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INTRODUCTION TO SUPERFLUID 
VORTEX DYNAMICS
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What is a vortex?
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A vortex is a region in a fluid in which the flow 
revolves around an axis line.



Vortices as a manifestation of  coherence
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Dog puppies can be coherent too…



The ID of  a quantum vortex
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• The phase rolls up from 0 to 2π.

• The density goes to zero at the vortex 
centre.
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Principle of  superposition of  the velocity fields
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Each vortex generates a velocity vector field of  the type:

v(r) =
κ

2π
ẑ ×

r − rv

|r − rv|2

where

κ = ±q
h

m
, q ∈ N

is the vortex strength.
x

y

|r − rv|

|v|

Velocity diverges at the core!



Principle of  superposition of  the velocity fields
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In a many-vortex system the total velocity field reads

v(r) =

Nv
∑

i=1

[

κi

2π
ẑ ×

r − ri

|r − ri|2

]

where

x

y

κi = ±q
h

m
, q ∈ N

is the strength of  the i-th vortex.



Principle of  superposition of  the velocity fields
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The i-th vortex moves under the influence of  the remaining !! − # vortices

v(rj) =
∑

i ̸=j

[

κi

2π
ẑ ×

rj − ri

|rj − ri|2

]

where the self-contribution $ = & has been removed from the 
summation.
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The complex-potential framework
A convenient mathematical framework to study the dynamics of  point vortices in quasi-2D 
superfluids is provided by the complex potential:
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F (z) = χ(r) + i θ(r)

Where                              andr = (x, y) z = x+ i y

Stream function
(streamlines represent the trajectories 
of  fluid particles)

Velocity potential, or phase field
(the gradient is the velocity field)



The complex-potential framework
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The complex potential of  a many-vortex system, where vortices are at                                is{z1, z2, . . . , zNv
}

F (z) =

Nv∑

i=1

qi log(z − zi) with qi = ±1

In the case of  a disk-like domain, if  a vortex is present at

an image vortex is automatically present at 

and has opposite charge.
This ensures that streamlines are tangent to the circular 
boundary and constant-phase lines are perpendicular to it.



The complex-potential framework
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The complex potential of  a many-vortex system, where vortices are at                                is{z1, z2, . . . , zNv
}

F (z) =

Nv∑

i=1

qi log(z − zi) with qi = ±1

In the case of  a disk-like domain, the complex potential reads:

F (z) = log(z − z0)− log(z − z
′

0
)

Hence:



The complex-potential framework
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Once the complex potential is known, determining the vortex motion is straightforward:

In the case of  a vortex in a disk-like domain:

F (z) = log(z − z0)− log(z − z
′

0
)



The complex-potential framework
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The equation of  motion is a first-order differential equation, 
and its solutions are (trivial) uniform circular orbits.



More than one vortex
The complex-potential framework work well also with more than one vortex. 

For the case of  a two-vortex system in a disk, the complex potential reads
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q1 = q2 = +1 q1 = +1, q2 = −1



More than one vortex
The complex-potential framework work well also with more than one vortex. 

For the case of  a two-vortex system in a disk, the complex potential reads
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q1 = q2 = +1 q1 = +1, q2 = −1



More complex geometries
Suitable conformal transformations of  the complex potential F(z) allow to fully solve the dynamics 
of  vortices in different confining geometries, e.g. the ellipse:
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Conformal
map

w-plane z-plane

[M. Caldara, A. Richaud, P. Massignan, A. L. Fetter, arXiv:2311.13545]

w = f(z)



FROM MASSLESS TO 
MASSIVE VORTICES
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[A. Richaud, V. Penna, R. Mayol, M. Guilleumas, Phys. Rev. A 101, 013630 (2020)]
[A. Richaud, V. Penna, A. L. Fetter, Phys. Rev. A 103, 023311 (2021)]



Vortices: just empty holes?
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Traditionally, the core is represented as a 
funnel-like hole around which the superfluid 

exhibits a swirling flow, a sort of  tornado in the 
corresponding wavefunction.



Vortices with filled massive cores
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Actually, the vortex core turns 
out to be commonly filled by 

particles!



Vortices with filled massive cores
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Superfluid

Tracer particles

G. P. Bewley et al., Nature 441, 588 (2006)

Experimentalists use particles as “vorticity tracers”, e.g. 
in liquid helium. 



