
Many-body quantum heat engines 
based on free-Fermion systems

Davide Rossini
Atomtronics, 28 May 2024


Benasque Science Center, Spain



In collaboration with

Giulia Piccitto

Univ. Catania

Roberto Arezzo

SISSA, Trieste

Michele Campisi

CNR - NEST, Pisa

G. Piccitto, M. Campisi, D. Rossini,   New J. Phys. 24, 103023 (2022).

V. R. Arezzo, G. Piccitto, D. Rossini,  arXiv:2403.11645 (2024).



Outline of the talk

✦  Thermodynamics of microscopic systems


✦  Free-fermion systems


✦  Quantum Otto cycle


      Ideal engine

      Finite-duration engine



Thermodynamics of a thermal engine

dE = δQ − δW

∑
i, cycle

Qi

Ti
≤ 0

Thermodynamic cycles

Heater:           

Accelerator:   

Heat engine:  

Refrigerator:  

Qh < 0, Qc < 0, W < 0.
Qh > 0, Qc < 0, W < 0.
Qh > 0, Qc < 0, W > 0.
Qh < 0, Qc > 0, W < 0.

A. Solfanelli, M. Falsetti, M. Campisi,  PRB 101, 054513 (2020)

I principle

+


II principle

Qh > 0 Qc < 0

W > 0
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Thermodynamics of microscopic systems

Classical systems: heat & work can be easily defined.

Quantum systems: additional care must be taken.

R. Alicki,  J. Phys. A 12, L103 (1979)

H.H. Quan, Y. Liu, C. Sụn, F. Nori, PRE 76, 031105 (2007)



Thermodynamics of microscopic systems

dE(λ) = Tr[dH(λ) ρ(λ)] + Tr[H(λ) dρ(λ)]

Classical systems: heat & work can be easily defined.

Quantum systems: additional care must be taken.

R. Alicki,  J. Phys. A 12, L103 (1979)

H.H. Quan, Y. Liu, C. Sụn, F. Nori, PRE 76, 031105 (2007)



Thermodynamics of microscopic systems

dE(λ) = Tr[dH(λ) ρ(λ)] + Tr[H(λ) dρ(λ)]

modification of the spectral 
structure of the system

variation of the state 
of the system

Classical systems: heat & work can be easily defined.

Quantum systems: additional care must be taken.

R. Alicki,  J. Phys. A 12, L103 (1979)

H.H. Quan, Y. Liu, C. Sụn, F. Nori, PRE 76, 031105 (2007)

identifying  and  with the above two terms is not obviousW Q
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Adiabatic transformations: 
Unitary evolution  changes

the energy levels of .





                   

λ(t)
H[λ(t)]

Q = 0; W ≡ −ΔE = −∫
tf

ti

∂t′￼⟨H[λ(t′￼)]⟩ρ(t′￼) dt′￼

= ⟨H[λ(ti)]⟩ρ(ti) − ⟨H[λ(tf )]⟩ρ(tf )
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Going quantum?? 

Adiabatic transformations: 
Unitary evolution  changes

the energy levels of .





                   


Isochoric transformations: 
 is fixed. The system in contact


with a bath does not evolve unitarily.


λ(t)
H[λ(t)]

Q = 0; W ≡ −ΔE = −∫
tf

ti

∂t′￼⟨H[λ(t′￼)]⟩ρ(t′￼) dt′￼

= ⟨H[λ(ti)]⟩ρ(ti) − ⟨H[λ(tf )]⟩ρ(tf )

λ

W = 0; Q = ⟨H(λ)⟩ρ(tf ) − ⟨H(λ)⟩ρ(ti)

adiabatic

“compression”

adiabatic

“expansion”



Heat engines with quantum many-body systems

The working medium can be a gas of interacting atoms


Jaramillo et al., Quantum supremacy of many-particle thermal machines, NJP 18, 075019 (2016)

