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Introduction to “Floquet engineering” 

the good: precise control of Hamiltonians 

the bad: heating effects 

the ugly: dynamical and modulational instabilities 

Summary and conclusions

Outline



• BECs are highly controllable, and have excellent 
coherence properties 

• can apply optical lattice potentials (“crystals of light”) 
to control their properties

• described well by the Bose-Hubbard Hamiltonian



Electrons are charged, and respond to electric and 
magnetic fields 

  …but the condensed atoms are neutral 
  
They don’t have charge, but they do have mass 

⇒ they can respond to inertial forces



• first choice: gravity

In the rest frame of the lattice (which is non-inertial) 
⇒ the atoms see a force, Fin = m a

⇒ the lattice potential tilts, equivalent to a uniform E-field, 
and varying K with time gives a time-dependent potential

• second choice: accelerate the 
lattice



“Floquet engineering”

Consider a general time-dependent Hamiltonian:

• if HI(t) is periodic, HI(t) =HI(t + T) 

• find solutions of 

for high frequencies, long timescale dynamics are 
described by an effective static Hamiltonian, H(t) → Heff

Heff obtained by series expansion in orders of 1/ω



Floquet-Magnus expansion:

and so on for higher orders

Note that the terms arise from commutators 

If we have a general Hamiltonian, H = T + U + V 

any term can be driven, and will produce non-trivial 
dynamics if it does not commute with the others



Specific case: sinusoidal driving,  K(t) = K cos ωt 

⇒ Jeff = J J0 (K/ω), coherent control of tunneling

Lignier et al, PRL 99, 220403 (2007)



The Good



K / ω



standard “refraction”

negative refraction



• manipulating the amplitude of Jeff can be used to 
control the Mott transition 

superfluid

Mott insulator



• or by setting                                       we can study 
the Riemann hypothesis    

can obtain over 80 zeros, with accuracy of <1 %



• we can also manipulate the phase of Jeff to simulate 
magnetic fields

Hofstadter butterfly structure



The Bad



The problem:
Typically driving will heat the system up 

no local symmetries ⇒ thermalise to infinite temperature

Lellouch et al., PRX 7, 021015 (2016)



However, under some circumstances, the system only 
absorbs energy weakly 

⇒ a long-lived “pre-thermal state”

Driving strength, K/ω



• what is the cause of the instabilities? 

• can we find stable regions of parameter-space? 

• is the high-frequency regime different from the low-
frequency regime?



The “Ugly”



• classical field approximation:                          
boson operators an → c-numbers  𝛼n 

• produces a discretised Gross-Pitaevskii equation, 
with g = U N 

• perturb around the Floquet states:

Procedure

where q  is the excitation’s momentum wrt the condensate



Substituting in the equation of motion, and expanding to first 
order in u and v gives:

time-dependent Bogoliubov-de Gennes equations

CEC, Phys. Rev. A 79, 063612 (2009)



• Note that L(q,t) is also T-periodic ⇒ Floquet 
theorem applies 

• eigenvalues govern the growth of excitations 

• imaginary component implies exponential growth



At high frequencies, we can obtain an expression for 
the eigenvalues of L: 

 

Resonances occur when 

n=1

n=2

n=3





This is an example of parametric resonance

In detail:

note the factor of 2!

- just like pumping a swing



“kiiking” https://www.youtube.com/watch?v=TWbcsEDrmFE

https://www.youtube.com/watch?v=TWbcsEDrmFE


At low frequencies, we can track the momentum of 
the system over one period 

- this depends on the micromotion of the Floquet 
state 

 

For certain momenta, the instantaneous eigenvalues 
of L(q,t) will become complex, and modulational 
instability* occurs 

*Trombettoni et al., J. Phys. B 39, S231 (2006)







Let us add a static tilt to the driving, ΔE = m ω



At high frequencies, parametric instability again occurs, 

but now 

similar resonances, but 
governed by J2

n=1

n=2

n=3

n=4

For m=2:



Finally, consider a non-resonant tilt, ΔE = (p/q) ω

Now we have to consider the Floquet problem over q periods 
of driving

m=0

m=1

m=2

q=42



A logarithmic scale reveals more structure
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• Floquet engineering is an effective and powerful way to 
modify Hamiltonians 

• two types of instability 

dynamical instability, most evident at high frequencies 

modulational instability, at low frequencies 

• stability is best at high frequency 

• at lower frequencies we can identify sweet spots where 
heating is minimised

Summary and Conclusions
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