Vortices with filled massive cores

ANDREA RICHAUD 22

Superfluid

Thermal atoms

A. Griffin, T. Nikuni, E. Zaremba, Bose-Condensed Gases at Finite Temperature, Chap. 9, Cambridge University Press (2009)

Atoms which do not belong to the superfluid fraction.

Superfluid

Thermal



Vortices with filled massive cores
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Superfluid

Quasi-particle bound states

N. B. Kopnin et al., Phys. Rev. B 44, 9667 (1991)

In Fermionic superfluids, due to pair-breaking 
excitations, vortices’ cores are filled up with 

quasiparticle bound states even at zero temperature.

W. J. Kwon et al., Nature 600, 64 (2021)



Vortices with filled massive cores
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Superfluid

A second (minority) component

One of  the first vortices ever observed in a BEC, had a 
core filled by another component!

B. P. Anderson et al., Phys. Rev. Lett. 85, 2857 (2000)

The two components were two different internal states 
of  87Rb.



Vortices with filled massive cores
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• Thermal atoms
• Quasiparticle bound states
• Another (minority) BEC

• Tracer particles

Superfluid vortices are often filled by 
massive cores (deliberately or 

accidentally!)



Massive Point Vortex Model
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The Lagrangian of  massive vortex in a disk can be derived in a rigorous way:

Start from the  Lagrangian of  a massless vortex in a disk:

La = !naπ(ṙ0 × r0 · ẑ)
r
2

0
−R

2

r2
0

−

!
2
naπ

ma

log

(

1−
r
2

0

R2

)

Write the Lagrangian ensuing from the inertial contribution 
of  the core:

Lb =
1

2
Mbṙ

2

0

Recognize that the total Lagrangian of  the system is:
L = La + Lb

[A. Richaud, V. Penna, A. L. Fetter, Phys. Rev. A 103, 023311 (2021)]



Massive Point Vortex Model
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Compute the associated Euler-Lagrange equations:

• This is a second-order equation of  motion:
 the introduction of  mass is a singular perturbation.

L = La + Lb

• The number of  dynamical variables associated to 
each vortex doubles!



Massive Point Vortex Model
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Compute the associated Euler-Lagrange equations:

These equations tell us that the motion is 
not simply a uniform circular one!

L = La + Lb



Massless vs Massive Vortices
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Massless → Only uniform circular orbits Massive → Radial oscillations 
superimposed to circular orbits. 



Transverse oscillation frequency as mass signature
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Massive → Radial oscillations 
superimposed to circular orbits. 

The frequency ω of  radial oscillations is inversely 
proportional to the core mass:

where #̃! = #!/& and ' = ("/(#.

Typical signature of  a singular perturbation.

[A. Richaud, V. Penna, A. L. Fetter, Phys. Rev. A 103, 023311 (2021)]



Magnus effect and Magnus force
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The equation of  motion of  a massive vortex 

can be rewritten as

F
M = 2naπ!(vs − ṙ0)× ẑ,

Mbr̈0 = F
M

where

is the Magnus force, proportional to the difference 
between the actual vortex velocity, *̇! and the local 
superfluid velocity +$ (simply induced by the image 
vortex).[A. Richaud, P. Massignan, V. Penna, and A. L. Fetter, 

Phys. Rev. A 106, 063307 (2022)]



Magnus effect and Magnus force
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A massless vortex moves with the local superfluid 
velocity not to be subject to any net force. ← Magnus 
effect.

A massive vortex moves according to Newton’s 
second law, where F is the Magnus force.

F
M = 2naπ!(vs − ṙ0)× ẑ,

Mbr̈0 = F
M



ELECTROMAGNETIC
EQUIVALENCE
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Vortices as interacting point charges subject to 
a transverse magnetic field

ANDREA RICHAUD 34

The equation of  motion of  a single massive vortex 

can be also rewritten as

[A. Richaud, P. Massignan, V. Penna, and A. L. Fetter, 
Phys. Rev. A 106, 063307 (2022)]

