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1. Introduction. The concept of derivatives of fractional orders 
was introduced, as a mathematical curiosity, by Niels Henrik Abel in 
1823:
N. H. Abel, Oplösning af et par opgaver ved hjelp af bestemte 
integraler. Magazin for Naturvidenskaberne, Aargang I, Bind 2, 
Christiania, 1823.



In that work, Abel had introduced a fractional-order derivative 
of function f(t), which, in the modern literature, is usually called 
the Caputo derivative, that was reintroduced in 1967:

M. Caputo, Linear models of dissipation whose Q is almost frequency
independent – II. Geophysical Journal of the Royal Astronomical Society,
13, Issue 5 (1967), cited ca. 2,600 times.
Book: Michele Caputo, Elasticitá e Dissipazione. Zanichelli, Bologna, 1969.          
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In physics, the concept of fractal derivatives was introduced 
by Nikolai Laskin (University of Toronto, Canada) in 2000, in 
the context of fractional quantum mechanics: 

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. 
A 268, 298-305 (2000) (cited about 1,500 times).



A book by the same author:
N. Laskin, Fractional Quantum Mechanics 

(World Scientific, Singapore, 2018)



In these works, the fractal Schrödinger equation was derived, 
by means of the Feynman’s integrals, alias path integrals                        
(~ ∫exp(iS)d(path)), for a quantum particle whose classical 
stochastic motion, with action S, does not follow the usual 
Brownian law, but proceeds through random jumps (Lévy 
flights).
The term “Lévy flights” was coined by Benoît Mandelbrot (the 
author of the concept of fractals). The average distance from the 
initial position of a classical particle moving by Lévy flights (along   
axis x) grows with time as
 

That is, in the case of α < 2, the stochastic motion of the Lévy 
particle (at t →∞) is faster than the classical random ( Brownian) 
walk, which corresponds to α = 2, i.e., <x2> ~ t . 

1/| | ~ ,where 2 is called the  .x t Levy index 



A typical example of the trajectory built of 1000 stochastic Lévy flights of a 
particle, corresponding to α = 1 in two dimensions [e.g., a shark in the search 
of food in the ocean (even if a shark can scarcely be considered as a 
prototype of a quantum particle); the picture is borrowed from Wikipedia]. For 
comparison, a trajectory built of 1000 random steps of the usual Brownian 
particle (α = 2) is shown too (right) (note the difference in the spatial scales):

             α = 1 (Lévy flights)                      α = 2 (Brownian motion) 



The Schrödinger equation derived by Laskin for the quantum particle 
moving by the Lévy flights, written in a scaled form, is   
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Thus, the fractional differential operator, which represents the 

kinetic energy in the one-dimensional version of 
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Similarly, the kinetic-energy operator appearing in the Schroedinger

equation for the two-dimensional quantum Levy particle takes the 

following integral form: 
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Similarly, in the two-dimensional (2D) version of FSE the fractional kinetic-energy operator is



The structure of the talk
2. A proposal to emulate the fractional Schrödinger 
equation in optics.
3. Experimental realization of the temporal fractional 
group-velocity dispersion in fiber optics.
4. Adding nonlinearity to fractional systems.
5. An  example: a domain wall in a system of two coupled 
fractional nonlinear Schrödinger equations.
6. Fractional 2D matter-wave solitons stabilized by the 
spin-orbits coupling.
7. Two-component solitons in the fractional system with the 
second-harmonic generation.
8. Quasi-solitons in the fractional Lugiato-Lefever system.
9. Conclusion. 
 



2. A proposal to emulate the fractional 
Schrödinger equation in optics
The fractional quantum mechanics has not been, as yet, realized 
experimentally. Making use of the commonly known fact that 
the quantum-mechanical Schrödinger equation is tantamount 
to the classical equation for the paraxial propagation of light, it 
was proposed to emulate the fractional Schrödinger equation 
in optical cavities (this paper was cited ca. 300 times):
  



The proposal aimed to emulate the fractional diffraction in an optical 4f 
setup. The transverse structure of a spatial light beam is converted into the 
Fourier form by a lens, then an appropriately designed phase mask adds 
phase shifts to different spatially separated Fourier components. The phase 
shifts are the same as would be produced by the fractional Riesz derivative. 
Finally, another lens casts the optical field back into the form of a parallel-
propagating beam (the bottom scheme realizes the fractional Schrödinger 
equation including the harmonic-oscillator trapping potential, U(x) = const∙x2:  



Circulation of light in this optical cavity is governed by the 
effective averaged fractional Schrödinger equation, which 
emulates the corresponding equation in quantum mechanics:  
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Examples: the ground and excited eigenstates produced by the 
fractional one-dimensional Schrödinger equation with Lévy index 
α = 1, including the harmonic-oscillator trapping potential,        
U(x) = const∙x2: 



3. Experimental realization of the temporal fractional 
group-velocity dispersion (instead of the spatial 
diffraction) in fiber optics

The cardinal problem is the absence of any previously 
reported experimental realization of the fractional 
diffraction in linear or nonlinear optics (experimental 
realization of the fractional Schrödinger equation in 
quantum mechanics was not reported either). 