J. Bengtsson et al., Quantum Szilard engine with attractively interacting bosons, PRL 120, 100601 (2018)

Y. Chen et al., Interaction-driven many-particle quantum heat engine and its universal behavior, npj Quant. Inf. 5, 88 (2019)

N. Yunger Halpern et al., Quantum engine based on many-body localization, PRB 99, 024203 (2019). 

F. Carollo et al., Nonequilibrium quantum many-body Rydberg atom engine, PRL 124, 170602 (2020). 

T. Fogarty and T. Busch, A many-body heat engine at criticality, Quantum Sci. Technol. 6, 015003 (2021)

M. Boubakour, T. Fogarty, and T. Busch, Interaction-enhanced quantum heat engine, PRR 5, 013088 (2023)

R. S. Watson et al., Interaction-driven quantum many-body engine enabled by atom-atom correlations arXiv:2308.05266

…


or even a system of several interacting quantum spins


Q. Wang, Performance of quantum heat engines under the influence of long-range interactions PRE 102 012138 (2020)

B.S. Revathy et al, Universal finite-time thermodynamics of many-body q. machines from KZ scaling, PRR 2, 043247(2020)

A. Solfanelli et al., Quantum heat engine with long-range advantages, NJP 25, 033030 (2023)

L. A. Williamson and M. J. Davis, Many-body enhancement in a spin-chain quantum heat engine, PRB 109, 024310 (2024)

…



Free-fermion systems

H = ∑
i,j

Di,j c†
i cj + 1

2 (Oi,j c†
i c†

j + hc), D = D†, O = − OT

can be cast into a free-quasiparticle model through a Bogoliubov transformation:

H = ∑
k

ωk(b†
k bk − 1

2 ) 


spectrum of the

(fermonic) quasiparticles

ωk ≡ ωk(λ)

Thermal state:    ρβ(λ) ∝ e−βH(λ) ⟨b†
k bk⟩ρβ(λ) =

1
1 + e−βωk(λ)

≡ f[β, ωk(λ)]
Fermi-Dirac distribution



Ideal transformations for free fermions

Isotherm:    varies slowly in time, the system stays

      in thermal equilibrium with a bath at temperature 


       

λ: λi → λf
β−1

W ≡ − ΔF = − ∫
λf

λi
∑

k
[∂λωk(λ)] [ 1

1 + eβωk(λ)
−

1
2 ]dλ; Q = ΔE + W



Ideal transformations for free fermions

Isotherm:    varies slowly in time, the system stays

      in thermal equilibrium with a bath at temperature 


       


Adiabatic:  no heat exchange;     varies slowly in time,

                   the quantum adiabatic theorem can be invoked
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−
1
2 ] [ωk(λf ) − ωk(λi)]



Ideal transformations for free fermions

Isotherm:    varies slowly in time, the system stays

      in thermal equilibrium with a bath at temperature 


       


Adiabatic:  no heat exchange;     varies slowly in time,

                   the quantum adiabatic theorem can be invoked


                       


Isochoric:  no variations of ;  initially equilibrium with a bath ,

                   then thermalization with another bath 


                   

λ: λi → λf
β−1

W ≡ − ΔF = − ∫
λf

λi
∑

k
[∂λωk(λ)] [ 1

1 + eβωk(λ)
−

1
2 ]dλ; Q = ΔE + W

λ: λi → λf

Q = 0; W ≡ − ΔE = − ∑
k

[ 1
1 + eβωk(λi)

−
1
2 ] [ωk(λf ) − ωk(λi)]

λ βi
βf

W = 0; Q ≡ ⟨H⟩ρf
− ⟨H⟩ρi

= ∑
k

ωk[ f(β2, ωk) − f(β1, ωk) ]



Ideal quantum Otto cycle

A
ρA ∝ e−βcH(λi)



Ideal quantum Otto cycle

A

B

ρA ∝ e−βcH(λi)

