Solving Problems in Atomic Superfluid Rotation using Cavity Optomechanics*

Postdocs

P. Kumar N. Daloi

Graduate students

N. Pradhan S. Kalita

Faculty

R. Kanamoto P. Mishra

Mishkat Bhattacharya

School of Physics and Astronomy & Future Photon Initiative Rochester Institute of Technology

- N. Pradhan et al., Physical Review A **109**, 023524 (2024) N. Pradhan et al., Physical Review Research **6**, 013104 (2024)
 - S. Kalita et al. Physical Review A 107, 013525 (2023)

*P. Kumar, et al. Physical Review Letters **127**, 113601 (2021)

AMO Theory group @ RIT

Rochester Institute of Technology: School of Physics and Astronomy:

Future Photon Initiative

 $T \gg$

20,000students+1100 faculty ~ 40 fulltime faculty, PhD Program in Astrophysics MS in physics started in 2018 PhD in Physics started in 2024!!

2 Postdoc positions open: mb6154@gmail.com

Outline

- Atomic Superfluid Rotation
- Cavity Optomechanics
- Rotation Sensing
- Conclusion

*L. Amico et al., Roadmap on Atomtronics, AVS Quantum Sci. **3**, 039201 (2021)

*M. Aspelmeyer et al. Cavity Optomechanics *Reviews of Modern Physics* **82**, 1155 (2014)

Quantized Persistent Currents in a Ring BEC

Persistent currents

Why the ring BEC is important

PRL 99, 260402 (2007)

. The ring trap pins the vortex down.

2. It topologically stabilizes high circulation.

- L_p = 2 in a harmonically trapped BEC [PRL **93**, 160406 (2004)]
- 3. Metastable currents persist for minutes !Beattie et al., PRL 110, 025301 (2013)

Supersonic: $L_p \simeq 350$: Guo et al., PRL **124**, 025301 (2020) Hypersonic: $L_p \simeq 40,000$: Pandey et al., Nature **570**, 205 (2019)

Ring BECs: A Paradigm of Quantum Rotation

Superfluid hydrodynamics

Z. Mehdi et al., SciPost Phys. 11, 080 (2021)

J. Polo et al., PRL **123**, 195301 (2019)

K. C. Wright et al., PRL **110**, 025302 (2013) Matter wave interferometry

S. Pandey et al., PRL 126, 170402 (2021)

C. Ryu et al., Nat. Comm. **11**, 3338 (2020) Atomtronic circuits

J. Polo et al., PRL 121, 0904040 (2018)

S. Eckel et. al, Nature 506, 200 (2014)

Topological defect formation

Aidelsburger et. al, PRL **119**, 190403 (2017) Cosmological simulations

S. Eckel et. al, PRX **8**, 021021 (2018) Fermionic supercurrents (BCS-BEC crossover)

Y. Cai et al. PRL 128, 150401 (2022)

- G. Del Pace et al., Phys. Rev. X 12, 041037 (2022)
- G. Pecci et al., PRR 3, L032064 (2021)

J. W. Park et al, PRL 121, 225301 (2018)

High T_c , QGP, Holography

Measuring the Ring BEC Rotation

Measure the radius after time of flight expansion

N. Murray et al., Phys. Rev. A **88**, 053615 (2013) K. C. Wright et. al, PRL **110**, 025302 (2013)

Interfere with central non-rotating BEC

Corman et. al, PRL 113, 135302 (2014)

More complicated schemes

Moulder et. al, PRA 86, 013629 (2012)

Absorption imaging

← Destructive!!

Measuring the Ring BEC rotation

Quantized flow in a ring-shaped BEC, A. Kumar et al., NJP **18**, 025001 (2016)

Superconductors

- Nat. Comm. **8**, 85 (2017)
- Nature Physics **5**, 651 (2009)
- Nature **397**, 308 (1999)

Superfluid He

- Nat. Comm. 12, 2645 (2021)
- Science **366**, 1480 (2019)
- Nature 441, 588 (2006)

Simply connected BECs

- In situ detection of vortices in BEC, PRA 91, 023631 (2015)
- Real-time dynamics of single vortex lines in BECs, Science **329**, 1182 (2010)
- Vortex precession in BECs, PRL **85**, 2857 (2000)
- Rotational superradiance... arXiv:2404.1013v1 (2024)

