d✓22
✓22

Z min(!1,!L(✓2))

!

d!2

!2
Tvac(!, ✓|!2, ✓2) ,

(5)

3 One can show more rigorously that medium-induced emissions do
not matter at DLA. However, we believe our physical argument,
based on angular separation, to be more insightful.
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Color coherent sub-jets provide organizational principle for in-medium cascade
[Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk 2012]
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Medium-induced radiation

30

[Zakharov, Baier, Dokshitzer, Mueller, Peigne, Schiff, Wiedemann, Gyulassy, Levai, Vitev, and many others… starting in the mid-90’s] 

For fluctuation with  the gluon is 
resolved: medium-induced radiation  

tf ∼ td
[Balizot, Dominguez, Iancu, Mehtar-Tani 2013; Jeon, Moore 2005]

: democratic branchingtf ∼ td ≪ L

Jet RAA for  different medium profiles

Does the media behave differently for rapidity ? S. P. Adhya, C. Salgado, M. 
Spousta, K. Tywoniuk, 
EPJC 82 (2022) 1.

Multi- partonic cascades
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Probabilistic treatment: 
In-medium parton shower
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[Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk 2012]
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Figure 11: Nuclear modification factor, 'AA, as a function of Ag for soft-drop groomed jets with |H | < 2.1 in four
centrality intervals and three intervals of ?jet

T , in comparison with the ?T-inclusive results. The error bars represent
statistical uncertainties while the shaded bars represent bin-wise correlated systematic uncertainties. The uncertainties
in the ?? luminosity (1.6%) and h)AAi are not included, but are listed in Table 1.
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Perturbative calculation comparison for PbPb/pp ratio
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7. Results 9

shower in PbPb collisions effectively follows angular ordering. When comparing the position
of the peak in the transition region between the collision systems, it is evident that the peak is
consistently at lower Dr values in the PbPb data compared to the pp data. If the parton shower
at small angles follows effective angular ordering, the fact that the free quark/gluon phase can
produce radiation at smaller angles implies that the shower takes longer to finish for jets in
PbPb collisions. This experimental result could be explained by virtuality evolution [64]. If the
jets in PbPb collisions start with higher virtuality, they will have a longer shower duration to
reach the scale of LQCD and begin the hadronization process. Thus, the shift of the peak can be
interpreted as a sign of jet quenching in PbPb collisions. It also provides an additional handle
of the initial virtuality of the jet without requiring a g or Z-boson tag.

The shifting of the peak position towards lower Dr in the transition region is also observed as
a function of jet pT. This follows naturally from the fact that higher pT jets have higher initial
virtuality.
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Figure 1: Centrality and pT,jet dependent energy-energy correlators for p
ch
T > 1 GeV. The red

squares show the n = 1 and the blue circles the n = 2 distributions for PbPb collisions. The pp
results in each row are identical, with magenta diamonds showing the n = 1 and teal double di-
amonds the n = 2 distributions. The error bars show statistical uncertainties, the shaded boxes
represent the point-by-point systematic uncertainties, while the error bands show systematic
uncertainties related to the shape of the distribution. All correlators have been normalized to
one in the plotted range.
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Where 0, 1 are final state hadrons and 2%& is the inclusive cross section to produce 0, 1 with a hard
scale 3.

We integrate out the global SO(3) symmetry to find the distribution we’re interested in.
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Figure 2: Corrected distributions of the normalized EEC plotted differentially in �' for R = 0.4 (upper) and
R = 0.6 (lower), for jet transverse momentum selections 15 < ?T < 20 GeV/c (left) and 30 < ?T < 50 GeV/c
(right). The free-hadron regime, transition region, and quark-and-gluon regime are highlighted in green,
gray and purple respectively. NLL-pQCD calculations are presented for 3GeV/?T,jet < � R < R.

