TeL AVIV UNIUGRSITV%D'DN-')H NU'O121IN

A review: basic fractional nonlinear-

wave models and solitons

Boris Malomed
Department of Physical Electronics
School of Electrical Engineering
Faculty of Engineering




1. Introduction. The concept of derivatives of fractional orders
was introduced, as a mathematical curiosity, by Niels Henrik Abel in
1823:

N. H. Abel, Opldsning af et par opgaver ved hjelp af bestemte
Integraler. Magazin for Naturvidenskaberne, Aargang |, Bind 2,

Christiania, 1823.
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In that work, Abel had introduced a fractional-order derivative
of function f(t), which, in the modern literature, is usually called
the Caputo derivative, that was reintroduced in 1967:

M. Caputo, Linear models of dissipation whose Q is almost frequency
independent — Il. Geophysical Journal of the Royal Astronomical Society,
13, Issue 5 (1967), cited ca. 2,600 times.

Book: Michele Caputo, Elasticita e Dissipazione. Zanichelli, Bologna, 19609.

1 ; n—1l—«

Daf<t>=r(n_a)j;<t—7> o () dr,

where the integer part of o, n=[«], is an integer closest to «,

such that n—1<a<n.



In physics, the concept of fractal derivatives was introduced
by Nikolal Laskin (University of Toronto, Canada) in 2000, Iin
the context of fractional quantum mechanics:

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett.
A 268, 298-305 (2000) (cited about 1,500 times).
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A book by the same author:
N. Laskin, Fractional Quantum Mechanics
(World SC|ent|f|c Slngapore 2018)
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In these works, the fractal Schrddinger equation was derived,
by means of the Feynman’s integrals, alias path integrals

(~ Iexp(iS)d(path)), for a guantum particle whose classical
stochastic motion, with action S, does not follow the usual
Brownian law, but proceeds through random jumps (Levy
flights).

The term “Levy flights” was coined by Benoit Mandelbrot (the
author of the concept of fractals). The average distance from the
Initial position of a classical particle moving by Levy flights (along
axis x) grows with time as

{|z|)~t/*, where a <2 is called the Levy index.

That is, in the case of a < 2, the stochastic motion of the Lévy
particle (att —) is faster than the classical random ( Brownian)

walk, which corresponds to a= 2, i.e., <x*> ~1t .



A typical example of the trajectory built of 1000 stochastic Léevy flights of a
particle, corresponding to a = 1 in two dimensions [e.g., a shark in the search
of food in the ocean (even if a shark can scarcely be considered as a
prototype of a quantum particle); the picture is borrowed from Wikipedia]. For
comparison, a trajectory built of 1000 random steps of the usual Brownian
particle (a = 2) is shown too (right) (note the difference in the spatial scales):

a=1(Lévy flights) a =2 (Brownian motion)
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The Schrodinger equation derived by Laskin for the guantum particle
moving by the Lévy flights, written in a scaled form, is

a/2
OY 1[ 0? ]
|—=—|—— +U(2),
ot 2\ 0a? v+Ul)y
where U (z) is an external potential, and the

2
kinetic-energy operator, (—0% /0 )&/ TS

represented by the Riesz derivative (named after

Marcel Riesz), which is defined as follows: take the

Fourier transform of v, with wavenumber k; in the

2
Fourier space, the action of operator (—9*/dz? )a/

amounts to the multiplication by |k|*; after that,
return from the Fourier space back to the coordinate

space, applying the inverse Fourier transform.



Thus, the fractional differential operator, which represents the
kinetic energy in the one-dimensional version of
fractional quantum mechanics, is actually an integral operator,

generated by the juxtaposition of the direct and inverse Fourier

transforms:
02 o/2 400 +00 .
B I I ]
a’; — 00 — 00

Similarly, the kinetic-energy operator appearing in the Schroedinger
equation for the two-dimensional quantum Levy particle takes the

following integral form:
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The structure of the talk

2. A proposal to emulate the fractional Schrodinger
equation in optics.

3. Experimental realization of the temporal fractional
group-velocity dispersion in fiber optics.

4. Adding nonlinearity to fractional systems.

5. An example: a domain wall in a system of two coupled
fractional nonlinear Schrodinger equations.

6. Fractional 2D matter-wave solitons stabilized by the
spin-orbits coupling.

/. Two-component solitons in the fractional system with the
second-harmonic generation.