λ:
λ i

→
λ f

WAB = ∑
k

[ωk(λi) − ωk(λf )]{f[βc, ω(λi)]− 1
2 }

perfect q-adiabatic

transformation



Ideal quantum Otto cycle

QBC ≡ Qh = ⟨H(λf )⟩ρf
− ⟨H(λf )⟩ρi

(Δfk)hc ≡ f[βh, ωk(λf )] − f[βc, ωk(λi)]

A

B

C

perfect 
heating

= ∑
k

ωk(λf ) (Δfk)hc

ρC ∝ e−βhH(λf )ρA ∝ e−βcH(λi)

λ:
λ i

→
λ f

WAB = ∑
k

[ωk(λi) − ωk(λf )]{f[βc, ω(λi)]− 1
2 }

perfect q-adiabatic

transformation



Ideal quantum Otto cycle
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k

ωk(λf ) (Δfk)hc

ρC ∝ e−βhH(λf )ρA ∝ e−βcH(λi)

λ:
λ i

→
λ f

λ:
λ f

→
λ i

WCD = ∑
k

[ωk(λf ) − ωk(λi)]{f[βh, ω(λf )]− 1
2 }

WAB = ∑
k

[ωk(λi) − ωk(λf )]{f[βc, ω(λi)]− 1
2 } QBC ≡ Qh = ⟨H(λf )⟩ρf

− ⟨H(λf )⟩ρi
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Ideal quantum Otto cycle

QDA ≡ Qc = ⟨H(λi)⟩ρi
− ⟨H(λi)⟩ρf

WAB = ∑
k

[ωk(λi) − ωk(λf )]{f[βc, ω(λi)]− 1
2 }

(Δfk)hc ≡ f[βh, ωk(λf )] − f[βc, ωk(λi)]

A

B

D

C

perfect 
heating

perfect 
cooling

= ∑
k

ωk(λf ) (Δfk)hc

= − ∑
k

ωk(λi) (Δfk)hc

ρC ∝ e−βhH(λf )ρA ∝ e−βcH(λi)

λ:
λ i

→
λ f

λ:
λ f

→
λ i

WCD = ∑
k

[ωk(λf ) − ωk(λi)]{f[βh, ω(λf )]− 1
2 }

W ≡ WAB + WBC = Qh − Qc

QBC ≡ Qh = ⟨H(λf )⟩ρf
− ⟨H(λf )⟩ρi

perfect q-adiabatic

transformation

perfect q-adiabatic

transformation



Realistic quantum Otto cycle

A) Non-perfect quantum adiabaticity (adiabatic strokes):

Excitations generated during the unitary dynamics of a finite duration 

-> full description of the dynamics 

T
U(t) = Texp[e−i ∫t

0 ds H(λ(s))]



Realistic quantum Otto cycle

A) Non-perfect quantum adiabaticity (adiabatic strokes):

Excitations generated during the unitary dynamics of a finite duration 

-> full description of the dynamics 


B) Non-perfect thermalization (isochoric strokes):

System in contact with the reservoirs for a finite time 

-> microscopic modeling of the system-bath dynamics

T
U(t) = Texp[e−i ∫t

0 ds H(λ(s))]

τ



Realistic quantum Otto cycle

A) Non-perfect quantum adiabaticity (adiabatic strokes):

Excitations generated during the unitary dynamics of a finite duration 

-> full description of the dynamics 


B) Non-perfect thermalization (isochoric strokes):

System in contact with the reservoirs for a finite time 

-> microscopic modeling of the system-bath dynamics

T
U(t) = Texp[e−i ∫t

0 ds H(λ(s))]

τ

Semi-analytic treatment for free-fermion systems



A) Non-perfect quantum adiabaticity

 in a finite time H(λi) → H(λf ) T

W = − ∫
T

0

∂
∂t

⟨H[λ(t)]⟩ρ(t) dt = ⟨H(λi)⟩ρ(0) − ⟨H(λf )⟩ρ(T)

Initial state

U(t) = Texp{e−i ∫t
0 ds H[λ(s)]}

time-evolved state:

ρ(T ) = U(T )ρ(0)U(T )