Figure 3: Corrected distributions of the normalized EEC (top) plotted differentially in �' for R = 0.4, for
jet transverse momentum selections 15 < ?T < 20 GeV/c (left) and 30 < ?T < 50 GeV/c (right). Comparisons
with PYTHIA-8 Detroit Tune are also presented. The ratio of the PYTHIA distribution over the corrected
data is also shown (bottom) alongside the magnitude of the systematic uncertainties for scale.
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7. Results 9

shower in PbPb collisions effectively follows angular ordering. When comparing the position
of the peak in the transition region between the collision systems, it is evident that the peak is
consistently at lower Dr values in the PbPb data compared to the pp data. If the parton shower
at small angles follows effective angular ordering, the fact that the free quark/gluon phase can
produce radiation at smaller angles implies that the shower takes longer to finish for jets in
PbPb collisions. This experimental result could be explained by virtuality evolution [64]. If the
jets in PbPb collisions start with higher virtuality, they will have a longer shower duration to
reach the scale of LQCD and begin the hadronization process. Thus, the shift of the peak can be
interpreted as a sign of jet quenching in PbPb collisions. It also provides an additional handle
of the initial virtuality of the jet without requiring a g or Z-boson tag.

The shifting of the peak position towards lower Dr in the transition region is also observed as
a function of jet pT. This follows naturally from the fact that higher pT jets have higher initial
virtuality.
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Figure 1: Centrality and pT,jet dependent energy-energy correlators for p
ch
T > 1 GeV. The red

squares show the n = 1 and the blue circles the n = 2 distributions for PbPb collisions. The pp
results in each row are identical, with magenta diamonds showing the n = 1 and teal double di-
amonds the n = 2 distributions. The error bars show statistical uncertainties, the shaded boxes
represent the point-by-point systematic uncertainties, while the error bands show systematic
uncertainties related to the shape of the distribution. All correlators have been normalized to
one in the plotted range.
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Where 0, 1 are final state hadrons and 2%& is the inclusive cross section to produce 0, 1 with a hard
scale 3.

We integrate out the global SO(3) symmetry to find the distribution we’re interested in.
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We have made an analysis of existing data on jet quenching, including CuCu
and AuAu data at 200 GeV [58, 59], PbPb at 2.76 TeV [60, 61, 62], PbPb at 5.02
TeV [63, 64], and XeXe data at 5.44 TeV [65]. For each centrality and energy con-
sidered a fit is made to the nuclear modification factor Rh

AA using fl0 as the single
unknown parameter. To determine the initial temperature of each analyzed col-
lision system, energy and centrality we used ‘·0 Ã T 3

0 measurements, when
available, and extrapolated the relation ‘·0 ƒ (8.85 ± 0.44) ◊ (Ôsnn)0.33±0.02

GeV2/fm for the most central collisions between Ô
snn = 27 GeV-2.76 TeV,

when measurements have not yet been made available [66, 67]. We then fix as a
reference the most central PbPb collisions at Ô

snn = 2.76 TeV to a temperature
of T0 ƒ 470 MeV [68] and ·0=0.6 fm. This temperature then fixes with a single
setup all the parameters in the analysis, whose temperature dependence was ex-
plained in the last paragraphs, except fl0, which is taken as the free parameter
for each centrality, energy and collision system.

As a first example, fitting the most central PbPb collisions at Ô
snn = 2.76

TeV yields fl(·0) ƒ 56 fm≠3. The fit for this example case is shown in Fig.2,
where we plot Rh

AA as a function of pt for three centrality classes and include
in the caption the numerical values of the QGP parameters obtained for the
most central data. The initial density is found to scale roughly proportional to
N1/2

part Ã T 3
0 at fixed collision energy. At the largest RHIC energies Ô

snn = 200
GeV in the most central AuAu collisions the initial temperature extracted from
the energy density measurements yields T0 ƒ 362 MeV and the density obtained
in the fit fl(·0) ƒ 21 fm≠3.
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Figure 3: QGP transport parameter q̂ for a gluon of Ê=10 GeV, using the density extracted

from an all order (green squares) or a fist order (yellow squares) jet quenching analysis of same

data as Fig. 3. Also shown is the q̂ assuming fl = p/T 4
from lattice predictions of the QCD

Equation of State [69] (green band), and the CUJET (blue) and MARTINI (purple) puzzles

found in [13].