8. Quasi-solitons in the fractional Lugiato-Lefever system.
9. Conclusion.



2. A proposal to emulate the fractional
Schrodinger equation in optics

The fractional quantum mechanics has not been, as yet, realized
experimentally. Making use of the commonly known fact that

the quantum-mechanical Schrodinger equation is tantamount

to the classical equation for the paraxial propagation of light, it
was proposed to emulate the fractional Schrodinger equation

In optical cavities (this paper was cited ca. 300 times):

March 15, 2015 / Vol. 40, No. 6 / OPTICS LETTERS 1117

Fractional Schrédinger equation in optics

Stefano Longhi

Dipartimento di Fisica, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle
Ricerche, Piazza L. da Vinci 32, I-20133 Milano, Italy (stefano.longhi@polimi.it)

Received January 5, 2015; accepted February 5, 2015;
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The proposal aimed to emulate the fractional diffraction in an optical 4f
setup. The transverse structure of a spatial light beam is converted into the
Fourier form by a lens, then an appropriately designed phase mask adds
phase shifts to different spatially separated Fourier components. The phase
shifts are the same as would be produced by the fractional Riesz derivative.
Finally, another lens casts the optical field back into the form of a parallel-
propagating beam (the bottom scheme realizes the fractional Schrédinger
equation including the harmonic-oscillator trapping potential, U(x) = const-x2:
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Circulation of light in this optical cavity is governed by the
effective averaged fractional Schrodinger equation, which
emulates the corresponding equation in quantum mechanics:

a/2
oY 1 0°
28—525[—@ v+U(2)y,

where U (x) is an effective potential, and z is the

propagation distance instead of time in quantum

mechanics.

The two-dimensional fractional Schroedinger equation

may be realized in this setting as well, in the form of
/2
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Examples: the ground and excited eigenstates produced by the
fractional one-dimensional Schrodinger equation with Lévy index
a = 1, including the harmonic-oscillator trapping potential,

U(X) = const-x?:
near-field plane y
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3. Experimental realization of the temporal fractional
group-velocity dispersion (instead of the spatial
diffraction) in fiber optics

The cardinal problem is the absence of any previously
reported experimental realization of the fractional
diffraction in linear or nonlinear optics (experimental
realization of the fractional Schrodinger equation in
guantum mechanics was not reported either).

Recently, an experimental realization of fractional
dispersion (in the temporal domain, rather than
fractional diffraction in the spatial domain) has been
reported, using a fiber-laser cavity.



nature communications

Article https://doi.org/10.1038/s41467-023-35892-8

Experimental realisations of the fractional
Schrodinger equation in the temporal
domain
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The main principle is to split the temporal wave packet into its
spectral components, and pass the light signal with the spatially
separated spectral components through a phase mask, realized
as a hologram, which imparts a particular phase shift to each
component, so as to emulate the action of the fractional GVD (in
the combination with the regular GVD) onto the original wave
packet. With the Lévy index a, the phase shift emulating the action
of the fractional GVD onto a spectral component with frequency w

should be const-|w|°.



The theoretical model

The propagation of wave packets in an optical fiber obeys the
Schroedinger equation which is mathematically similar to the one in the
spatial domain (planar waveguide), but its physical meaning is different,
as it models the action of the group-velocity dispersions (GVD), rather
than diffraction in the plane of the waveguide.

Thus, the propagation of light in the fiber laser may be affected by

the action of both the fractional and usual (non-fractional) GVD:

oy D )" G( 0
ool o] 5 82

ot =23,...

where z is again the pr(fpagation distance (along the fiber), while the temporal
coordinate is T=t-z/V,.. Further, Dis an effective coefficient of the fractional
dispersion with Levy index «, and (3, are coefficients of the regular (usual)
dispersion of integer k-th orders.

Note that no nonlinearity is included here.