A) Non-perfect quantum adiabaticity

Bogoliubov formalism:

 in a finite time H(λi) → H(λf ) T

W = − ∫
T

0

∂
∂t

⟨H[λ(t)]⟩ρ(t) dt = ⟨H(λi)⟩ρ(0) − ⟨H(λf )⟩ρ(T)

Initial state

U(t) = Texp{e−i ∫t
0 ds H[λ(s)]}

time-evolved state:

ρ(T ) = U(T )ρ(0)U(T )

Heisenberg representation & Nambu spinors:
Ψ = (c1, ⋯, cN, c†

1 , ⋯, c†
N)T , Φ = (b1, ⋯, bN, b†

1 , ⋯, b†
N)T ; cH

j (T ) = U†(T ) cj U(T )

Equilibrium :      where   


Dynamics:        with   

Ψ = 𝕌 Φ H = Ψ† ℍ Ψ, ℍ𝔻 = 𝕌† ℍ 𝕌

ΨH(T ) = 𝕌(T ) ΦH(0) ∂t𝕌(t) = − 2i ℍ[λ(t)] 𝕌(t)



QBC ≡ Qh = ∑
k

ωk(λf ) {f[βh, ωk(λf )]− 1
2 } − ω̃k(λf ) {f[βc, ωk(λi)]− 1

2 }

QDA ≡ Qc = − ∑
k

ω̃k(λi) {f[βh, ωk(λf )]− 1
2 } − ωk(λi) {f[βc, ωk(λi)]− 1

2 }

A) Non-perfect quantum adiabaticity

WAB = ∑
k

{ωk(hi) − ω̃k(hf )} {f[βc, ωk(hi)]− 1
2 }

WCD = ∑
k

{ωk(hf ) − ω̃k(hi)} {f[βh, ωk(hf )]− 1
2 }

ω̃k(λ) = [𝕌†(T ) ℍ(λ) 𝕌(T )]kk



Microscopic treatment for free fermions in contact with thermal baths.

Quadratic coupling to  baths & Markov approximation:n

dtρ(t) = − i[H, ρ(t)] + 𝒟[ρ(t)]

𝒟[ρ] = ∑
n,k

γn,k[(1 − f(βn, ωk))(2bkρb†
k − {b†

k bk, ρ}) + f(βn, ωk)(2b†
k ρbk − {bkb†

k , ρ})]
Fermi-Dirac distributionbath coupling constants

A. D’Abbruzzo & DR,  PRA 103, 052209 (2021)

nonlocal Lindblad master eq.

B) Non-perfect thermalization



dtρ(t) = − i[H, ρ(t)] + 𝒟[ρ(t)]

𝒟[ρ] = ∑
n,k

γn,k[(1 − f(βn, ωk))(2bkρb†
k − {b†

k bk, ρ}) + f(βn, ωk)(2b†
k ρbk − {bkb†

k , ρ})]
Fermi-Dirac distributionbath coupling constants

nonlocal Lindblad master eq.

each site coupled to a distinct bath at temperature  ensures 
exponential convergence to a unique state 


β
ρβ ∝ e−βH

⟨b†
k bk⟩(t) = f(β, ωk)(1 − e−2𝒥t) + ⟨b†

k bk⟩ρi
e−2𝒥t

𝒥 ∼ Σnγn,k , ∀k

B) Non-perfect thermalization

A. D’Abbruzzo & DR,  PRA 103, 052209 (2021)

Microscopic treatment for free fermions in contact with thermal baths.

Quadratic coupling to  baths & Markov approximation:n



B) Non-perfect thermalization

System in contact with a thermal reservoir for a finite time τ
Θc/h ≡ diag{ f[βc/h, ωk(λi/f )]}
Γ[n]

c/h ≡ diag{ Tr[b†
k bk ρ̃[n]

c/h ] } ; Γ[0]
c = Θc

ρ̃[n]
c , λi ρ̃[n]

h , λf

q. adiab.

q. adiab.