Our results on the fitting parameter fl scale roughly constant with T 3, in
agreement with expectations. The same analysis using the single hard approx-
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Ô
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CMS Collaborations, compared to lattice results of the Equation of State by the Wuppertal

collaboration [69].
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Information about the medium properties usually encoded in the jet quenching parameter ̂q
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Agreement with cross sections from thermal-QCD — resummation of multiple scatterings needed
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But also…
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Figure 3: (Color online) (a) RAA(pT ), (b) vSP2 (pT ), (c) vSP3 (pT ) for the 20–30% centrality class of
p
sNN = 2.76 TeV

Pb-Pb collisions at the LHC compared to their respective experimental data [34, 57–59]. The blue solid, ⌧q = 0 fm,
dotted green, ⌧q = 0.197 fm, and dashed-dotted purple, ⌧q = 0.572 fm, lines correspond, respectively, to Cases i), ii) and
iii) of the early times treatment. DSS07 [48] FFs and Tq = Tchem = 175 MeV are used.

out strongly suppressing the energy loss for the
first ⇠ 0.6 fm after the collision. This work clearly
shows that exploiting the versatility of jet quench-
ing to access di↵erent time-scales o↵ers unique
possibilities to improve our understanding of the
initial stages in heavy-ion collisions, and is ex-
tendable from large to small systems.
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Appendix A. Additional checks

Di↵erent centralities:. We have investigated the
e↵ect of the cut in time for di↵erent centrality
classes. The results for RAA(pT ) and vSP

2 (pT )
for the 0–10% and 40–50% centrality classes of

p
sNN = 2.76 TeV Pb-Pb collisions at the LHC

are shown, respectively, in Fig. A.1 and Fig. A.2.
For both centrality classes, we consider again the
three early times extrapolations: ⌧q = 0 fm,
⌧q = 0.197 fm and ⌧q = 0.572 fm, taking DSS07
[48] FFs and Tq = Tchem = 175 MeV. The cor-
responding central values of the K-factor are, re-
spectively, 2.12, 2.79 and 4.12 for the 0–10% cen-
trality class and 2.14, 3.10 and 5.27 for the 40–
50% centrality class, in line with the findings in
[38]. The improvement in the description of v2
with increasing ⌧q is manifest.

Energy loss modeling:. We have examined the ef-
fect of using a di↵erent energy loss model. Within
the same formalism of the QWs, we have changed
the approximation used to compute the radiation
spectrum from multiple soft scatterings to a sin-
gle hard scattering, that is, the N = 1 opacity
limit (taking R̄ = R/3 and !̄c = !c/3, see [35]
and also [24]). Note that the perturbative tails
largely di↵er between these two approximations.
We show in Fig. A.3 the results for RAA(pT ) and
vSP
2 (pT ) for the 20–30% centrality class of

p
sNN =

2.76 TeV Pb-Pb collisions at the LHC in the sin-
gle opacity approximation, together with the ones
in the multiple soft scattering approximation for
⌧q = 0 fm, ⌧q = 0.197 fm and ⌧q = 0.572 fm (us-
ing DSS07 [48] FFs and Tq = Tchem = 175 MeV).
The corresponding central values of the K-factor
for the the N = 1 opacity curves are 2.80, 3.80
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Main question - can we access the initial stages with jet quenching?