Recently, an experimental realization of fractional 
dispersion (in the temporal domain, rather than 
fractional diffraction in the spatial domain) has been 
reported, using a fiber-laser cavity.





The main principle is to split the temporal wave packet into its 

spectral components, and pass the light signal with the spatially 

separated spectral components through a phase mask, realized 

as a hologram, which imparts a particular phase shift to each 

component, so as to emulate the action of the fractional GVD (in 

the combination with the regular GVD) onto the original wave 

packet. With the Lévy index α, the phase shift emulating the action 

of the fractional GVD onto a spectral component with frequency ω 

should be const∙|ω|α. 



The propagation of wave packets in an optical fiber obeys the 

Schroedinger equation which is mathematically similar to the one in the 

spatial domain (planar waveguide), but its ph
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ysical meaning is different, 

as it models the action of the group-velocity dispersions ( ), rather 

than diffraction in the plane of the waveguide. 

Thus, the propagation of light in the fiber laser m
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Basic experimental results and the corresponding 
simulations
Row (a): simulations; row (b): experiment.
     α = 1.25      α = 0.25     α = 0.25      α = 1.25         close to
     LGVD = 5      LGVD = 5     LGVD = -5     LGVD = -5         α = 2
       



Another set of experimental results: the evolution of quasi-Airy 
waves under the action of the fractional GVD with different values 
of the Lévy index, α. The Airy wave is initiated by adding factor 
exp(-iCω3) to the Fourier transform of the input (in the experiment, 
it is generated by a fiber segment with the regular third-order 
GVD). White arrows indicate effective acceleration of the central 
lobe of the wave packet. 



4. The interplay of the fractional diffraction and nonlinearity
Because the optical medium naturally includes the Kerr 
nonlinearity (self-focusing), the corresponding cubic term may 
be added to the fractional Schrödinger equation:
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The nonlinear equations produce various one- and two-
dimensional modes supported by the self-focusing (or 
defocusing) of light, such as bright and dark solitons, fronts, 
vortices, etc. Such modes were considered in many 
theoretical works. A brief review:
Photonics 8, 353 (2021) (for the time being, cited 95 times):



An updated recent review
(for the time being, cited only 5 times):



5. A relatively simple example of theoretically elaborated 
nonlinear states in the fractional medium: 
a one-dimensional domain wall separating two immiscible 
(mutually repelling) wave fields, produced by a system of 
coupled fractional nonlinear Schrödinger (FNLS) equations 
with the self- and cross-defocusing nonlinearities.



The system of coupled FNLS equations [α is again 
the Lévy index, the immiscibility condition is β > 1 
(β is the relative cross-phase-modulation (XPM) 
coefficient), and λ represents possible linear mixing 
between the fields]:



Stable domain-wall patterns produced by the 
coupled FNLS equations for β = 3, λ = 0.5, and 
Lévy indices between α = 0.1 and α = 1: 



Stable domain-wall patterns produced by the 
coupled FNLS equations for α = 1, λ = 0, and the 
XPM coefficient taking values between β = 1.05 
and β = 3: 



6. An attempt to constract 1D and 2D 
matter-wave solitons under the action of 
the fractional diffraction and spin-orbit 
coupling (SOC)



The 2D system of fractional Gross-Pitaevskii 
equations with SOC of the Rashba type and 
attractive interatomic interactions:



Stationary solutions with chemical potential μ:

Equations for the stationary wave functions:



These equations can be derived form the 
corresponding Lagrangian:



The objective is to construct stable 2D solitons of the semi-
vortex (SV) type.
In the case of the normal (non-fractional) diffraction, with α = 2, 2D 
solitons of the SV type were first introduced in the paper

(thus far, cited 215 times). The ansatz for the SV soliton, written in 
the polar coordinates:

u+ = f1(r2), u- = exp(iθ)rf2(r2).