*M. Aspelmeyer et. al Reviews of Modern Physics 82, 1155 (2014)
*S. Bose, K. Jacobs and P. Knight, PRA 56, 4175 (1997)

The Radiation Pressure interaction

TOOLBOX FOR MEASURING AND MANIPULATING MECHANICAL MOTION

- 1. Sub-quantum limit detection of mechanical motion..Nature Physics 15, 745 (2019)
- 2. Detection of quantum back-action..... Science **339**,801(2013)
- 3. Back-action-evading measurement of motion.....Nat. Comm. 10, 2086 (2019)
- 4. Squeezing of mechanical quadrature of motion.....Science 349, 952 (2015)
- 5. Preparation of quantum mechanical ground state.....MB...PRL 99, 073601 (2007)

- 8. Entangling multiple mechanical oscillators......Nature 556, 478 (2018)

Nondestructive Measurement of Linear BEC motion

Cavity Optomechanics with a Bose-Einstein Condensate, F. Brennecke et al., Science **322**, 235 (2007)

Real-time observation of fluctuations at the driven-dissipative Dicke phase transition, PNAS **110**, 11763 (2013)

Dynamical Instability of a Bose-Einstein Condensate in an Optical Ring Resonator, D. Schmidt et al., Phys. Rev. Lett. **112**, 115302 (2014)

Observing chiral superfluid order by matter-wave interference, T. Kock et al., Phys. Rev. Lett. **114**, 115301 (2019)

Entangled light from Bose-Einstein Condensates, H. T. Ng and S. Bose, New Journal of Physics **11**, 043009 (2009)

Cavity QED with Quantum Gases Mivehvar et al., Advances in Physics **70**, 1 (2021)

Typical parameters

Atom number	Ν	10 ⁵
Trap frequency	ω	200 Hz
Atomic linewidth	γ_0	$2\pi \times 3 MHz$
Detuning	Δ	$10^4\gamma_0$
Beam waist	ω_0	$25 \mu m$
TF radius	R	$5\mu m$
Cavity linewidth	κ	$2\pi \times 1.5 MHz$
Coupling	${g}_0$	$2\pi \times 10 MHz$
Cavity photon no.	$ar{n}$	1
Photon count rate	S	1 MHz
Recoil frequency	ω_{rec}	$2\pi \times 4kHz$

Beams with Orbital Angular Momentum

M. Padgett, Optics Express 25, 11265 (2017)
MB and P. Meystre, PRL 99, 153603 (2007)
H. Shi and MB, J. Phys. B 49, 153001 (2016)

Ring BEC in a cavity: Detecting L_p

Measurement Scheme

- 1. We start with a trapped ring BEC in a cavity.
- 2. The BEC has winding number L_p .
- 3. We drive the cavity with beams carrying OAM $\pm l\hbar$ far detuned from any atomic transition
- 4. The BEC matter wave Bragg diffracts from the angular lattice: $L_p \rightarrow L_p \pm 2l$
- 5. These matter waves beat to modulate the BEC density.
- 6. These modulations are picked up by the light transmitted by the cavity.
- 7. Cavity transmission yields L_p .

 $L_p - 2l$ $L_{p} + 2l$

Ring BEC in a cavity: Detecting L_p

Hamiltonian:
$$H = \int_{0}^{2\pi} \Psi^{\dagger}(\phi) \left[-\frac{\hbar^{2}}{2I} \frac{d^{2}}{d\phi^{2}} + \hbar U_{o} \cos^{2}(l\phi) a^{\dagger}a \right] \Psi(\phi) d\phi$$
$$+ \frac{g}{2} \int_{0}^{2\pi} \Psi^{\dagger}(\phi) \Psi^{\dagger}(\phi) \Psi(\phi) \Psi(\phi) d\phi$$
$$- \hbar \Delta_{o} a^{\dagger}a - i\hbar \eta (a - a^{\dagger}),$$
$$I = mR^{2}; \ U_{0} = \frac{g_{a}^{2}}{\Delta_{a}}; \ g_{a} = E_{0} \langle e|d|g \rangle; \ \eta = \sqrt{P_{in}\gamma_{o}}/\hbar\omega_{o},$$
$$g = 2\hbar\omega_{\rho}a_{Na}/R$$
Ansatz:
$$\Psi(\phi) = \frac{e^{iL_{p}\phi}}{\sqrt{2\pi}}c_{p} + \frac{e^{i(L_{p}+2l)\phi}}{\sqrt{2\pi}}c_{+} + \frac{e^{i(L_{p}-2l)\phi}}{\sqrt{2\pi}}c_{-},$$
$$\downarrow$$
Persistent current Sidemodes
Normalization:
$$c_{p}^{\dagger}c_{p} + c_{+}^{\dagger}c_{+} + c_{-}^{\dagger}c_{-} = N$$