Salgado Research proposal [Part B2] YoctoLHC
The gaussian approximation, correct in the asymptotically large number of scatterings, neglects the 
perturbative, power-law, tails of the individual elastic cross section. Including them has been technically 
difficult as no analytic solution of the path integrals exists. The main advantage of the opacity expansion is 
that these perturbative tails are easily included, but only reduced number of terms, often only one, is included 
in the series. Interestingly, the gaussian approximation is valid in strongly couple systems with no 
quasiparticles, computed using the AdS/CFT correspondence [‑ ], while the presence of perturbative tails 24
would indicate quasiparticles in the QGP. Proposals to identify (large angle) Molière scattering to look for 
the scale in which a quasiparticle description of the QGP is valid have been put forward [‑ ], although no 25
experimental data have been able to find this behaviour yet.  
The technology outlined above allows one, in principle, to compute any number of medium-induced radiated 
gluons. In practice, n-gluon radiation needs 2n-point functions and the medium averages rapidly become too 
cumbersome. For this reason, multiple medium-induced gluons are resummed in the small formation time 
limit, ! , valid for a large enough medium length L, as an iteration of the single-inclusive kernel [‑ ]. 26
The final result of this formalism can be recast into an energy loss probability distribution, ! , that 
depends on the medium properties, in particular the transport coefficient !  and the length L. In 
phenomenological applications a way to extract the information from the medium is to consider ! , 
where, for the case of a thermalised system, LO perturbative calculations lead to an estimate ! . 
The local energy density !  is then taken from hydrodynamical simulations of heavy-ion collisions so that 
there is only one parameter, ! , to be fitted to the experimental data at large transverse momentum. We have 
performed such an analysis of experimental data from RHIC and LHC at different centralities [‑ ] with an 27
unexpected result: by fitting the K-factor for each energy and centrality we obtain different results for 
different energies but these results are nearly independence of centrality. This result is very puzzling, as 
naively there is an overlap of medium thermal properties (temperature or energy density) in central RHIC 
AuAu collisions and semi-peripheral LHC PbPb collisions — see Fig. 1. Taken at face value, this result 
would indicate that the jet quenching parameter does not simply depend on the local properties of the 
medium. Similar results has been obtained in basically all studies of data that assume a local and 
monotonous dependence of  the medium parameter with the medium properties [‑ ]. Another long-standing 28
puzzle of jet quenching data is the small value of !  when comparing jet quenching calculations to data. 
Different solutions have been proposed but all of them require either a delay time for the interaction of the jet 
and the medium to start [‑ ] (see Fig.2) or a very strong increase of !  for temperatures close to the 29
deconfinement temperature !  [‑ ].  30
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There is, at present, no consensus on the interpretation of these findings, but they seem to be very generic of 
any implementation of energy loss. Both interpretations, a delay effect in the energy loss of the jet in the 
medium or a non trivial temperature dependence demonstrate the power of jet quenching measurements to 
study the time-evolution of the medium. In technical terms, both imply that the simple procedure described 
above to perform the medium averages needs a profound reformulation. 
In a recent paper [‑ ] in collaboration with Liliana Apolinário, Guilherme Milhano and Gavin Salam, we 31
presented a proof-of-concept to show how jet quenching measurements can be used as a chronometer of the 
medium evolution. For that we studied the hadronically-decaying W bosons, in particular in events with a 
top-antitop quark pair. The corresponding chain of decays ( ! ) provide the unique feature of a 
time delay between the moment of the collision and that when the W-boson decay products start interacting 
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Initial stages (thermalisation period) affect jet quenching -  
Opens completely new possibilities - study early times with jet observables
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A yoctosecond chronometer 
[late times]
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Can we more directly measure the space-time development with jet observables? 

Boosted tops
Difficult with LHC PbPb luminosity - lighter ions?  

Charm/Bottom quarks? [Attems, et al 2022]
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when using zcut = 0.1. The distribution is shown as a func-
tion of log10(τform), and the inset shows the distribution on
linear-log scale.

unclustering step with τform > 3 fm/c. We make this
selection in JEWEL (PbPb) and JEWEL (pp) events to
obtain the leading jet transverse momentum spectrum
in both cases. The corresponding medium-over-vacuum
ratio (nuclear modification factor,RAA, for leading jets)
is shown in Fig. 13. For reference, we also include the
inclusive leading jet ratio, in solid back. The purple lines
refer to reclustering with τ algorithm for late (solid line)
and early (dashed line) jets, while the orange refers to
the C/A algorithm. For reference, we also include the
results directly read from the parton shower, in green.
There is a clear difference in the leading jet suppression
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Fig. 13 JEWEL nuclear modification factor of leading jets.
The jets reclustered with τ (C/A) algorithm are shown in
purple (orange) when selecting the first groomed uncluster-
ing step with τform > 3 fm/c (τform < 1 fm/c) in solid
(dashed) lines. For reference, we add the results when read-
ing the τform from the Monte Carlo parton shower in green,
and the inclusive spectrum in solid black.

when, instead of using the full sample, we select jets
whose fragmentation starts shortly after its production.

