Simulation of lattice Hamiltonians with qubits

Axel Pérez-Obiol, Adrián Pérez-Salinas, Sergio Sánchez-Ramírez, Bruna Araújo, Sergi Masot, Antonio Márquez, Javier Menéndez, Arnau Rios, Artur Garcia, Bruno Juliá-Díaz

> Universitat Autònoma de Barcelona

 \bigcup NIVERSITAT DE BARCELONA

ATOMTRONICS, Benasque, May 21st 2024

- 1. Introduction: quantum simulation with qubits
- 2. Adiabatic algorithm for graphene
- 3. Variational algorithm for the nuclear shell model
- 4. Summary

Outline

Pérez-Obiol et al, Phys. Rev. A 106, 052408 (2022)

Tang et al arXiv:2405.09225 (2024)

Pérez-Obiol et al, Sci Rep 13, 12291 (2023)

Pérez-Obiol et al, Eur. Phys. J. A 59, 240 (2023)

Find ground Hamiltonians

(molecules, crystals, states / dynamics of lattice $\mathscr{H} = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \sum_{ij} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$ nuclei, optical lattices, etc.) etc.)

Find ground states / dynamics of lattice Hamiltonians

Exact diagonalization (bad scaling)

Hilbert space scales factorially

$$d_b = \begin{pmatrix} N_s + N_p - 1 \\ N_p \end{pmatrix}, \ d_f = \begin{pmatrix} N_s \\ N_p \end{pmatrix}$$

(molecules, crystals, $\mathscr{H} = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \sum_{ij} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l \quad \text{nuclei, optical lattices,}$ etc.) etc.)

Find ground states / dynamics of lattice Hamiltonians

Exact diagonalization (bad scaling)

Hilbert space scales factorially

 $d_b = \begin{pmatrix} N_s + N_p - 1 \\ N_p \end{pmatrix}, \ d_f = \begin{pmatrix} N_s \\ N_n \end{pmatrix}$

(molecules, crystals, $\mathscr{H} = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \sum_{ij} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l \qquad \text{nuclei, optical lattices,}$ etc.)

Solvable cases (limited, e.g. 1D, no interactions...)

Find ground states / dynamics of lattice Hamiltonians

Hilbert space scales factorially

 $d_b = \begin{pmatrix} N_s + N_p - 1 \\ N_p \end{pmatrix}, \ d_f = \begin{pmatrix} N_s \\ N_r \end{pmatrix}$

- Solvable cases (limited, e.g. 1D, no interactions...)
- TN, mean field, MC, PT... (approximations)

(molecules, crystals, $\mathscr{H} = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \sum_{ij} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l \qquad \text{nuclei, optical lattices,}$ etc.)

Exact diagonalization (bad scaling)

Find ground states / dynamics of lattice Hamiltonians

Hilbert space scales factorially

$$d_b = \begin{pmatrix} N_s + N_p - 1 \\ N_p \end{pmatrix}, \ d_f = \begin{pmatrix} N_s \\ N_p \end{pmatrix}$$

- Solvable cases (limited, e.g. 1D, no interactions...)
- TN, mean field, MC, PT... (approximations)

 $\mathcal{H} = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \sum_{ij} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$

(molecules, crystals, nuclei, optical lattices, etc.)

Exact diagonalization (bad scaling)

• Analog simulation (difficult for arbitrary t_{iikl})

Find ground states / dynamics of lattice Hamiltonians

Hilbert space scales factorially

$$d_b = \begin{pmatrix} N_s + N_p - 1 \\ N_p \end{pmatrix}, \ d_f = \begin{pmatrix} N_s \\ N_p \end{pmatrix}$$

- Exact diagonalization (bad scaling)
- Solvable cases (limited, e.g. 1D, no interactions...)
- TN, mean field, MC, PT... (approximations)
- Analog simulation (difficult for arbitrary t_{ijkl})
- Quantum computation (not yet...)

 $\mathcal{H} = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \sum_{ij} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$

(molecules, crystals, nuclei, optical lattices, etc.)

Find ground states / dynamics of lattice Hamiltonians

Exact diagonalization (bad scaling)

Hilbert space scales factorially

$$d_b = \begin{pmatrix} N_s + N_p - 1 \\ N_p \end{pmatrix}, \ d_f = \begin{pmatrix} N_s \\ N_p \end{pmatrix}$$

- Solvable cases (limited, e.g. 1D, no interactions...)
- TN, mean field, MC, PT... (approximations)
- Analog simulation (difficult for arbitrary t_{iikl})

Use quantum bits instead of bits: e.g. one qubit per orbital

 $\mathcal{H} = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \sum_{ij} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$

(molecules, crystals, nuclei, optical lattices, etc.)