B) Non-perfect thermalization

System in contact with a thermal reservoir for a finite time τ
Θc/h ≡ diag{ f[βc/h, ωk(λi/f )]}
Γ[n]

c/h ≡ diag{ Tr[b†
k bk ρ̃[n]

c/h ] } ; Γ[0]
c = Θc

ρ̃[n]
c , λi ρ̃[n]

h , λf

q. adiab.

q. adiab.

Γ[n]
h = Θh(1 − e−2τ) + Γ[n−1]

c e−2τ

Γ[n]
c = Θc(1 − e−2τ) + Γ[n]

h e−2τ

[𝒥 = 1]
h(x) ≡ (1 − e−x)−1



B) Non-perfect thermalization

Q[+∞]
c/h = g(τ) Qc/h, ideal

W[+∞] = g(τ) Wideal

h(x) ≡ (1 − e−x)−1

System in contact with a thermal reservoir for a finite time τ
Θc/h ≡ diag{ f[βc/h, ωk(λi/f )]}
Γ[n]

c/h ≡ diag{ Tr[b†
k bk ρ̃[n]

c/h ] } ; Γ[0]
c = Θc

Γ[n]
h = Θh(1 − e−2τ) + Γ[n−1]

c e−2τ

Γ[n]
c = Θc(1 − e−2τ) + Γ[n]

h e−2τ

Converges exponentially to:

Γ[+∞]
h = h(2τ) (Θh + e−2τ Θc)

Γ[+∞]
c = h(2τ) (Θc + e−2τ Θh)

ρ̃[n]
c , λi ρ̃[n]

h , λf

steady limit

q. adiab.

q. adiab.

g(τ) ≡ tanh(τ)

[𝒥 = 1]



B) Non-perfect thermalization

System in contact with a thermal reservoir for a finite time τ

Converges exponentially to:

2τ

𝒫
≡

W
[+

∞
]

T
+

τ

Q[+∞]
c/h = g(τ) Qc/h, ideal

W[+∞] = g(τ) Wideal

g(τ) ≡ tanh(τ)

[𝒥 = 1]
[δ = 2T ]



AB) Non-perfect thermalization & quantum adiabaticity

Non-diagonal components of the Bogoliubov quasiparticles correlator 
become non vanishing:

λ:
λ i

→
λ f

λ:
λ f

→
λ i

β−1
h

β−1
c

ρ[n]
c

ρ[n]
c (T )

ρ[n]
h

ρ[n]
h (T )

(Λ[n]
c )jl = ⟨Φj Φ†

l ⟩ρ[n]
c

(Λ[n]
c,T)jl = ⟨Φj Φ†

l ⟩ρ[n]
c (T )

(Λ[n]
h )jl = ⟨Φj Φ†

l ⟩ρ[n]
h

(Λ[n]
h,T)jl = ⟨Φj Φ†

l ⟩ρ[n]
h (T )

Expressions in terms of series 
expansions, easy to be computed 
numerically in the limit-cycle . n → ∞



Example: 

Otto engine based on a 
quantum Ising-chain medium



The quantum Ising chain

A free-fermion model, after Jordan-Wigner transforming fermions into qubits:

HIsing(h) = − ∑
j

(σx
j σx

j+1 + h σz
j ) σ−

j = e−iπ∑j−1
ℓ=1 c+

ℓ cℓ cj

ωk(h) = 2 1 + h2 − 2h cos k , k ∈ (0,π) (thermodynamic limit)



A free-fermion model, after Jordan-Wigner transforming fermions into qubits:

HIsing(h) = − ∑
j

(σx
j σx

j+1 + h σz
j ) σ−

j = e−iπ∑j−1
ℓ=1 c+

ℓ cℓ cj

ωk(h) = 2 1 + h2 − 2h cos k , k ∈ (0,π) (thermodynamic limit)

The quantum Ising chain



Ideal Ising Otto cycle

hf = hi + 0.5

H: heater 

A: accelerator 

E: heat engine 

R: refrigerator 

(Qh, Qc, W < 0)
(Qh > 0, Qc, W < 0)
(Qc < 0 Qh, W > 0)
(Qc > 0, Qh, W < 0)