These jets are, as expected, strongly suppressed, and
both C/A , and τ algorithms provide similar results.
Taking the results from section 3, we do not expect
to see much deviations between the two. However, as
we move towards late times, the two algorithms show
some differences. In particular, if we use τ to reclus-
ter the jet particles, the obtained RAA is compatible
with 1. As discussed earlier, these jets have a hard frag-
mentation pattern and are therefore not so susceptible
to modifications due to medium interactions as those
with a soft fragmentation, and thus early first split-
ting. In particular, the late jets consist of only one ef-
fective colour charge with high momentum (in this case
∼ 300GeV) for the first 3 fm of the evolution. This ob-
ject loses little energy through elastic scattering, and,
when it finally splits, the medium density is already di-
luted (ϵ < 5 GeV/fm3 for the medium settings used
here and the simple medium model). At relatively low
pT , both algorithms yield a similar difference with re-
spect to the Monte Carlo truth (one suppressed, the
other enhanced), but at high pT , the results using the
τ algorithm approaches the Monte Carlo. This is in line
with the observations of the previous section.

When medium recoils are considered, we see the
same behaviour, see Fig. 14 (same colors and line set-
tings as in Fig. 13). The early (and inclusive) leading
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Fig. 14 JEWEL nuclear modification factor of leading jets
when recoils are considered. The jets reclustered with τ
(C/A) algorithm are shown in purple (orange) when select-
ing the first groomed unclustering step with τform > 3 fm/c
(τform < 1 fm/c) in solid (dashed) line. For reference, we
added the the results when reading the τform from the Monte
Carlo parton shower in green, and the inclusive spectrum in
solid black.

jet RAA are now slightly larger, as part of the energy
is recovered by the presence of recoils. Both recluster-
ing algorithms continue to yield the same results. How-
ever, for late jets, there are sizable differences between
the two reclustering algorithms. The difference between

New time reclustering algorith
Very promising

[Apolinario, Cordeiro, Zapp 2021]



medium-induced asymmetries in realigned jet samples, similar to the analysis
of elliptic flow in realigned event samples [47, 48]. In addition, however, the
kT -ordering of the DGLAP parton shower implies that the first parton split-
ting in the shower contains significantly more transverse momentum than the
second, thus leading to a dynamical asymmetry in the η×φ-plane. Both effects
lead to a symmetry breaking in a random direction in the η × φ-plane - thus
rotational symmetry is restored in sufficiently large jet samples. To search for
symmetry breaking effects caused by collective motion in η×φ-distributions of
jet energy and jet multiplicity, it is thus important to control experimentally
the direction of this collective motion. Based on these arguments, we foresee
two classes of applications for our calculations:

Jet

flow field

time

long

A A

(a)

A

(b)

A

Fig. 2. Schematic view of two scenarios in which jets interact with collective
flow fields: a) If the hard parton is not produced in the Lorentz frame longitudinally
comoving with the medium, or if the longitudinal collective flow does not show
Bjorken scaling, then the parton interacts with a flow component parallel to the
beam. b) On its propagation in the transverse direction, hard partons generically
test transverse flow components, except for the special trajectories which are parallel
to the flow field.

First, in general, a hard parton needs not be produced in the Lorentz frame
which is longitudinally comoving with the medium; and even if it is produced
in the longitudinally comoving frame, it will in general not stay in this frame
during the entire time evolution of the medium. This is so since the hard
parton moves – like any effectively massless particle – on a straight light-like
line in the (z, t)-diagram, whereas the collective flow field is expected to show
significant deviations [49, 50] from Bjorken expansion and will thus intersect
this straight line. In such cases, the collective component of the momentum
transfer to the hard parton is directed along the beam axis. Hence, averaged
samples of medium-modified jet shapes and jet multiplicities can be expected
to show an asymmetry which is preferentially oriented along the beam direc-
tion in the η × φ-plane. [At mid-rapidity, the jet sample must be symmetric
with respect to the η → −η mirror symmetry, but – in general – it will not

4

Coupling jet-hydro
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2

In the absence of a medium, the parton fragments ac-
cording to the vacuum distribution Itot = Ivac. The
radiation spectrum (4) characterizes the medium modi-

fication of this distribution ω dItot

dω dk = ω dIvac

dω dk + ω dImed

dω dk .
From this, we calculate distortions of jet energy and jet
multiplicity distributions [23]. Information about Ivac is
obtained from the energy fraction of the jet contained in
a subcone of radius R =