(a) An example of profiles |ϕ+(x), ϕ-(x)| of the cross sections of the 
zero-vorticity and vortical components of a stable SV soliton.
 (b) The family of the SV solitons in the plane of (total norm, 
chemical potential) is completely stable (as the ground state) in 
spite of the possibility of the critical collapse in the same system. 

(a)                                    (b)



The 2D SV solitons are stable in the case of γ < 1 (the self-attraction of 
the components is stronger than the cross-attraction). At γ < 1, SV solitons 
are unstable, while stable ones (as the ground state) are mixed-mode 
(MM) solitons, initiated by the ansatz

(a)An example of profiles |u+ (x),u- (x)| of the cross sections of the zero-
vorticity and vortical components of a stable SV soliton.
 (b) The family of the stable SV solitons in the plane of (total norm, 
chemical potential) is



In spite of the supercritical collapse occurring in the 2D nonlinear 
system in the interval of 1 < α < 2, the linear SOC-mediated 
interaction between the two components makes the SV solitons 
stable at N < Ncrit (α) (and γ < 1). Also shown is the dependence of 
the soliton’s amplitude on the SOC strength, λ, for a fixed Lévy index, 
α = 1.5: 
 



Typical examples of the evolution of stable SV 
solitons displayed by dint of their cross-sections:
(a) α = 1.5, λ = 1, N = 1; (b) α = 1.9, λ = 0.4, N = 5.15: 



Next: in spite of the supercritical collapse occurring in the 2D 
nonlinear system in the interval of 1 < α < 2, the linear SOC-
mediated interaction between the two components makes the 
MM solitons stable at N < Ncrit (α) (and γ > 1). Also shown is an 
example of the evolution of a stable SV-soliton for γ =2, SOC 
coupling strength λ = 1, total norm N = 0.8, and Lévy index 
α = 1.5:



7. Two-component solitons produced by the 
fractional second-harmonic-generation system

The 1D fractional system for the amplitudes of the 
fundamental-frequency (FF) and second-
harmonic (SH) fields with the fractional diffraction 
and quadratic nonlinearity (real Q is the 
mismatch parameter, * stands for the complex 
conjugation):
 



The system was introduced and analyzed in



Families of soliton solutions for normalized values 
of the mismatch, Q = -1, 0, +1, and examples of 
stable solitons:



In the case of the quadratic nonlinearity, the 1D 
system is free of the collapse in the interval of Lévy 
indices 0.5 < α ≤ 2. Existence and stability areas for 
the solitons:



Examples of unstable solitons for mismatch Q = 1:



8. Quasi-solitons in the fractional 
Lugiato-Lefever (LL) model

The fractional LL equation (the model of a passive driven 
laser cavity), with the Levi index LI, loss parameter α. 
mismatch θ ≡ 1, and pump strength F:



The fractional LL model was introduced and 
investigated in



Stability regions for quasi-solitons, and examples of stable 
and weakly unstable ones (with the background uniform field 
E ≈ iF0 at |x| →∞: 



9. Conclusion
The concept of fractional diffraction was introduced in physics by the Laskin’s 
fractional quantum mechanics for particles which move, at the classical 
level, by Lévy flights. 
Experimental realization of fractional quantum mechanics was not reported as 
yet. It was proposed by Longhi to emulate the fractional quantum 
mechanics by the light propagation in an optical cavity, implementing the 
effect of the fractional diffraction by means of specific phase shifts 
imparted to separate spectral components of the optical beam. 
A real experimental work, using a similar method – imparting specific phase 
shifts to spectral components of a temporal optical signal in a fiber 
cavity – has recently reported the first realization of the effective 
fractional group-velocity dispersion. 
Theoretically, many works have addressed dynamics of solitons and other 
self-trapped modes in the framework of the fractional nonlinear 
Schrödinger equation. In particular, an attempt was made to introduce a 
nonlinear fractional Gross-Pitaevskii equation for a condensate of 
particles moving, at the classical level, by means of the Lévy flights. 



The remaining challenge to the experiment is realization of 
the effective fractional diffraction in the spatial domain, 
i.e., for planar or bulk waveguides (linear or nonlinear), 
similar to the recently reported realization of the fractional 
group-velocity dispersion in optical fibers. 
Finally, the most challenging objective may be the creation 
of a combination of fractional dispersion and diffraction for 
spatiotemporal optical pulses.

Thank you for your interest! 
Copies of this presentation, and/or of articles mentioned in it, 
can be requested from malomed@tauex.tau.ac.il 
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