

Transport in a one-dimensional atomic ring: the role of grey solitons

Romain Dubessy & BEC group

Laboratoire de physique des lasers, CNRS UMR 7538 Université Sorbonne Paris Nord, Villetaneuse, France

Atomtronics 2024

The BEC group at Villetaneuse

H. Perrin

http://bec.lpl.univ-paris13.fr

Main interest: study quantum gases dynamics in low dimensions

Motivations From water waves to cold atoms

Transport in nonlinear systems

 \Rightarrow spectacular phenomena

 \Rightarrow clean & tunable system

 \Rightarrow control of dimensionality

 $\Rightarrow\,$ in many systems

Why cold atoms ?

light in fibers, fluids, polaritons, quantum gases, ...

(3D)

(2D)

(1D)

 $\Rightarrow\,$ at all scales

- \Rightarrow superfluid dynamics
- \Rightarrow easy measurements

Different excitations:

- \Rightarrow sound waves
- $\Rightarrow \text{ vortex lines}$
- \Rightarrow point-like vortices
- $\Rightarrow \text{ solitons}$

PRL 83 5198 (1999)

3/24

Mascaret on Gironde, wikimedia

The link with atomtronics

The simplest atomtronics circuit:

[Kumar et al. PRA (2018)]

Main tool: nonlinear Schrödinger equation

$$i\frac{\partial\psi}{\partial t} = \left(-\frac{1}{2}\frac{\partial^2}{\partial z^2} + g|\psi|^2 + V(z,t) - \mu\right)\psi$$

- \Rightarrow unwrap the ring
- \Rightarrow periodic boundary conditions
- \Rightarrow normalization
- \Rightarrow convenient units

$$\begin{split} z &= \theta R \\ \psi(z,t) &= \psi(z+L,t) \\ \int_0^L dz |\psi(z,t)|^2 &= N \\ \hbar &= M = 1 \end{split}$$

P.Pedri, J. Polo, A. Minguzzi, M. Olshanii

Investigate the decay mechanisms of a supercurrent.

<u>Note:</u> many related atomtronic topics, guided matter waves, bright solitons, ring lattices, ... AVS Quantum Science 3 039201 (2021)

What is known in higher dimensions Key point: role of vortices

Phase-slips mediated by vortices crossing the weak link

What happens in 1D ? (no vortices)

Bosons on a 1D ring with a barrier: life & death of a super-current PRL **123** 195301 (2019) & PRR **3** 013098 (2021)

$$i\frac{\partial\psi}{\partial t} = \left(-\frac{1}{2}\frac{\partial^2}{\partial z^2} + g|\psi|^2 + V(z,t) - \mu\right)\psi$$

Decay of a super-current Numerical solution of the 1D non-linear Schrödinger equation

 $T \simeq \mu$

Zero-temperature

GPE simulation

- \Rightarrow weak barrier current is stable
- \Rightarrow critical behavior

dual of the Bose-Josephson model

 $\Rightarrow\,$ large barrier: triangular oscillations

Finite-temperature

many realizations sampling thermal equilibrium

- \Rightarrow exponential damping
- \Rightarrow cross-over
- \Rightarrow damped oscillations
- \Rightarrow weak barrier: phase-slips mediated by solitons \Rightarrow large barrier: dispersive shock waves dynamics

[Polo et al. PRL (2019)]

R. Dubessy

A universal behavior for large barrier (impenetrable)

[Dubessy et al. PRR 2021]

R. Dubessy

A universal behavior for large barrier (impenetrable)

 $\gamma \ll 1$

 $\gamma \gg 1$

Atomtronics 2024

all γ

[[]Dubessy et al. PRR 2021]

A universal behavior for large barrier (impenetrable)

2L

 $\gamma \ll 1$

 $\gamma \gg 1$

all γ

 $-\psi(2L-z)$

Simulation with hard-wall boundaries: gaz in a box

For a complete review: *Dispersive shock waves and modulation theory*, El and Hoefer Physica D **333** (2016)

Ring & barrier: observe dispersive shock waves for long times

50

Ω

-50

2π

Π

Exponential decay

- \Rightarrow average of many individual phase-slips
- $\Rightarrow\,$ phase-slip $\Leftrightarrow\,$ soliton reflection on the barrier
- \Rightarrow barrier slows down solitons

and enables nucleation of new solitons

[Polo et al. PRL (2019)]

Deterministic phase slip

Initial state with a phase winding of +1 and a single soliton.

```
R. Dubessy
```