√

η2 + φ2,

ρvac(R) ≡
1

Njets

∑

jets

ET (R)

ET (R = 1)

= 1−
1

ET

∫

dω

∫ ω

dkΘ

(

k

ω
−R

)

ω
dIvac

dω dk
. (5)

For this jet shape, we use the parametrization [24] of
the Fermilab D0 Collaboration for jet energies in the
range ≈ 50 < Et < 150 GeV and opening cones 0.1 <
R < 1.0. We remove the unphysical singularity of this
parametrization for R → 0 by smoothly interpolating
with a polynomial ansatz for R < 0.04 to ρ(R = 0) = 0.
We then calculate from eq. (4) the modification [23] of
ρvac(R) caused by the energy density and collective flow
of the medium. To do so, we transform the gluon emis-
sion angle arcsin (k/ω) in (4) to jet coordinates η, φ,

k dk dα = ω2 cosφ

cosh3 η
dη dφ , (6)

where α denotes the angle between the transverse gluon
momentum k and the collective flow component q0. In
what follows, we mainly focus on changes of the jet shape
due to longitudinal collective flow effects where the di-
rected momentum transfer q0 points along the beam di-
rection. The sensitivity of jets and leading hadron spec-
tra to other collective flow components will be discussed
elsewhere [25].
To specify input values for the momentum transfer

from the medium, we make the following considera-
tions. First, for a given density n0 of scattering cen-
tres, the transport coefficient is given as q̂ ≃ n0 µ2,
see Ref. [22]. Thus, according to (2), the hard parton
suffers a momentum transfer that is monotonously in-
creasing with the pressure in the medium, n0 µ2 ∝ p3/4

and which tests the components T⊥⊥ and T zz (z par-
allel to the beam) of the energy momentum tensor (1).
In the presence of a longitudinal Bjorken-type flow field

uµ =
(

1, β⃗
)

/
√

1− β2, the longitudinal flow compo-

nent increases from T zz = p to T zz = p + ∆p, where
∆p = (ϵ + p)uz uz = 4 p β2/(1 − β2) for the equation of
state of an ideal gas, ϵ = 3 p. For a rapidity difference
η = 0.5, 1.0, 1.5 between the rest frame, which is longitu-
dinally comoving with the jet, and the rest frame of the
medium, this corresponds to an increase of the compo-
nent T zz by a factor 1, 5, 18, respectively. We expect that
the collective flow component q0 rises monotonously with

the flow-induced∆p, as µ does with p. This suggests that
q0 lies in the parameter range q0 >∼µ.
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FIG. 1: Upper part: sketch of the distortion of the jet energy
distribution in the presence of a medium with or without col-
lective flow. Lower part: calculated distortion of the jet en-
ergy distribution (5) in the η × φ-plane for a 100 GeV jet.
The right hand-side is for an average medium-induced radi-
ated energy of 23 GeV and equal contributions from density
and flow effects, µ = q0. Scales of the contour plot are visible
from Fig. 2.

In Fig. 1, we show the medium-modified jet shape for a
jet of total energy ET = 100 GeV. To test the sensitivity
of this energy distribution to collective flow, we have cho-
sen a rather small directed flow component, q0 = µ. The
effective coupling constant in (3), n0 Lαs CR = 1, the
momentum transfer per scattering centre µ = 1 GeV,
and the length of the medium L = 6 fm were adjusted

such that an average energy ∆ET =
∫

dω dImed

dω = 23
GeV is redistributed by medium-induced gluon radia-
tion. Previous studies indicate that this value of ∆ET

is a conservative estimate for the modification of jets
produced in Pb+Pb collisions at the Large Hadron Col-
lider LHC [23]. Despite these conservative estimates,
the contour plot of the jet energy distribution in Fig. 1
displays marked medium-induced deviations. First, the
jet structure broadens because of the medium-induced
Brownian motion of the partonic jet fragments in a dense
medium [22]. Second, the jet shape shows a marked ro-
tational asymmetry in the η × φ-plane, which is charac-
teristic of the presence of a collective flow field.
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What is the effect of the velocity fields and 
the (density/temperature) gradients in jet 

quenching observables?