Quantum criticality ( ):

• closure of the energy gap

• divergence of the magnetic susceptibility

• divergence of the specific heat

h = 1

Th = 0.4 Th = 1

0.1

0.2

0.3

0.4

0.25

0.5

0.75

1

0



Heat engine
Th = 1, Tc = 0.2 Th = 1, Tc = 0.5

ηc ≡ 1 −
Tc

Th
= 0.8

ηc = 0.5

W
or

k 
ou

tp
ut



η
≡

W
/Q

h

W
or

k 
pe

r s
pi

n

W

/N

hf = hi + 0.5



Thermodynamic performance:  Π =
W

ηC − η

Carnot efficiency:  ηC = 1 −
Tc

Th

hf = hi + 0.5

“paramagnetic” peak

“critical” peak

Th = 1, Tc = 0.5

Heat engine



Thermodynamic performance:  Π =
W

ηC − η

Carnot efficiency:  ηC = 1 −
Tc

Th

hf = hi + 0.5

“paramagnetic” peak

“critical” peak

Paramagnetic peak: scales linearly with 

Critical peak: scales more than linearly with 


Performance enhancement by criticality?

 

•  increases when cooling down the system

• crossover effect

N
N

Πcrit /N ∼ Nα, α > 0
α

Th = 1, Tc = 0.5

M. Campisi, R. Fazio, Nat. Comm. 7, 11895 (2016)

Heat engine



Refrigerator
Th = 1, Tc = 0.7 Th = 1, Tc = 0.9Th = 1, Tc = 0.75 Th = 1, Tc = 0.9

C
oe

ffi
ci

en
t o

f p
er

fo
rm

an
ce

 

η R

≡
Q

c/
W

H
ea

t f
ro

m
 c

ol
d 

ba
th



Q
c/

N



Refrigerator
Th = 1, Tc = 0.9

As for the heat engine:


- double-peak structure

- paramagnetic peak weakly affected

    by the system size 

- super-extensive scaling of the critical

    peak for moderate  values 


Less perceptible role of quantum

criticality, than for the heat engine

N



Non-ideal Ising Otto cycle

Finite adiabaticity time:        


Finite thermalization time:    

T ≡ δ/2

τ ≡ γ/2, [𝒥 = 1]



Imperfect quantum adiabaticity
Th = 1, Tc = 0.5

hf = hi + 0.5

“critical” peak 

“paramagnetic” peak

nearly perfect

thermalization: γ = 5



“critical” peak 

“paramagnetic” peak

work and power @ critical peak

optimal working point: 
power non monotonic in δ

Th = 1, Tc = 0.5

hf = hi + 0.5

nearly perfect

thermalization: η = 5

Imperfect quantum adiabaticity



Non-ideal Ising Otto cycle

enhancing thermalization (γ)

• Curves for the work are all monotonic, both in  and in .


• Imperfect thermalization & quantum non-adiabaticity can modify the engine operation mode.

T = δ/2 τ = γ/2

enhancing quantum adiabaticity (δ)

Work done by the engine @ the critical peak  [  ]hi = 0.76, hf = hi + 0.5

N = 50



Non-ideal Ising Otto cycle

• The power is nonmonotonic, both in  and in . 
( time scales obviously depend on the Hamiltonian spin-spin coupling strength J,  
  as well as on the system-bath coupling strength  ).


• Functional form & position of power output are weakly affected by the system size N.


• Power output is optimized @ small N. 
( the gap closes with N, thus work extraction at large N is affected by fast quenches ).

T = δ/2 τ = γ/2

𝒥

power 
per spin



Summary

✦ Free-fermion Otto engines can operate in different modes


✦ Optimal working point


✦ Not obvious how criticality might enhance performances


✦ Variational optimization of (quasi)-adiabatic strokes?


✦ Role of fluctuations @ criticality?


✦ Different universality classes / role of interactions?