Grey solitons and the direct scattering transform in the nonlinear Schrödinger equation arXiv:2210.09812v2 Reminder: what is a grey soliton ? A special solution of a non-linear equation

Energy balance $quantum pressure \Leftrightarrow interaction energy$

or: diffraction \Leftrightarrow dispersion

(waves)

Single soliton solution:

 $\psi(z,t) = \sqrt{n_0} \left(\cos\phi \tanh\left[\cos\phi\sqrt{gn_0}(z-\bar{z}(t))\right] + i\sin\phi\right)$ traveling at a constant velocity: $v = \dot{\bar{z}}(t) = \sin\phi\sqrt{gn_0}$ recall: $c \equiv \sqrt{gn_0}$

[for a review see J. Phys. A 43 213001 (2010), proper solution on a ring: PRA 62 063610 (2000)]

R. Dubessy

Grey solitons in a 1D atomic ring

Reminder: what is a grey soliton ? A special solution of a non-linear equation

 Energy balance

 quantum pressure ⇔ interaction energy

 or: diffraction ⇔ dispersion (waves)

Single soliton solution:

 $\psi(z,t) = \sqrt{n_0} \left(\cos\phi \tanh\left[\cos\phi\sqrt{gn_0}(z-\bar{z}(t))\right] + i\sin\phi\right) \times e^{i(k_0z-\omega t)}$

traveling at a constant velocity: $v = \dot{\bar{z}}(t) = \sin \phi \sqrt{gn_0} + k_0$ recall: $c \equiv \sqrt{gn_0}$

on a ring the background flow compensates the phase jump: $k_0L = \pi - 2\phi$ $[2\pi]$ [for a review see J. Phys. A 43 213001 (2010), proper solution on a ring: PRA 62 063610 (2000)] $\omega = k_0^2/2$

R. Dubessy

Grey solitons in a 1D atomic ring

Key properties

Solitons are independent

they cross each other

without changing shape.

Key properties

Solitons are independent

they cross each other

without changing shape.

Key properties:

- \Rightarrow on a flat background the soliton is completely determined by its velocity (or phase).
- $\Rightarrow\,$ grey solitons interact by repelling each other

$$\left|\delta z_{i}\right| = \left|\frac{1}{2\cos\phi_{i}\sqrt{gn_{0}}}\ln\frac{1+\cos\left(\phi_{j}+\phi_{j}\right)}{1-\cos\left(\phi_{i}-\phi_{j}\right)}\right|$$

 $\Rightarrow~N\text{-soliton}$ interaction \Leftrightarrow pairwise interactions

[Zakharov & Shabat 1973]

How to characterize a many-soliton state ?

excited integrable system

groundstate

How to characterize a many-soliton state ?

excited integrable system

Initial state far from equilibrium:

- \Rightarrow complex density dynamics
- \Rightarrow many propagating features
- \Rightarrow how to characterize this state ?
- \Rightarrow conserved quantities ?

(beyond E, N, P)

How to characterize a many-soliton state ?

excited integrable system

Initial state far from equilibrium:

- \Rightarrow complex density dynamics
- \Rightarrow many propagating features
- \Rightarrow how to characterize this state ?
- \Rightarrow conserved quantities ?

(beyond E, N, P)

Use the tools of

the inverse scattering transform

inspired by PRL 125 264101 (2020)

The homogeneous 1D non-linear Schrodinger equation is integrable:

a Lax pair of operators ${\mathcal L}$ and ${\mathcal A}$ exists such that

$$i\frac{\partial\psi}{\partial t} = \left(-\frac{1}{2}\frac{\partial^2}{\partial z^2} + g|\psi|^2\right)\psi \iff i\frac{\partial\mathcal{L}}{\partial t} = [\mathcal{A},\mathcal{L}]$$

The homogeneous 1D non-linear Schrodinger equation is integrable:

a Lax pair of operators ${\mathcal L}$ and ${\mathcal A}$ exists such that

$$i\frac{\partial\psi}{\partial t} = \left(-\frac{1}{2}\frac{\partial^2}{\partial z^2} + g|\psi|^2\right)\psi \iff i\frac{\partial\mathcal{L}}{\partial t} = [\mathcal{A},\mathcal{L}]$$

For the **repulsive** case (g > 0), \mathcal{L} is Hermitian:

$$\mathcal{L} = \frac{i}{2} \begin{pmatrix} \frac{\partial}{\partial z} & -\sqrt{g}\psi\\ \sqrt{g}\psi^* & -\frac{\partial}{\partial z} \end{pmatrix}$$

and its spectrum $(\mathcal{L}v = \zeta v)$ is time-independent.