Mbr̈0 = κṙ0 × (−manaẑ) +
mana

2π
κκ

′
r0 − r

′

0

|r0 − r
′

0
|2

where                          and   r
′

0
=

R
2

r2
0

r0 κ
′
= −κ

Lorentz-like term Coulomb (2D) – like term



Vortices as interacting point charges subject to 
a transverse magnetic field
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[A. Richaud, P. Massignan, V. Penna, and A. L. Fetter, 
Phys. Rev. A 106, 063307 (2022)]

Mbr̈0 = κṙ0 × (−manaẑ) +
mana

2π
κκ

′
r0 − r

′

0

|r0 − r
′

0
|2

where                          and   r
′

0
=

R
2

r2
0

r0 κ
′
= −κ

Lorentz-like term Coulomb (2D) – like term

A massive vortex is formally equivalent to a massive particle of  
charge ! subject to an electric field (generated by all the other 
vortices, be them real or virtual) and a transverse magnetic field 
" = −%!&!(̂.



Vortex dipoles and pairs
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ACTIVE
VORTEX CORES
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[A. Richaud, G. Lamporesi, M. Capone, A. Recati, Phys. Rev. A 107, 053317  (2023)]



A change of  perspective

So far, the massive core has played a 
‘passive’ role, meaning that it is like a 

burden which quantum vortices, 
deliberately or accidentally, have to 

live with.
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Quantum vortex Massive core



A change of  perspective

But the massive core can actually 
drive the hosting vortex!
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Quantum vortex
Massive core



A change of  perspective
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Massive cores can drive vortex 
collisions!



Species-selective traps

Species-a feels a hard-wall 
circular potential well
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Species-b feels a harmonic 
potential



Massive Point-Vortex Model
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Massive Point-Vortex Model
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Usual Superfluid Vortex Dynamics in a circular box

Inertial term ensuing from 
the core mass

Harmonic trapping of  species-b 
cores



Massive Point-Vortex Model
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Euler-Lagrange Equations:



Predictions of  the Massive Point Vortex 
Model
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Pair of  counter-rotating massive 
vortices.

Pair of  co-rotating massive vortices.
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Collision of  vortex/antivortex pair

Mutual annihilation of  the vortices
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Sound-wave explosion!
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Collision of  vortex/vortex pair

Stabilization of  a double-charge vortex with 
filled core!

ANDREA RICHAUD 49



COLLECTIVE EFFECTS IN MASSIVE-VORTEX SYSTEMS:
 SUPERFLUID KELVIN – HELMHOLTZ INSTABILITY
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[M. Caldara, A. Richaud, M. Capone, P. Massignan arXiv:2403.11987]



Classical Kelvin-Helmholtz instability

At the interface between two fluid 
layers in relative motion, 
infinitesimal fluctuations can be 
exponentially amplified, inducing 
vorticity and the breakdown of  
the laminar flow.
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Kelvin-Helmholtz instability in 
atmospheric phenomena
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Kelvin-Helmholtz instability rendered visible by clouds, known as fluctus



Kelvin-Helmholtz instability in 
atmospheric phenomena
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Kelvin-Helmholtz instability in the sky of  Rivarolo Canavese (TO), 24th December 2023 



Kelvin-Helmholtz instability in superfluids
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First theoretical study of  the Kelvin-Helmholtz instability in a single-component BEC
[A. W. Baggaley, N. G. Parker, Phys. Rev. A 97, 053608 (2018)]

An atomic BEC confined in a channel is divided by 
a central barrier.

The superfluid on either side flows in opposite 
directions.

The central barrier is then lowered to create a 
region of  high shear.



Kelvin-Helmholtz instability in superfluids
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First theoretical study of  the Kelvin-Helmholtz instability in a single-component BEC
[A. W. Baggaley, N. G. Parker, Phys. Rev. A 97, 053608 (2018)]



Kelvin-Helmholtz instability in superfluids
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First theoretical study of  the Kelvin-Helmholtz instability in a single-component BEC
[A. W. Baggaley, N. G. Parker, Phys. Rev. A 97, 053608 (2018)]

The vortex chain that 
forms at the interface is 
unstable and rolls up 
into small clusters of  
same-sign vortices. Over 
time, these clusters 
merge to create larger 
clusters (mimicking 
classical patches of  
vorticity).



Difference between classical KHI and 
superfluid KHI
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In a classical fluid, vorticity 
constitutes a continuous field.

