

Atom Trapping in Subwavelength Superoscillatory Optical Tweezers

David Wilkowski

Centre for Quantum Technologies

MajuLab

Atomtronics, Besnasque, 22 May 2024

Research Activities: An Overview

Quantum Simulation

Non-Abelian geometrical and synthetic gauge fields in ultracold Strontium gas

Strontium MOT on 461 nm

Simulation of condensed-matter (spin-orbit coupling) or high energy physics (SU(3))

For more details visit: <u>https://ultracold.quantumlah.org/</u> We are hiring PhD and Post-Doc

Atoms with nanophotonics

Use of superoscillatory field for subwavelength optical traps.

Controlling and interrogating atoms at the nanometer scale for quantum simulation and computing

Quantum Sensing

Quantum physics coupled to gravitational field

Strontium 2D-MOT on 461 nm Matter wave interferometry with atomic clock (proper time) and inertial sensing

Content

Single Atom in Optical Tweezers

Single Atom in Tweezer: Applications

Harvard: W. Cairncross et *al*, PRL **126**, 123402 (2021)

Single Atom in Tweezer: Applications

Atom interferometry

Technion: J. Nemirovsky et *al*, PRR **5**, 043300 (2023)

Y. Sagi's talk next week

Single Atom in Tweezer: Applications

Orsay: D. Barredo et *al*, Science **354**, 1021 (2016)

Darmstadt: L. Pause et al, Optica 11, 222 (2024)

Caltech: J. Manetsch et *al*, arXiv 2403.1202 (2024)

Tweezer arrays: Quantum computer/simulator

Harvard: S. Ebadi et *al*, Nature **595**, 227 (2021)

Tweezer arrays vs lattice

Tweezer array summary

- Single molecule Chemistry
- Sensing
- Quantum simulation and computation

Technical difficulties for tweezer arrays:

- Short period
- Subwavelength spot?

Quantum matter simulation Cooperative effect with metasurface

Tweezer array

Birkl's group

Lattice (Quantum gas microscope)

Distance (541nm)

Zwierlein's group

A Brief History of Superoscillation

Fig. 3. – Diffraction pattern of a ring-shaped aperture (curve .4) and a uniform pupil of equal diameter (curve B).

G. T. Di Francia, Il Nuovo Cimento 9, 426 (1952)

M. Berry:

- A band-limited function could locally oscillate faster than its highest Fourier component \rightarrow Superoscillation

- No fundamental limitation on the spot size 🙂

M. Berry and S. Popescu, JPMG 39, 6965 (2006)

Superoscillation: 1D periodic signal

M. Berry:

- A band-limited function could locally oscillate faster than its highest Fourier component → Superoscillation

- No fundamental limitation on the spot size

M. Berry and S. Popescu, JPMG **39**, 6965 (2006)

Construction of a Superoscillating Spot

Circular Prolate Spheroidal Wave Functions (CPSWFs) are eigenfunctions of the Finite Hankel Transform operator $H_{c,N}$:

$$H_{c,N}(\psi)(x) = \int_0^1 J_N(cxy) \,\psi(y) \, y dy = \gamma \,\psi(x), \qquad x \ge 0$$

where J_N is the *N*-th order Bessel function of the first kind and *c* is the bandwidth of the function.

For rotational invariant 2D pattern, we use only N = 0 (zero-order Bessel function)

Then, the 2D Fourier transform reduces to the Hankel transform of the radial profile.

Some important properties of CPSWFs:

- For any integer $n \ge 0$, the eigenfunctions $\psi_{c,N}^n$ are a band-limited function under the Hankel transform.
- The set {ψⁿ_{c,N}, n ≥ 0} is an orthogonal basis on the interval [0, 1] and an orthonormal basis on the interval [0, +∞).
- A. Karoui, T. Moumni, Journal of Computational and Applied Mathematics 233, 315 (2009).

Construction of a Superoscillating Spot

K. S. Rogers, et al, Opt. Express **26** 8095 (2018).

Construction of a "Useful" Superoscillating Spot

Find a (band-limited) function f(r), and for $I(r) = |f(r)|^2$:

- Minimize the FWHM,
- Maximized the power in the superoscillating spot,

$$\max\left\{\frac{P_{SO}}{P}\right\}$$

Genetic algorithm: considers the full problem space and find the set of best FWHM

 \rightarrow takes a long time to run!

A simple (and good enough, at least in our case) optimization method: Two-function optimization.

K. S. Rogers, et al, Opt. Express **26** 8095 (2018).

Experimental Setup

H. M. Rivy S. A. Aljunid, E. Lassalle, N. I. Zheludev, D. W., Comm. Phys. 6, 155 (2023)

Construction of a Superoscillating Spot

Experimental Setup

H. M. Rivy S. A. Aljunid, E. Lassalle, N. I. Zheludev, D. W., Comm. Phys. 6, 155 (2023)

Imaging System Performance

Trapping and Lifetime

Effective Temperature

Trapping Frequency

Total power:

 $P_{T} = 23 \text{ mW}$

 $\nu \propto \frac{\nu}{2}$

*I*₀: Peak intensity

The trap is modulated in amplitude.