See for example "Solitons and the IST" by Ablowitz and Segur

Dubessy		Atomtronics 2024	16 / 24
---------	--	------------------	---------

A simple example The single soliton solution

Solve the direct scattering transform:

$$\mathcal{L}v = \zeta v, \ v \equiv \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

 $\begin{array}{l} \Rightarrow \text{ method works} \\ \Rightarrow \zeta_s = -\frac{v_s}{2} - \frac{k_0}{4} \\ \Rightarrow \text{ discrete eigenvalue} \\ \Rightarrow \text{ localized state} \end{array}$

numerics vs analytical solution soliton velocity

inside the density dip

 $\Rightarrow \mathcal{L}$ is a matrix operator, discrete spectrum

Challenge: how to identify the continuous spectrum ?

Note: simpler for the attractive case, for a recent application see [PRL 125 264101 (2020)]

R. Dubessy

Application to a very excited state Which eigenvalues are "discrete" ?

 \Rightarrow identification: use state localization?

 \Rightarrow better criterion : study eigenvalue degeneracy

continuous transition from small soliton to sound wave

R. Dubess

Define **solitons** as Lax eigenvalues with double degeneracy in the extended system

K Saha

LPL Laboratoire de Physique des Lesers

Define a soliton indicator $S(\zeta)$

Systematic benchmark

LPL Laboratoire de Physique des Lasers

Imprint a *N*-soliton state with random phases: $\psi_N(z,t=0) = \sqrt{n_0} e^{ik_{\text{tot}}z} \prod_{j=1}^N \left(\cos\phi_j \tanh\left[\sqrt{gn_0}\cos\phi_j(z-z_j)\right] + i\sin\phi_j\right)$ (valid if solitons do not overlap)

Define a soliton **indicator** $S(\zeta)$

Systematic benchmark

LPL Laboratoire de Physique des Lesers

Imprint a *N*-soliton state with random phases: $\psi_N(z,t=0) = \sqrt{n_0} e^{ik_{\text{tot}}z} \prod_{j=1}^N \left(\cos\phi_j \tanh\left[\sqrt{gn_0}\cos\phi_j(z-z_j)\right] + i\sin\phi_j\right)$ (valid if solitons do not overlap)

Efficient method to study solitons

Main results

- \Rightarrow distinguish the discrete / continuous spectra
- \Rightarrow count the **soliton number**
- $\Rightarrow\,$ the soliton's velocity distribution

Conjectures

- ⇒ the gap size gives the effective speed of sound c_{eff} ⇒ the highest peak in the eigenvector
 - modulus gives the soliton position

Simplified recipe $\Rightarrow \rho(v,z)dvdz$: number of solitons in $[z, z + dz] \times [v, v + dv]$ \Rightarrow find the **effective** soliton velocity: $v_{\text{eff}} = \mathbf{v} + \int dv' \Delta(v, v') \rho(v', z) \times [v_{\text{eff}}(v) - v_{\text{eff}}(v')]$ $\Delta(v, v')$ collision induced shift \Rightarrow write a continuity equation: $\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_{\rm eff})}{\partial z} = 0$ Lax spectrum $\{\zeta\} \Rightarrow \rho(v, z)$ at t = 0.

Crucial point: integrable system ($\{v\}$ is conserved)

Classical mechanics J. Stat. Phys. **31** 577 (1983) Lieb-Liniger model PRL **117** 207201 (2016) & PRX **6** 041065 (2016) Bright soliton gases PRE **120** 045301 (2018) Grey soliton gases PRE **103** 042201 (2021)

Conclusion Take home messages

LPL Laboratoire de Physique des Lesers

Box-trap to study 1D shock-waves

 \Rightarrow long wavelength $c(\gamma)$ controls propagation \Rightarrow even for non perturbative quenches

simple for periodic or hard-wall boundary conditions

Solitons are responsible for phase-slips in 1D

- $\Rightarrow\,$ phase slips $\Leftrightarrow\,$ soliton reflection
- \Rightarrow competition with dispersive effects

Direct scattering transform (Lax spectrum)

- $\Rightarrow \text{ solitons} \Leftrightarrow \text{localized eigenstates}$
- \Rightarrow quantitative measure of velocities
- \Rightarrow measure the speed of sound far from equilibrium

Atomtronics 2024

Perspectives