Recognize: $c_p \sim \sqrt{N}$ is a macroscopically occupied mode.

$$H = \hbar\omega_c c^{\dagger}c + \hbar\omega_d d^{\dagger}d + \hbar [G(X_c + X_d) - \widetilde{\Delta}]a^{\dagger}a - i\hbar\eta(a - a^{\dagger}) + \hbar g\widetilde{F}$$
$$\omega_{c,d} = \frac{\hbar(L_p \pm 2l)^2}{2I} \quad \left(c = \frac{c_p^{\dagger}c_+}{\sqrt{N}}, d = \frac{c_p^{\dagger}c_-}{\sqrt{N}}, G = \frac{U_0\sqrt{N}}{2\sqrt{2}}, \widetilde{\Delta} = \Delta_0 - \frac{U_0N}{2}\right)$$

Detecting L_p : Equations of Motion

Collisionless Hamiltonian (g = 0)

 $H = \hbar \omega_c c^{\dagger} c + \hbar \omega_d d^{\dagger} d + \hbar \left[G(X_c + X_d) - \widetilde{\Delta} \right] a^{\dagger} a - i \hbar \eta (a - a^{\dagger})$

(Quantum Langevin) Equations of motion

$$\begin{aligned} \ddot{X}_{c} + \gamma_{m} \dot{X}_{c} + \omega_{c}^{2} X_{c} &= -\omega_{c} G a^{\dagger} a + \omega_{c} \epsilon_{c} \\ \ddot{X}_{d} + \gamma_{m} \dot{X}_{d} + \omega_{d}^{2} X_{d} &= -\omega_{d} G a^{\dagger} a + \omega_{d} \epsilon_{d} \\ \dot{a} &= i \left[\widetilde{\Delta} - G (X_{c} + X_{d}) \right] a - \frac{\gamma_{o}}{2} a + \sqrt{\gamma_{o}} a_{in} \end{aligned}$$

Heuristic argument (neglecting noise and damping)

For weak optical driving, $X_{c,d}$ will be modulated at $\omega_{c,d}$. And therefore *a* will also.

→ So the cavity output will show two peaks at $\omega_{c,d}$.

W. Chen, D. S. Goldbaum, MB and P. Meystre, PRA **81**, 053833 (2010)

Detecting L_p : Experimental Parameters

- 1. Mass of Sodium atom
- 2. Number of atoms
- 3. BEC radius
- 4. Trap frequencies
- 5. Temperature
- 6. Chemical potential
- 7. Winding number of BEC
- 8. OAM of light
- 9. Atom velocity
- 10. Sound velocity
- 11. Healing length
- 12. Atomic detuning
- 13. Mechanical damping
- 14. Cavity linewidth
- 15. Cavity detuning
- 16. Cavity finesse
- 17. Optomechanical coupling $G = 2\pi \times 260 \text{ kHz}$ 18. Input power $P_{in} \sim 10 \text{ fW}$ 19. Angular lattice recoil $\leq 1 \text{ KHz}$
- m = 23 amu $N \sim 1.2 \times 10^4$ $R = 12 \,\mu\text{m}$ $\omega_{\rho,z} = 2\pi \times 4 \times 10^{1-2} \text{ Hz}$ T = 10 - 20 nK $\frac{\mu}{k} = 200 - 500 \text{ Hz}$ $L_p = 1 - 5$ l = 1 - 15 $v_a \sim 0.3 mm/s$ $v_c \sim 1.5 mm/s$ $\xi = 4\mu m$ $\Delta_a = 2\pi \times 4.7 \text{ GHz}$ $\gamma_m \sim 2\pi \times 1 \text{ Hz}$ $\gamma_0 = 2\pi \times 1.3 \text{ MHz}$ $\Delta' = 0 - 500 \, \text{Hz}$ $\sim 10^{4}$ $P_{in} \sim 10 \text{ fW}$ $\leq 1 \text{KHz}$