If the modulation frequency = $2v_{SO,TH}$, we have heating and losses due to parametric instability. $v_{SO} \sim 50 \text{ kHz}$ (@ $P_{SO} = 1.1 \text{ mW}$) $\frac{v_{SO}}{v_{TH}} \sim 0.6$ $v_{TH} \sim 80 \text{ kHz}$ (@ $P_{TH} = 23 \text{ mW}$)

$$v \propto \frac{\sqrt{U_0}}{d} \propto \frac{\sqrt{I_0}}{d} \propto \frac{\sqrt{P}}{d^2} \qquad \left(\frac{\nu_{SO}}{\nu_{TH}}\right)_{\text{theory}} = \sqrt{\frac{P_{SO}}{P_{TH}}} \left(\frac{d_{TH}}{d_{SO}}\right)^2 \sim 0.6$$
$$U_0: \text{Trap depth} \qquad d_{TH} = 1.09(3) d_A \qquad d_{SO} = 0.69(3) d_A$$

Trapping Frequency

Total power:

 $P_{T} = 23 \text{ mW}$

The trap is modulated in amplitude.

If the modulation frequency = $2\nu_{SO,TH}$, we have heating and losses due to parametric instability. $v_{SO} \sim 50 \text{ kHz} (@ P_{SO} = 1.1 \text{ mW})$ $v_{TH} \sim 80 \text{ kHz} (@ P_{TH} = 23 \text{ mW})$ $\frac{v_{SO}}{v_{TH}} \sim 0.6$

$$\nu \propto \frac{\sqrt{U_0}}{d} \propto \frac{\sqrt{I_0}}{d} \propto \frac{\sqrt{P}}{d^2}$$

$$\left(\frac{\nu_{SO}}{\nu_{TH}}\right)_{\text{theory}} = \sqrt{\frac{P_{SO}}{P_{TH}}\left(\frac{d_{TH}}{d_{SO}}\right)^2} \sim 0.6$$

 U_0 : Trap depth

*I*₀: Peak intensity

What about atom confinement ?

Zero point energy wavefunction spread $\propto \frac{1}{\sqrt{\nu}}$ (Harmonic approx.)

Power limited case: The Tophat is the right choice

Intensity limited case: The Superoscillatory is the right choice

H. M. Rivy S. A. Aljunid, E. Lassalle, N. I. Zheludev, D. W., Comm. Phys. 6, 155 (2023)

Content

Two Incoherent Spots Case

Double-well Experiment

Jochim's Group: Two-fermions in double well.

S. Murmann et al, PRL 114, 080402 (2015)

Coherent Trap Array Preparation

We found a (band-limited) function f(r), So $I(r) = |f(r)|^2$ gives a single spot (Superoscillation or not)

$$f(r) \xrightarrow{h(r_s)} h(r_s)$$

Hankel trans. +
SLM encoding

A $N \times M$ trap array in the xy-plane is performed adding phase gradient in the Fourier plane as such $h(r_s) \sum_{n,m}^{N,M} e^{i(nkx_s + mky_s + \varphi_{n,m})}$

Leading to an extra amplitude and phase pattern.

The minimal spot separation Δx shall correspond to a full wrapping of the phase across the pupil entrance, so $2ak = 2\pi$ leading to $\Delta x = \frac{\lambda}{2NA} = d_a$ Small distance with strong overlap \rightarrow Interference shall play a crucial role

Relative Spot phase: Tophat

Relative Spot phase: Tophat

Superoscillation illumination with 4 spots $\varphi_1 = \varphi_2 = \varphi_3 = \varphi_4$ Size: $0.8\lambda \sim 0.7 d_A$ NA = 0.43 output intensity

$$\varphi_2 = \varphi_1 + \frac{\pi}{2}, \varphi_3 = \varphi_2 + \frac{\pi}{2}, \varphi_4 = \varphi_3 + \frac{\pi}{2}$$

$$\varphi_2 = \varphi_1 + \pi, \varphi_3 = \varphi_2 + \pi, \varphi_4 = \varphi_3 + \pi$$

Content

Cooperative metasurfaces with Mott Insulator

Probe T beam

↓ Probe beam

x

2.0

1.5

Lossless cooperative quantum metasurfaces.

OT arrays: Cooperative Multipole Excitation

K. E. Ballantine, D. W., and J. Ruostekoski, Phys. Rev. Research 4, 033242 (2022)

OT arrays: Cooperative multipole excitation

OT arrays: Coincidence of Resonances

OT arrays: Huygens' Surface

Beam steering

K. E. Ballantine, D. W., and J. Ruostekoski, Phys. Rev. Research 4, 033242 (2022)

Conclusion

- We trap a single atom in a superoscillation spot
- $d_{SO} = 0.85(3) \ \mu m = 0.80(3) \ \lambda = 0.69(3) \ d_A$ The trap is subwavelength and below the Abbe's limit
- The confinement is characterized by the trapping frequency
 - Intensity limited case: The Superoscillation OT is the right choice

H. M. Rivy S. A. Aljunid, E. Lassalle, N. I. Zheludev, D. W., Comm. Phys. 6, 155 (2023)

- → Toward subwavelength tweezer arrays
 - Quantum computing and simulation
 - → Cooperative metasurface

K. E. Ballantine, D. W., and J. Ruostekoski, Phys. Rev. Research 4, 033242 (2022)

People

Superoscillatory team

Syed Aljunid

Kelvin Lim

Vincent Mancois

Nicolay Zheludev

Southampton

Kyle Ballantine

Janne Ruostekoski

Lancaster

Quantum metasurfaces team