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Introduction to “Floquet engineering”

the good: precise control of Hamiltonians

the bad: heating effects

the ugly: dynamical and modulational instabilities

Summary and conclusions



 BECs are highly controllable, and have excellent
coherence properties

e can apply optical lattice potentials (“crystals of light”)
to control their properties
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Cold atomic gas

e described well by the Bose-Hubbard Hamiltonian

U
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“Atomtronics is an emerging field seeking to realize
atomic circuits exploiting ultra-cold atoms”

- L. Amico

Electrons are charged, and respond to electric and
magnetic fields

...but the condensed atoms are neutral
They don't have charge, but they do have mass

= they can respond to inertial forces



» first choice: gravity -
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e second choice: accelerate the

lattice *\

Atoms F
Coils grav

——

In the rest frame of the lattice (which is non-inertial)
= the atoms see a force, fn =m a

H:HQ+Kijnj
J

= the lattice potential tilts, equivalent to a uniform E-field,

and varying K with time gives a time-dependent potential



“Floquet engineering”

Consider a general time-dependent Hamiltonian:
H(t) = Ho+ Hp(t)

o if Hi(t)is periodic, Hi(t) =H(t + T)

» find solutions of [th Oy — H (1) |Vn) = €,]0n)

for high frequencies, long timescale dynamics are
described by an effective static Hamiltonian, H(t) = Hes

Hetf Obtained by series expansion in orders of 1/w



Flogquet-Magnus expansion:

1 T+t
H,QO) = —/ dr H(t) = Hy,
I J;,

(1) 1 T+t 11
H: 'ty = dr der |H (1), H(t
ol =y | a0 [ dnlH@).Hw)

and so on for higher orders

Note that the terms arise from commutators
It we have a general Hamiltonian, H=T+ U + V

any term can be driven, and will produce non-trivial
dynamics If it does not commute with the others
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Specific case: sinusoidal driving, K(t) = K cos wt

= Jett = J Jo (K/w), coherent control of tunneling
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Lignier et al, PRL 99, 220403 (2007)



The Good
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* manipulating the amplitude of Jett can be used to
control the Mott transition

superfluid




 or by setting Jog () o< ( (1/2 + iy) we can study
the Riemann hypothesis
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can obtain over 80 zeros, with accuracy of <1 %
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e We can also manipulate the phase of Jeff to simulate

magnetic fields
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The Bad



The problem:
Typically driving will heat the system up

no local symmetries = thermalise to infinite temperature

anﬁiLg=%JJOhnﬁﬂ5

From linearized equation
1e+09 | From nonlinear equation ---------

1e+07 |
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Energy density of the fluctuations (in units of J)
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Lellouch et al., PRX 7, 021015 (2016)



However, under some circumstances, the system only
absorbs energy weakly

= a long-lived “pre-thermal state”
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e what is the cause of the instabilities”
e can we find stable regions of parameter-space”

* |s the high-frequency regime different from the low-
frequency regime?



The “Ugly’



Procedure

* classical field approximation:
boson operators a, = c-numbers an

* produces a discretised Gross-Pitaevskii equation,
withg=UN

e perturb around the Flogquet states:

("‘f;z.(f) — ('}-n(z‘.) (1 - ll.(_l_l‘.)(."iqn -1- ’l,'*(z‘.)("_iqn)

where g Is the excitation’s momentum wrt the condensate



Substituting in the equation of motion, and expanding to first
order in uand v gives:

time-dependent Bogoliubov-de (Gennes equations

Li1(q,t) = 4Jsin(q/2)sin(q/2 — K/wsinwt) + g,
Lia(q.t) = g=—Lalg,1),
Loo(q.,t) = —4Jsin(q/2)sin(q/2 + K/wsinwt) — g

CEC, Phys. Rev. A 79, 063612 (2009)



 Note that L(qg,t) is also T-periodic = Floguet

theorem applies

* eigenvalues govern the growth of excitations

* Imaginary component implies exponential growth




At high frequencies, we can obtain an expression for
the eigenvalues of L:

E.vo(q) = \/4o]0ﬁ‘ sin” (q/2) (4.]Cff sin® (q/2) + 29)




Driving frequency wp (1/8)
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This is an example of parametric resonance

In detalil:
21’ i L . | () h.(t _—QiEave(Q)t ] "y
i, | 9| = | Bue(q)i + Wy(t) + sinh(26,) alt)e fa)
i hq(t) 0 i

note the factor of 2!

I

- just like pumping a swing




“Kilking”  https://www.youtube.com/watch?v=TWbcsEDrmFE



https://www.youtube.com/watch?v=TWbcsEDrmFE

At low frequencies, we can track the momentum of
the system over one period

- this depends on the micromotion of the Floquet
state i
W(t) =) ce " y(1))
]

V(1)) = ¥t +T))

For certain momenta, the instantaneous eigenvalues
of L(qg,t) will become complex, and modulational
instability* occurs

*Trombettoni et al., J. Phys. B 39, S231 (20006)
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Let us add a static tilt to the driving, AE = m w

U

Drive F(1)

Lattice




At high frequencies, parametric instability again occurs,

but now Jeg = J T (K /w)
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For m=2;

similar resonances, but o
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Finally, consider a non-resonant tilt, AE = (p/q) w

Now we have to consider the Floquet problem over g periods
of driving

Bloch frequency / w

K/ w



A logarithmic scale reveals more structure
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Summary and Conclusions

* Floguet engineering is an eftective and powerful way to
modify Hamiltonians

e two types of instability
dynamical instability, most evident at high frequencies
modulational instability, at low frequencies

e stability is best at high frequency

* at lower frequencies we can identity sweet spots where
heating Is minimised
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