# Instability of matter waves in optical lattices under Floquet driving

#### Charles Creffield Universidad Complutense de Madrid



Di Carli *et al.*, Phys. Rev. Res. 5, 033024 (2023) Cruickshank *et al.*, arXiv:2401.05265

## Outline

- Introduction to "Floquet engineering"
- the good: precise control of Hamiltonians
- the bad: heating effects
- the ugly: dynamical and modulational instabilities
- Summary and conclusions

- BECs are highly controllable, and have excellent coherence properties
- can apply optical lattice potentials ("crystals of light") to control their properties



described well by the Bose-Hubbard Hamiltonian

$$H_{\text{latt}} = -J \sum_{j} \left[ a_{j}^{\dagger} a_{j+1} + \text{H.c.} \right] + \frac{U}{2} \sum_{j} n_{j} \left( n_{j} - 1 \right)$$

"Atomtronics is an emerging field seeking to realize atomic circuits exploiting ultra-cold atoms"

- L. Amico

Electrons are charged, and respond to electric and magnetic fields

... but the condensed atoms are neutral

They don't have charge, but they do have mass

 $\Rightarrow$  they can respond to *inertial* forces

- first choice: gravity
- second choice: accelerate the lattice



In the rest frame of the lattice (which is non-inertial)  $\Rightarrow$  the atoms see a force,  $F_{in} = m a$ 

$$H = H_0 + K \sum_j x_j n_j$$

 $\Rightarrow$  the lattice potential tilts, equivalent to a uniform *E*-field, and varying *K* with time gives a time-dependent potential

## "Floquet engineering"

Consider a general time-dependent Hamiltonian:

$$H(t) = H_0 + H_I(t)$$

- if  $H_{l}(t)$  is periodic,  $H_{l}(t) = H_{l}(t + T)$
- find solutions of  $[i\hbar \partial_t H(t)] |\psi_n\rangle = \epsilon_n |\psi_n\rangle$

for high frequencies, long timescale dynamics are described by an effective static Hamiltonian,  $H(t) \rightarrow H_{eff}$ 

 $H_{\text{eff}}$  obtained by series expansion in orders of  $1/\omega$ 

#### **Floquet-Magnus expansion:**

$$H_F^{(0)} = \frac{1}{T} \int_{t_0}^{T+t_0} dt H(t) = H_0,$$
  
$$H_F^{(1)}[t_0] = \frac{1}{2!Ti\hbar} \int_{t_0}^{T+t_0} dt_1 \int_{t_0}^{t_1} dt_2 [H(t_1), H(t_2)],$$

and so on for higher orders

Note that the terms arise from commutators

If we have a general Hamiltonian, H = T + U + V

*any* term can be driven, and will produce non-trivial dynamics if it does not commute with the others

Specific case: sinusoidal driving,  $K(t) = K \cos \omega t$ 

$$\Rightarrow$$
 **J**<sub>eff</sub> = **J J**<sub>0</sub> (**K**/ $\omega$ ), coherent control of tunneling



The Good







 manipulating the *amplitude* of J<sub>eff</sub> can be used to control the Mott transition



- or by setting  $J_{\rm eff}\left(y\right)\propto \zeta\left(1/2+iy\right)$  we can study the Riemann hypothesis



can obtain over 80 zeros, with accuracy of <1 %

we can also manipulate the *phase* of J<sub>eff</sub> to simulate magnetic fields



#### Hofstadter butterfly structure

The Bad

## The problem:

Typically driving will heat the system up

no local symmetries  $\Rightarrow$  thermalise to infinite temperature



Lellouch et al., PRX 7, 021015 (2016)

However, under some circumstances, the system only absorbs energy weakly

 $\Rightarrow$  a long-lived "pre-thermal state"



Driving strength,  $K/\omega$ 

- what is the cause of the instabilities?
- can we find stable regions of parameter-space?
- is the high-frequency regime different from the lowfrequency regime?