P. Kumar et al., PRL **127**, 113601 (2021)

S. Kalita et al., PRA **107**, 013525 (2023)

Detecting L_p : Noise Spectrum

inear response
$$\mathcal{M} \to \mathcal{M}_s + \delta \mathcal{M}$$
 for $\mathcal{M} = X_c, X_d, a$

Phase quadrature

Input-output relation

$$P = \frac{i(a_{out} - a_{out}^{\dagger})}{\sqrt{2}}$$

$$a_{out} = -a_{in} + \sqrt{\gamma_o}a$$

Output Noise Spectrum

$$S(\omega) = S_{sn}(\omega) + S_{rp}(\omega) + S_{th}(\omega)$$

 10^{-3} Hz/ $\sqrt{\text{Hz}}$ \rightarrow Thousand times more sensitive than existing methods.

Kumar et al., New Journal of Physics **18**, 025001 (2016) Ragole and Taylor, PRL **117**, 203002 (2016) S. Safaei et al, PRA **100**, 013621 (2019)

±1

Matter wave (bipartite) entanglement

Logarithmic negativity

Stochastic Gross-Pitaevskii treatment

Scales:
$$\hbar\omega_{\beta} = \frac{\hbar^2}{2mR^2}$$
, $\tau = \omega_{\beta}t$, $\gamma = \frac{gN}{2\pi\hbar\omega_{\beta}}$

Noise correlations:

$$\langle \xi(\phi,\tau)\xi^*(\phi,\tau)\rangle = 2\Gamma T\delta(\phi-\phi')\delta(\tau-\tau') \langle a_{in}(\tau)a_{in}^*(\tau')\rangle = \omega_\beta\delta(\tau-\tau')$$

Reminders:1. $\omega_{c,d} \ll \gamma_0$ (bad cavity limit)*PRA 74,2. $(\mu, k_B T) < \hbar(\omega_r, \omega_z)$ (1D BEC) \Rightarrow 3. $U_0 |\alpha|^2 < \mu$ (permeable barrier)(2006)

+ ±1

$$F(t) = \int_0^{2\pi} \left[\psi^*(\phi, t)\psi(\phi, 0)\right]^2 d\phi$$

*N. Pradhan et al., Physical Review Research **6**, 013104 (2024)

Gross-Pitaveskii treatment: Superposition

$$\psi(\phi) = \sqrt{\frac{N}{4\pi}} \left(e^{iL_{p1}\phi} + e^{iL_{p2}\phi} \phi \right)$$

Aghamalyan et al 2015 New J. Phys. 17 045023

> Atomic interactions are weakly repulsive

Ryu et al., PRL **99**, 260401 (2007)

$$F(t)=\int_{0}^{2\pi}\left|\psi^{*}(\phi,0)\psi(\phi,t)
ight|^{2}d\phi$$

*N. Pradhan et al., Physical Review Research **6**, 013104 (2024)

Condensate density

Cavity transmission

OAM content

Measurement sensitivity

Condensate density autocorrelation

Gross-Pitaveskii treatment: Bright Soliton

$$\psi(\phi) = \sqrt{\frac{N}{\sqrt{\pi}}} e^{-\phi^2/2} e^{iL_p\phi}$$

7Li

- * Helm et al., PRL 114, 134101 (2015)
- * Cai et al., PRL 128, 150401 (2022)
- * Pace et al.. PRX 12, 041037 (2022)

0.2

0.2

0.4

t (s)

0.6

0.8

OAM content

Measurement sensitivity

Detecting Chirality: Lattice Rotation

Lattice rotation

$$\cos^2(l\phi) \to \cos^2(l\phi + \Omega t)$$

Sidemode frequencies $\omega_{c,d}(\Omega) = \omega_{\beta} \left(L_p \pm 2\ell - \frac{\Omega'}{2} \right)^2$

$$\Omega < \frac{v_s}{2\pi R}$$
$$v_s = \sqrt{\mu/m}$$

Non-interacting

*N. Pradhan et al., Physical Review A 109, 023524 (2024)

Interacting

Counter-rotating superposition

Future Work: Creating a Stir

- Andreev-Bashkin effect (superfluid drag)
- Detecting supercurrents in the BCS-BEC crossover
- Atomic memory for photons carrying OAM
- Entangling, squeezing, synchronizing rotating matter waves
- Regenerative (laser) action
- Sub SQL measurements (arXiv:2402.19123)

*Coherent and reversible interface between optics and atomic superfluid rotation.

CAREER

Marsh et al., PRX **11**, 021048(2021)