Quantum computation (not yet...)

Use universal set of quantum gates: e.g. rotations + CNOT

Fermi-Hubbard type (1D, 2D, square/hexagonal, 2nd neighbors, electric field, tilting)

 $a_{i\uparrow}^{\dagger}a_{i+1\uparrow}$ $a_{i\uparrow}^{\dagger}a_{i\uparrow}a_{i\downarrow}^{\dagger}a_{i\downarrow}$

Fermi-Hubbard type (1D, 2D, square/hexagonal, 2nd neighbors, electric field, tilting)

 $a_{i\uparrow}^{\dagger}a_{i+1\uparrow} \quad a_{i\uparrow}^{\dagger}a_{i\uparrow}a_{i\downarrow}^{\dagger}a_{i\downarrow}$

Adiabatic evolution

 $|\psi(T)\rangle = \hat{T}e^{-i\int_0^T H(t)dt} |\psi(0)\rangle$ \rightarrow Choose H_i Avoid degeneracy $H(t) = H_i(T-t) + \frac{t}{T}H_f$

Algorithms

ij

Fermi-Hubbard type (1D, 2D, square/hexagonal, 2nd neighbors, electric field, tilting)

 $a_{i\uparrow}^{\dagger}a_{i+1\uparrow} \quad a_{i\uparrow}^{\dagger}a_{i\uparrow}a_{i\downarrow}^{\dagger}a_{i\downarrow}$

Adiabatic evolution

 $|\psi(T)\rangle = \hat{T}e^{-i\int_0^T H(t)dt} |\psi(0)\rangle$ \rightarrow Choose H_i Avoid degeneracy $H(t) = H_i(T-t) + \frac{t}{T}H_f$

graphene ground states

Phys. Rev. A 106, 052408 (2022)

Algorithms

ij

Variational $|\psi(\vec{\theta})\rangle = \prod^{n} e^{i\theta_k A_k} |\psi_0\rangle$ ➡ Choose ansatz $E = \min_{\theta_k} \frac{\langle \Psi(\theta_k) | H | \Psi(\theta_k) \rangle}{\langle \Psi(\theta_k) | \Psi(\theta_k) \rangle}$ ➡ Minimize energy

nuclear ground states

Sci Rep 13, 12291 (2023) *Eur. Phys. J. A* 59, 240 (2023)

Simulation of (artificial) graphene

1. Map fermions to qubits with Jordan-Wigner: $a_j = \left(\prod_{k=0}^{j-1} \sigma_k^{(z)}\right) \frac{1}{2} (\sigma_j^{(x)} - i\sigma_j^{(y)})$

Qubit operators σ_i

Simulation of (artificial) graphene

1. Map fermions to qubits with Jordan-Wigner: a_i

2. Prepare ground state of U=0, depth scales as $O(N_{hex})$

$$f_{j} = \left(\prod_{k=0}^{j-1} \sigma_{k}^{(z)}\right) \frac{1}{2} (\sigma_{j}^{(x)} - i\sigma_{j}^{(y)})$$

Z. Jiang et al., Phys. Rev. Applied 9, 044036 (2018)

Simulation of (artificial) graphene

1. Map fermions to qubits with Jordan-Wigner: a_i

- 2. Prepare ground state of U=0, depth scales as $O(N_{hex})$
- 3. Adiabatic evolution (U=0 -> U=1)

$$|\psi(T)\rangle = \hat{T}e^{-i\int_{0}^{T} \mathscr{H}(t)dt} |\psi(0)\rangle \approx \prod_{j=0}^{N} e^{-i\mathscr{H}(j\delta t)\delta t} |\psi(0)\rangle \approx \prod_{i,\sigma} e^{-iUs\delta_{t}a_{i,\uparrow}^{\dagger}a_{i,\downarrow}} \times \prod_{\langle ij\rangle,\sigma\sigma'} e^{it\delta_{t}a_{i,\sigma}^{\dagger}a_{j,\sigma}} \times \prod_{\langle ij\rangle,\sigma\sigma'} e^{-i\frac{2i\lambda_{R}}{3}\delta_{t}a_{i,\sigma}^{\dagger}a_{j,\sigma'}[(\vec{\sigma}\times\vec{d}_{ij})_{z}]_{\sigma,\sigma'}} |\psi(0)\rangle$$

adiabatic errors

$$f = \left(\prod_{k=0}^{j-1} \sigma_{k}^{(z)}\right) \frac{1}{2} (\sigma_{j}^{(x)} - i\sigma_{j}^{(y)})$$