Basic experimental results and the corresponding
simulations
Row (a): simulations; row (b): experiment.
a=125 a=025 a=025 a=1.25 closeto
Lewo=9 Lew=9 Lew=2 Lew=-5 a=2




Another set of experimental results: the evolution of quasi-Airy
waves under the action of the fractional GVD with different values
of the Lévy index, a. The Airy wave is initiated by adding factor
exp(-iCw?q) to the Fourier transform of the input (in the experiment,
It is generated by a fiber segment with the regular third-order
GVD). White arrows indicate effective acceleration of the central
lobe of the wave packet.
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4. The interplay of the fractional diffraction and nonlinearity
Because the optical medium naturally includes the Kerr
nonlinearity (self-focusing), the corresponding cubic term may
be added to the fractional Schrodinger equation:

9 a/2
- wrvw-tel s

where 7y is the nonlinearity coefficient. In the case of v>0(self-attraction),

this 1D equation gives rise to the critical collapse (catastrophic self-compression
of the wave field) at @ = 1, and supercritical collapse at o < 1. Stable solutions
are possible at 1<a < 2.

The two-dimensional version of the nonlinear fractional Schroedinger equation:

a/2
oy 1 9% 9?
Zﬁ_fzg[ﬁ?a—yf] Y+U(z,y)o—v|¢]” .

The two-dimensional equation gives rise to the supercritical collapse at o < 2 .

The same cubic term, with v>0 or v <0, may be added to the quantum-
mechanical (Laskin's) one-, two-, and three-dimensional fractional Schroedinger
equations (with time ¢ instead of z). It is an attempt to introduce the Gross-Pitaevskii

equation for a Bose-Einstein condensate of quantum Levy- flighting particles.



The nonlinear equations produce various one- and two-
dimensional modes supported by the self-focusing (or
defocusing) of light, such as bright and dark solitons, fronts,
vortices, etc. Such modes were considered in many
theoretical works. A brief review:

Photonics 8, 353 (2021) (for the time being, cited 95 times):

D photonics ml\bfy

Review
Optical Solitons and Vortices in Fractional Media:
A Mini-Review of Recent Results

Boris A. Malomed 12



An updated recent review
(for the time being, cited only 5 times):

Chaos REVIEW pubs.aip.org/aip/cha

Basic fractional nhonlinear-wave models
and solitons @

Submitted: 2 December 2023 .- Accepted: 9 January 2024 -

Cite as: Chaos 34, 022102 (2024); doi: 10.1063/5.0190039 %E |'1'| @
Published Online: 7 February 2024 ‘

Boris A. Malomed®




5. A relatively simple example of theoretically elaborated
nonlinear states in the fractional medium:

a one-dimensional domain wall separating two immiscible
(mutually repelling) wave fields, produced by a system of
coupled fractional nonlinear Schrodinger (FNLS) equations
with the self- and cross-defocusing nonlinearities.

PHYSICAL REVIEW E 106, 054207 (2022)

Domain walls in fractional media

Shatrughna Kumar©,' Pengfei Li®,”? and Boris A. Malomed® '+
Y!Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering,
and Center for Light-Matter Interaction, Tel Aviv University, P.O.B. 39040, Tel Aviv, Israel
2Department of Physics, Taivuan Normal University, Jinzhong 030619, China
3Institute of Computational and Applied Physics, Taivuan Normal University, Jinzhong 030619, China
nstituto de Alta Investigacion, Universidad de Tarapacd, Casilla 7D, Arica, Chile



The system of coupled FNLS equations [a is again
the Lévy index, the immiscibility conditionis 8> 1
(B Is the relative cross-phase-modulation (XPM)

coefficient), and A represents possible linear mixing
between the fields]:

i— ——
07 2 dx2

d—

E}P 1 E}E &}({2 ~ ~ .
[— = —| —— v+ (|v|” 4+ Blul")v — ru,

du 1 52 \*/° R . ﬁ
— = — u+ (lu|” + Blv|7)u — rv,

07 2 x>



Stable domain-wall patterns produced by the
coupled FNLS equations for 8 =3, A=0.5, and
Lévy indices between a=0.1 and a = 1:

(b) 1.0
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Stable domain-wall patterns produced by the
coupled FNLS equations for a=1, A =0, and the
XPM coefficient taking values between 8 = 1.05
and B8 = 3:
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6. An attempt to constract 1D and 2D
matter-wave solitons under the action of
the fractional diffraction and spin-orbit
coupling (SOC)

10P Publishing Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 155301 (9pp) https://doi.org/10.1088/1361-6455/ac7685

One- and two-dimensional solitons
In spin—orbit-coupled Bose—Einstein
condensates with fractional kinetic energy

Hidetsugu Sakaguchi’*® and Boris A Malomed?:3

I Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of
Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

2 Department of Physical Electronics. School of Electrical Engineering, Faculty of Engineering.

and Center for Light-Matter Interaction, Tel Aviv University, PO Box 39040 Tel Aviv, Israel

3 Instituto de Alta Investigacion, Universidad de Tarapacd, Casilla 7D, Arica, Chile



The 2D system of fractional Gross-PitaevskKi
equations with SOC of the Rashba type and
attractive interatomic interactions:

8{3 l A O/ , . .
2O = (=) — (64 + 16 P
do_  Odo_
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Od_ l




Stationary solutions with chemical potential u:

O+ (X, y,1) = .-:*_“”ui{-r. V),
Equations for the stationary wave functions:

I
fUy = ?(_?E)H" j”+ — (g |* 4 ylu—|*)uy




These equations can be derived form the
corresponding Lagrangian:

too oo , ,
[ = ,u-/ d,x‘/ dy [|H+(.L}‘]| + |u—(x,y)| ]
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The objective Is to construct stable 2D solitons of the semi-
vortex (SV) type.

In the case of the normal (non-fractional) diffraction, with a = 2, 2D
solitons of the SV type were first introduced in the paper

PHYSICAL REVIEW E 89, 032920 (2014)

Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein
condensates in free space

Hidetsugu Sakaguchi and Ben Li
Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences,
Kyushu University, Kasuga, Fukuoka 816-8580, Japan

Boris A. Malomed
Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 12 December 2013; published 26 March 2014)

(thus far, cited 215 times). The ansatz for the SV soliton, written in
the polar coordinates:

u, =f,(r?), u. = exp(iO)rf,(r2).



(a) An example of profiles |¢.(x), ¢_(x)| of the cross sections of the
zero-vorticity and vortical components of a stable SV soliton.

(b) The family of the SV solitons in the plane of (total norm,
chemical potential) is completely stable (as the ground state) in
spite of the possibility of the critical collapse in the same system.
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The 2D SV solitons are stable in the case of y < 1 (the self-attraction of
the components is stronger than the cross-attraction). At y < 1, SV solitons
are unstable, while stable ones (as the ground state) are mixed-mode
(MM) solitons, initiated by the ansatz

EE) = A, exp(—af]rz) — Asrexp(—if — .::rgrz).h

qf) = A exp(— ar’ ) + Aqrexp(ifl — apr %).

An example of profiles |u, (x),u_ (x)| of the cross sections of the zero- (a)
vorticity and vortical components of a stable SV soliton.

(b) The family of the stable SV solitons in the plane of (total norm,

chemical potential)is (@) (b)
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In spite of the supercritical collapse occurring in the 2D nonlinear
system in the interval of 1 < a < 2, the linear SOC-mediated
Interaction between the two components makes the SV solitons
stable at N < N_,;; (a) (and y < 1). Also shown is the dependence of

the soliton’s amplitude on the SOC strength, A, for a fixed Lévy index,
a=15:

a2 | A



Typical examples of the evolution of stable SV
solitons displayed by dint of their cross-sections:
@ a=15A=1,N=1;,(b)a=1.9,A=0.4, N=5.15:
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Next: in spite of the supercritical collapse occurring in the 2D
nonlinear system in the interval of 1 < a < 2, the linear SOC-
mediated interaction between the two components makes the
MM solitons stable at N < N (a) (and y > 1). Also shown is an
example of the evolution of a stable SV-soliton for y =2, SOC
coupling strength A = 1, total norm N = 0.8, and Lévy index
a=1.5:
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/. Two-component solitons produced by the
fractional second-harmonic-generation system