In a superfluid, vorticity is 
quantized and the number of  
resulting vortices is finite and only 
depends on the initial relative 
velocity of  the two fluids.



Toy-model: row of  massive vortices
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x

y

j j + 1j − 1

Mcr̈j = κṙj × (−manaẑ) +
mana

2π
κ
2

+∞
∑

i=1

(

rj − rj+i

|rj − rj+i|2
+

rj − rj−i

|rj − rj−i|2

)

Equations of  motion:

Fixed point:
rj = (a j, 0) ∀ t

a



Toy-model: row of  massive vortices
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x

y

j j + 1j − 1

In the most unstable mode, all the vortices are displaced from their equilibrium position 
according to:

(a(j ± i), 0) →
(

a(j ± i) + (−1)iϵx, (−1)iϵy
)

, i = 0, 1, . . . , Nv

The linearized equations of  motion are:
Mcϵ̈x = −κmanaϵ̇y −

manaπκ
2

4a2
ϵx

Mcϵ̈y = κmanaϵ̇x +
manaπκ

2

4a2
ϵy

ϵx

ϵy



Toy-model: row of  massive vortices
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The linearized equations of  motion are:
Mcϵ̈x = −κmanaϵ̇y −

manaπκ
2

4a2
ϵx

Mcϵ̈y = κmanaϵ̇x +
manaπκ

2

4a2
ϵy

Recoil force along x

Destabilizing
 force along y

A straightforward analysis of  these two coupled ODEs allows to compute the maximum 
instability growth rate: 

σ
∗

=
κmana

Mc

√

2

√

√

√

√

−1 +

√

1 +

(

Mcπ

2a2mana

)2

ϵx, ϵy ∼ e
σ
∗

t



Toy-model: row of  massive vortices
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Core mass suppresses instability!

σ
∗

=
κmana

Mc

√

2

√

√

√

√

−1 +

√

1 +

(

Mcπ

2a2mana

)2

is a dimensionless 
mass ratio.

L = Nva



Core mass affects the scaling
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In the massless limit:

σ
∗

∝ N
2

v

In the massive case:
σ
∗

∝ Nv

[ H. Aref, J. Fluid Mech. 290, 167 (1995) ]

σ
∗

=
κmana

Mc

√

2

√

√

√

√

−1 +

√

1 +

(

Mcπ

2a2mana

)2



Longitudinal vs transversal instability
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x

y

j j + 1j − 1

The eigenvector associated to '∗ provides info concerning the way a perturbation is 
amplified. 

In the massless limit, the instability is both 
longitudinal and transversal, to the same 
extent.

ϵ∥

ϵ⊥



Longitudinal vs transversal instability
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x

y

j j + 1j − 1

The eigenvector associated to '∗ provides info concerning the way a perturbation is 
amplified. 

The presence of  core mass makes the 
instability more transverse and less 
longitudinal.



Radial vs azimuthal instability
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δr

r0δθ

The presence of  core mass makes the instability 
slower and more radial.

We generalized the result to circular arrays (i.e. necklaces) of  
massive vortices.

[M. Caldara, A. Richaud, M. Capone, P. Massignan arXiv:2403.11987]



CONCLUSIONS
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Most real superfluid vortices are massive
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• Thermal atoms
• Quasiparticle bound states
• Another (minority) BEC

• Tracer particles

Superfluid vortices are often filled by 
massive cores (deliberately or 

accidentally!)



Massive Point Vortex Model
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The massive point vortex model, unlike its 
massless counterpart, leads to second-order 

equations of  motion:

The dynamical signature of  vortex mass 
is represented by small-amplitude 

transverse oscillations.

[A. Richaud, V. Penna, A. L. Fetter, Phys. Rev. A 103, 023311 (2021)]



Mass-driven vortex collisions
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Inertial cores can be used to drive vortex collisions: 

Vortex pair Vortex dipole

[A. Richaud, G. Lamporesi, M. Capone, A. Recati, Phys. Rev. A 107, 053317  (2023)]



Inertial effects on vortex-array instabilities
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The presence of  core mass makes the instability 
slower and more transverse, and also alters 
the scaling law (∗(!!).

[M. Caldara, A. Richaud, M. Capone, P. Massignan arXiv:2403.11987]
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Thanks for your 
attention!

QUESTIONS ?

Info: andrea.richaud@upc.edu