Z. Jiang et al., Phys. Rev. Applied 9, 044036 (2018)

adiabatic+circuit errors

2_3

Search for the optimal Trotterizations and periods with circuit simulations Phys. Rev. A 106, 052408 (2022) **Cirq** (Google) + **openfermion** (prepares initial states) **Qibo**, Quantum Science and Technology 7, 015018 (2021). (fast simulator) example of 1x1 lattice (but simulations up to 4 hexagons) Distance to ground energy N = 100N = 400.02 0.01 0.00 20 60 80 40 100 Evolution steps T=1, circuit T=2, circuit T=1, adiabatic T=2, adiabatic -----_____ *******

· · · · · · · · ·

Search for the optimal Trotterizations and periods with circuit simulations Phys. Rev. A 106, 052408 (2022) **Cirq** (Google) + **openfermion** (prepares initial states) **Qibo**, Quantum Science and Technology 7, 015018 (2021). (fast simulator) example of 1x1 lattice (but simulations up to 4 hexagons) Distance to ground energy error as a function of T and δt N = 100N = 40 10^{2} 3.5-0.02 3.0-2.5 - 10¹ 0.01 ΔE 2.0 1.5 1.0 -0.00 10⁰ 20 60 80 100 40 0.5 Evolution steps 0.005 0.025 0.050 0.075 0.100 δt T=1, circuit T=2, circuit $\Delta E = \left| \frac{\langle \psi_{FH} | \mathcal{H}_{FH} | \psi_{FH} \rangle - \langle \psi(t) | \mathcal{H}_{FH} | \psi(t) \rangle}{\langle \psi_{FH} | \mathcal{H}_{FH} | \psi_{FH} \rangle - \langle \psi_{TB} | \mathcal{H}_{FH} | \psi_{TB} \rangle} \right|$ T=2, adiabatic T=1, adiabatic ----____

· · · · · · · · ·

Using counter diabatic driving

Jialiang Tang, Ruogian Xu, Yongcheng Ding, Xusheng Xu, Yue Ban, Manhong Yung, Axel Pérez-Obiol, Gloria Platero, Xi Chen

$H(t) = H_{kin} + \lambda(t) H_{int} + \frac{\lambda'(t) A(t)}{A(t)} \qquad A(t) = i \alpha [H_{kin}, H_{int}] \qquad \lambda(t) = \sin\left(\frac{\pi t}{2T}\right)$

arXiv:2405.09225

Using counter diabatic driving

Jialiang Tang, Ruoqian Xu, Yongcheng Ding, Xusheng Xu, Yue Ban, Manhong Yung, Axel Pérez-Obiol, Gloria Platero, Xi Chen

$$H(t) = H_{kin} + \lambda(t) H_{int} + \frac{\lambda'(t) A(t)}{A(t)}$$

in terms of number of steps

arXiv:2405.09225

 $A(t) = i \alpha [H_{kin}, H_{int}]$

 $\lambda(t) = \sin\left(\frac{\pi t}{2T}\right)$

Using counter diabatic driving

Jialiang Tang, Ruoqian Xu, Yongcheng Ding, Xusheng Xu, Yue Ban, Manhong Yung, Axel Pérez-Obiol, Gloria Platero, Xi Chen

$$H(t) = H_{kin} + \lambda(t) H_{int} + \frac{\lambda'(t) A(t)}{A(t)}$$

in terms of number of steps

arXiv:2405.09225

 $A(t) = i \alpha [H_{kin}, H_{int}] \qquad \lambda(t) = \sin \left(\frac{\pi t}{2T}\right)$

in terms of circuit depths:

Nuclear shell model

 $H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \overline{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$

Nuclear shell model

Magic numbers: numbers of neutrons that make nuclei specially bound/stable

Mean field: predicts these magic numbers and sets single-particle basis

 $H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \overline{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$

1			\bigcirc		
I			\bigcirc		
			•		
ap)Ŝ	•	0		
<	◄	4	<		
₩		⊳			
		He			
		Ве			
v	\diamond	Ο	<		
	$\boldsymbol{\Delta}$	F	¢		
	∇	Ne	C		
6		8			
eutron nun					

Nuclear shell model

 $H = \sum_{i} \epsilon$

Hamiltonian coefficients adjusted phenomenologically (e.g. nuclear ground energies)