The 1D fractional system for the amplitudes of the
fundamental-frequency (FF) and second-
harmonic (SH) fields with the fractional diffraction
and quadratic nonlinearity (real Q is the

mismatch parameter, * stands for the complex

conjugation): 32\ /2
fa—l—ﬂl (—a q) *fﬁ—l—*Ff*f"E:[}
Z e
P, 32\ o

Stationary solutions to Egs. (1) and (2) with FF and SH propagation
constants f; and f, = 2, are looked for as

Y (x,z) = e‘;ﬂlzwlix),?"g (x,z)= ezfﬂlzwg{x]. (5)



The system was introduced and analyzed in

Chaos, Solitons and Fractals 173 (2023) 113701
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Families of soliton solutions for normalized values
of the mismatch, Q =-1, 0, +1, and examples of
stable solitons:
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In the case of the quadratic nonlinearity, the 1D
system is free of the collapse in the interval of Lévy
Indices 0.5 < a = 2. Existence and stability areas for

the solitons:
(@)

6 L

No stationary
solution

: Q¥-1

Bright soliton

)

0 L L L
06 08 10 1.2 14 16 18 20

a3
(c) Q=+
6 , .
23 5 L Bright soliton
4+ No stationary
solution

¥

! ! ! ! . : : 0
06 08 10 1.2 14 16 18 2.0

0.1

(b) Q=1
‘:‘?f‘ 0.05 Stable soliton
Unstabl
soliton i "

4.4

0 B e e
06 08 10 12 14 16 1.8 2.0

r

0301 8

soliton

Unstable

Q=+ |

Stable soliton

0.25

v

06 08 10 1.2 14 16 18 20



Examples of unstable solitons for mismatch Q = 1:
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tra (a;, 8, a;) and perturbed evolution of FF and SH components (b;, b,, by) and (¢, ¢y, c3) for VK-unstable solitons with
. f, = 0.265. Top, middle, and bottom rows correspond, respectively, to different LI values, viz., e = 1.5, a = 1.0, and a =0.7.



8. Quasi-solitons in the fractional
Lugiato-Lefever (LL) model

The fractional LL equation (the model of a passive driven
laser cavity), with the Levi index LI, loss parameter a.
mismatch 6 =1, and pump strength F:

. " LIj2
dE : 2 i d-
% = —aE + Fpupy +iE(E* = 0) - E(_ aﬂ) E



The fractional LL model was introduced and
Investigated Iin

Chaos, Solitons and Fractals 173 (2023) 113737
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Stability regions for quasi-solitons, and examples of stable
and weakly unstable ones (with the background uniform field
E=iF,at |x| —~:
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O. Conclusion

The concept of fractional diffraction was introduced in physics by the Laskin’s
fractional guantum mechanics for particles which move, at the classical
level, by Lévy flights.

Experimental realization of fractional guantum mechanics was not reported as
yet. It was proposed by Longhi to emulate the fractional quantum

mechanics by the light propagation in an optical cavity, implementing the
effect of the fractional diffraction by means of specific phase shifts

Imparted to separate spectral components of the optical beam.

A real experimental work, using a similar method — imparting specific phase
shifts to spectral components of a temporal optical signal in a fiber

cavity — has recently reported the first realization of the effective

fractional group-velocity dispersion.

Theoretically, many works have addressed dynamics of solitons and other
self-trapped modes in the framework of the fractional nonlinear
Schrodinger equation. In particular, an attempt was made to introduce a
nonlinear fractional Gross-Pitaevskii equation for a condensate of
particles moving, at the classical level, by means of the Lévy flights.



The remaining challenge to the experiment is realization of
the effective fractional diffraction in the spatial domain,
l.e., for planar or bulk waveguides (linear or nonlinear),
similar to the recently reported realization of the fractional
group-velocity dispersion in optical fibers.

Finally, the most challenging objective may be the creation
of a combination of fractional dispersion and diffraction for
spatiotemporal optical pulses.

Thank you for your interest!

Copies of this presentation, and/or of articles mentioned in it,
can be requested from malomed@tauex.tau.ac.il
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