## The "Ugly"

## Procedure

- classical field approximation: boson operators  $a_n \rightarrow$  c-numbers  $\alpha_n$
- produces a discretised Gross-Pitaevskii equation, with g = U N
- perturb around the Floquet states:

$$\alpha'_n(t) = \alpha_n(t) \left( 1 + u(t)e^{iqn} + v^*(t)e^{-iqn} \right)$$

where q is the excitation's momentum wrt the condensate

Substituting in the equation of motion, and expanding to first order in *u* and *v* gives:

$$i\frac{d}{dt}\begin{pmatrix}u(t)\\v(t)\end{pmatrix} = \mathcal{L}(q,t)\begin{pmatrix}u(t)\\v(t)\end{pmatrix}$$

time-dependent Bogoliubov-de Gennes equations

$$\mathcal{L}_{11}(q,t) = 4J\sin(q/2)\sin(q/2 - K/\omega\sin\omega t) + g,$$
  

$$\mathcal{L}_{12}(q,t) = g = -\mathcal{L}_{21}(q,t),$$
  

$$\mathcal{L}_{22}(q,t) = -4J\sin(q/2)\sin(q/2 + K/\omega\sin\omega t) - g$$

CEC, Phys. Rev. A 79, 063612 (2009)

- Note that L(q,t) is also *T*-periodic  $\Rightarrow$  Floquet theorem applies
- eigenvalues govern the growth of excitations
- imaginary component implies exponential growth



At high frequencies, we can obtain an expression for the eigenvalues of L:

$$E_{\rm ave}(q) = \sqrt{4J_{\rm eff}\sin^2(q/2)\left(4J_{\rm eff}\sin^2(q/2) + 2g\right)}$$

## Resonances occur when $E_{\rm ave}(q) = n\omega$







#### This is an example of **parametric resonance**

In detail:

$$i\partial_{t}\begin{pmatrix}\tilde{u}'_{\mathbf{q}}\\\tilde{v}'_{\mathbf{q}}\end{pmatrix} = \begin{bmatrix} E_{\text{ave}}(\mathbf{q})\hat{1} + \hat{W}_{\mathbf{q}}(t) + \sinh(2\theta_{\mathbf{q}}) \begin{pmatrix} 0 & h_{\mathbf{q}}(t)e^{-2iE_{\text{ave}}(\mathbf{q})t} \\ -h_{\mathbf{q}}(t)d^{2iE_{\text{ave}}(\mathbf{q})t} & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix}\tilde{u}'_{\mathbf{q}}\\\tilde{v}'_{\mathbf{q}}\end{pmatrix}.$$
note the factor of 2!
$$l(t) = \int_{t}^{t} \int_{t}$$



#### "kiiking" <a href="https://www.youtube.com/watch?v=TWbcsEDrmFE">https://www.youtube.com/watch?v=TWbcsEDrmFE</a>

At low frequencies, we can track the momentum of the system over one period

- this depends on the *micromotion* of the Floquet state

$$|\Psi(t)\rangle = \sum_{j} c_{j} e^{-i\epsilon_{j}t} |\psi_{j}(t)\rangle$$
$$|\psi_{j}(t)\rangle = |\psi_{j}(t+T)\rangle$$

For certain momenta, the instantaneous eigenvalues of L(q,t) will become complex, and **modulational instability\*** occurs

\*Trombettoni et al., J. Phys. B 39, S231 (2006)





Let us add a static tilt to the driving,  $\Delta E = m \omega$ 



#### At high frequencies, parametric instability again occurs,

but now  $J_{\text{eff}} = J \mathcal{J}_m (K/\omega)$ 



Finally, consider a non-resonant tilt,  $\Delta E = (p/q) \omega$ 

Now we have to consider the Floquet problem over *q* periods of driving

q=42



#### A logarithmic scale reveals more structure





Κ/ω

3.8

K/ω

### **Summary and Conclusions**

- Floquet engineering is an effective and powerful way to modify Hamiltonians
- two types of instability
  - dynamical instability, most evident at high frequencies
  - modulational instability, at low frequencies
- stability is best at high frequency
- at lower frequencies we can identify sweet spots where heating is minimised



## Thank you to my collaborators

• the cold atoms group at the University of Strathclyde

Robbie Cruickshank, Andrea Di Carli, Matthew Mitchell, Arthur La Rooij, Stefan Kuhr, and Elmar Haller

## Thank you for your attention!