LI IMFP - Benasque 2024.                                                                                                                                                                                                 Heavy-Ion Collisions at the LHC

Anisotropic radiation

39

Radiation follows the anisotropies (gradients and/or flow)

resulting in g ' 2.8rT
T , and, for simplicity, we will use g = 3rT

T for all our estimates.

The medium induced soft gluon spectrum has an angular dependence controlled by g ·k,

and we will focus on the two limiting cases, when the angle between the two vectors, ✓, is

either 0 or ⇡. We will measure the gluon frequencies with respect to the critical medium

frequency !c ⌘ q̂L2
' 125 GeV, which in the case of no gradients can be identified with

the typical frequency for gluons with formation length of the order of L. We will also

introduce a dimensionless gradient parameter �T = |rT/T 2
|, which controls the strength of

the hydrodynamic gradients and distribution anisotropy.

FIG. 2: The medium induced soft gluon spectrum is given for three gluon energies, ! = 0.04!c,

! = 0.06!c, and ! = 0.08!c. The solid lines denote the spectrum in the homogeneous limit. The

dashed and dash-dotted lines correspond to the full spectrum with gradients along (✓ = 0) and

opposite to (✓ = ⇡) the direction of k respectively. The gradients are quantified with �T = 0.05

(left) and �T = 0.01 (right).

In Fig. 2, we show the full spectrum up to first order in gradient corrections for ! =

0.04!c, ! = 0.06!c, and ! = 0.08!c, further differentiating for �T = 0.05 (left) and

�T = 0.01 (right). For ✓ = 0, the gradient effects suppress the gluon radiation at small

values of k, while when ✓ = ⇡, it is enhanced. One can notice that the gradient effects

in Fig. 2 become stronger for softer gluons, and may be substantial even for sufficiently

small �T . This behavior is in line with the properties of the gradient effects in broadening

[38], where the anisotropic contributions are suppressed by the energy of the leading parton.

Since the energy of soft emitted gluons is smaller than the energy of the leading parton, the

gradient effects become more important. However, one should notice, that very soft gluons
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]γT = 0.05

γT = |∇T/T2 |Where the gradient parameter

To be confirmed experimentally - direct measurement of velocity fields! 
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Conclusions
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QCD provides a very powerful laboratory to understand how the first levels of complexity 
emerge from a fundamental (and non-abelian) theory 

QCD has a rich dynamical content well within experimental reach 
Branches to other very active fields in Physics, including Cosmology or Condense Matter where 
equilibration, role of quantum entanglement, etc…   

Impressive progress in several theoretical areas of heavy ion collisions 
Initial stages, parton saturation and thermalization 
Hydrodynamics 
Hard Probes: jet quenching and quarkonia (also heavy-flavor) 
… and connections between them 

New data from LHC and RHIC  
Continuous progress on the characterization of the QGP and Yoctosecond Chronometer 
Completely new opportunities — initial stages / small systems — directly access time evolution
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Anisotropic jet angular distributions
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Jet observables in inhomogeneous matter

2004, Armesto, Salgado, Wiedemann

We have now the tools to compute jet observables (at least at leading order in strong coupling)

Observable 1: jet shape

Jet shapes Intra-jet v2 (and w2)

[Barata, Milhano, Sadofyev 2023]

[Barata, Salgado, Silva 2024]
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Figure 4: Left: Evolution of v2 in Eq. (3.5) as a function of ⇣ (top line) or of z (bottom
line) and for different values of z or of ⇣, respectively, with fixed r = 5. Right: equivalent
plots for w(+1)

2 in Eq. (3.5). The vacuum piece is subtracted.

3.3 Transverse polarization for a massive antenna

So far we have defined the quark and anti-quark spin states as the projection along the z

axis. However, because we are trying to tap the interplay between spin and the anisotropy
the qq̄ antenna experiences in the transverse plane, it might be more interesting to consider
spin projected along some axis on that plane. One can do so by changing the expression
for the vertex following the steps detailed in Appendix A and inserting it in Eq. (2.17).
Carrying out the remaining of the calculation exactly as before, the particle distribution

– 16 –

v2 large due to 
jet anisotropy

w2 correction due to 
spin in a  antenna qq̄
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