Magic numbers: numbers of neutrons that make nuclei specially bound/stable

Mean field: predicts these magic numbers and sets single-particle basis

$$\varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

1			\bigcirc		
I			\bigcirc		
			•		
ap)Ŝ	•	0		
<	◄	4	<		
₩		⊳			
		He			
		Ве			
v	\diamond	Ο	<		
	$\boldsymbol{\Delta}$	F	¢		
	∇	Ne	C		
6		8			
eutron nun					

adapt-VQE for Nuclear shell model

1. As an initial we chose lowest energy basis state $|\Psi_0\rangle = \prod a_i^{\dagger} |\operatorname{vac}\rangle$, e.g. $|\psi_0\rangle = a_0^{\dagger} a_3^{\dagger} |0\rangle$

2. Pool of operators for the ansatz $A_k = i(a_p^{\dagger}a_q^{\dagger}a_ra_s - a_r^{\dagger}a_s^{\dagger}a_pa_a)$

Ansatz built adaptively: largest

Grimsley et al., Nat. *comm*. **10**, 1–9 (2019)

$$|\psi(\vec{\theta})\rangle = \prod_{k=1}^{n} e^{i\theta_k A_k} |\psi_0\rangle$$

 $E = \min_{\theta_k} \langle \Psi(\theta_k) | H | \Psi(\theta_k) \rangle$

adapt-VQE for Nuclear shell model

1. As an initial we chose lowest energy basis state $|\Psi_0\rangle = \prod_i a_i^{\dagger} |\operatorname{vac}\rangle$, e.g. $|\psi_0\rangle = a_0^{\dagger} a_3^{\dagger} |0\rangle$

2. Pool of operators for the ansatz $A_k = i(a_p^{\dagger}a_q^{\dagger}a_ra_s - a_r^{\dagger}a_s^{\dagger}a_pa_q)$

Ansatz built adaptively: largest

Grimsley et al., *Nat*. *comm*. **10**, 1–9 (2019)

$$|\psi(\vec{\theta})\rangle = \prod_{k=1}^{n} e^{i\theta_k A_k} |\psi_0\rangle$$

 $E = \min_{\theta_k} \langle \Psi(\theta_k) | H | \Psi(\theta_k) \rangle$

Sci Rep 13, 12291 (2023)

adapt-VQE for Nuclear shell model

num. parameters for each nuclei

shell	N_q	N_{SD}	nucleus	N_{layers}	ϵ_r bound
p	6	5	⁶ Be	2	10^{-5}
	12	10	⁶ Li	9	10^{-7}
		51	⁸ Be	48	10^{-5}
		51	$^{10}\mathrm{Be}$	48	10^{-5}
		42	$^{13}\mathrm{C}$	17	10^{-5}
sd	12	14	$^{18}\mathrm{O}$	5	10^{-6}
		74	$^{19}\mathrm{O}$	32	10^{-6}
		81	$^{20}\mathrm{O}$	70	10^{-6}
		142	$^{22}\mathrm{O}$	119	10^{-6}
	24	640	20 Ne	167	2×10^{-2}
		4206	^{22}Ne	236	2×10^{-2}
		7562	$^{24}\mathrm{Ne}$	345	2×10^{-2}
pf	20	30	^{42}Ca	9	10^{-8}
		565	^{44}Ca	132	10^{-2}
		3952	^{46}Ca	124	10^{-2}
		12022	^{48}Ca	101	10^{-2}
		17276	50 Ca	221	10^{-2}

scaling QC vs scaling ED

Nuclear entanglement & QC

Von Neumann entropy

$$S = -\sum_{i} \rho_i \log \rho_i$$

We find very low entanglement between proton and neutron orbitals, e.g.

Eur. Phys. J. A 59, 240 (2023)

Nuclear entanglement & QC

Von Neumann entropy

$$S = -\sum_{i} \rho_i \log \rho_i$$

We find very low entanglement between proton and neutron orbitals, e.g.

Eur. Phys. J. A 59, 240 (2023)

- 1. Devised and simulated quantum algorithms for nuclei and graphene
 - -> Jordan Wigner mapping: one orbital per qubit
 - **1. Adiabatic evolution for graphene** Polynomial scaling of periods and time steps, efficient measurement Shortcuts to adiabaticity improve the efficiency but depending on time period
 - 2. Adaptive variational for nuclei:

Errors decrease exponentially fast with num. parameters No barren plateaus found

Summary

Exponential speed up vs classical computers not clear when going to heavy nuclei