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Outline
• Double well for RF-dressed atoms: methodology

• T. Harte, E. Bentine, ... , C.J. Foot, PRA 97 013616 (2017)

• Matter-wave interferometry of 2D Bose gases using the double-well potential
• S. Sunami, V. Singh, …, L. Mathey, C.J. Foot, PRL 128, 250402 (2022)

• Quenching the Kosterlitz-Thouless (BKT) superfluid
• A. Barker, S. Sunami, … C.J. Foot, NJP 22 103040 (2020)

• S. Sunami, V. Singh, … L. Mathey, C.J. Foot, Science 382, 443 (2023)

• Experiments with bilayer 2D Bose gases, including effects of disorder

• Ways to improve RF-dressed traps and Outlook
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a) Eigenenergies of magnetic potential b) dressed-atom picture
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Magnetic trapping potential modified by applied RF radiation. 

Dressed atoms are confined on a contour of constant magnetic field, B = const.
where the RF is resonant with the Zeeman splitting.  
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Eigenenergies for the F=1 hyperfine level of Rb-87 in an inhomogeneous B-field.



• RF + quadrupole field, 𝐵quad = 𝐵′ 𝑥𝒆𝒙 + 𝑦𝒆𝒚 − 2𝑧 𝒆𝒛

• Resonance occurs on the surface of a spheroid: ℎ𝑓𝑅𝐹 = 𝑔𝐹𝜇𝐵|𝐵quad|

• Force of gravity breaks symmetry  atoms accumulate at bottom

• Highly anisotropic confinement  quasi-2D potentials: 
fz > 1 kHz, fr < 10 Hz.

𝒆𝒛
𝒆𝒙

RF-dressed atoms in a quadrupole field
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From Abel Beregi, D.Phil. 
thesis, Oxford (2023) 



Making a 2D quantum gas in the RF-dressed potential

• Cold atomic gas cooled to nanokelvin regime (Temperature = 30 - 50 nK)
• 105 rubidium atoms (10 atoms per µm2)
• Ground state occupied for 𝑧-direction, excited states populated in 𝑥, 𝑦
• Kinematically constrained to 2D, while interaction is 3D (s-wave scattering; ‘quasi-2D’)

repulsive optical ring 

potential for near-flat 

geometry (generated by 

Spatial Light Modulator) 
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30 µm diameter



Box traps on an atom chip for one-dimensional quantum gases. 
J. van Es, … N van Druten, J. Phys. B: 43,155002 (2010)

Atom chip: 1D confinement
NASA experiment. Lundblad et al.
(chip + quad field)

Other RF-dressing experiments 

Vienna group – investigation of 1D quantum gases
• Experimental observation of a generalized Gibbs ensemble.        

T. Langen, … J. Schmiedmayer, Science 348, 207 (2015)
• Experimental characterization of a quantum many-body 

system via higher-order correlations.
T. Schweigler, … J. Schmiedmayer, Nature 545, 323 (2017).

Recent developments in trapping and manipulation 
of atoms with adiabatic potentials. [Review article]
B. Garraway & H. Perrin, J. Phys. B 49, 172001 (2016)
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Ring trap. 
Hélène Perrin, Romain Dubessy…
Université Sorbonne Paris Nord 

Barry Garraway’s talk  



Multiple-RF dressing  double-well potential

Single → Double well:
change amplitude RF at 2

(Rabi frequency Ω2 ).
Precisely controllable.
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From Abel Beregi
D.Phil. thesis, 
Oxford (2023) 



Quadrupole
field coils

Evaporation RF

RF coil

TOP (rotating) bias

Controllability:
• RF frequencies 

→ z-position, well separation
• RF amplitudes 

→ trap frequency, trap shape
• RF polarizations

→ anisotropy of each cloud

RFmixer
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Varying RF amplitude 
of middle frequency

Experimental apparatus: multiple-RF dressed potential

T. Harte,... C. J. Foot.  
PRA 97, 013616 (2017) 
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Double-well bubble trap
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Matter-wave interference

Ψ2 ≃ 𝑛𝑒𝑖𝜙2

Ψ1 ≃ 𝑛𝑒𝑖𝜙1

First matter-wave interferometry
of BEC @MIT. Science 275, 637 (1997)

Matter-wave interferometry

probe the local phase difference
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repumping light

imaging light

Matter-wave interferometry: detect slice of atoms

x

y
z

TOF
“dark” state

“bright” state

1: repumping light

𝐿𝑦

Ψ2 ≃ 𝑛𝑒𝑖𝜙2

Ψ1 ≃ 𝑛𝑒𝑖𝜙1
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Detect atoms in F=2 
level (bright)

2D Bose gas in F=1 
level (dark)



Fit image columns Fit results Correlate and average (N>50)

Spatial average:

relative phase correlation function

Analyse interference pattern to find the Correlation function
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c.f. Vienna group’s experiments 
on double-well 1D Bose gas ∝

𝐽 = 0



Vortex-antivortex pairs have lower energy cost to create.

R

vortex

a

vortex-antivortex pair 

=

Physics of a 2D Bose gas

Phase of
wave function
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Single vortex has Energy proportional to ln(R ), where R is system size.

J  = phase stiffness of wave function
 = vortex core size (healing length)

no flow at large distances for pair: 

cancellation of opposite circulations 



Role of vortices in the BKT transition

• tightly bound pairs of vortices have little 
effect on the phase field at distances 
larger than their characteristic size. 

Above TC , short-ranged order

The insight of Kosterlitz and Thouless was that a transition can occur between a superfluid 
phase containing vortex pairs and a normal phase with individual ‘unbound’ vortices.
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• unbound vortices at random positions 
‘scramble’ the phase: absence of long-
range order. No net circulation. 

Below TC , quasi long-range order (QLRO)



BKT transition: Berezinskii (1972), Kosterlitz & Thouless (1972)
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BKT transition:
o Infinite-order phase transition
o Universal jump of superfluid density
o Vortex binding-unbinding mechanism
o Quasi-order with power-law correlation

• Initial observation with liquid He [Bishop 1978]:
• Cold-atom experiments: Paris, Cambridge, 

Oxford, Seoul, Chicago, Purdue, Heidelberg, …

𝑇𝑐
𝑇

0finite

Exponential ∝ 𝑒−𝑟/𝑟0Power-law ∝ 𝑟−𝜂

𝒟𝑆𝐹 =
𝑛𝑆𝐹𝜆𝑡ℎ
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Kosterlitz-Thouless transition

• for theoretical discoveries of topological 
phase transitions and topological phases 
of matter.

• The KT-transition does not break any 
symmetry, something that was completely 
new and unexpected – it should not occur 
according to Mermin-Wagner Theorem.

• Different to long-range order and 
superfluidity with ‘condensation’.

• The BKT phase transition does not rely on 
spontaneous symmetry breaking.

Also known as the Berezinskii-Kosterlitz-Thouless transition
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The BKT transition – reminder of previous slide

Below TC , tightly bound pairs of vortices. Above TC , unbound vortices at random positions. 

algebraic (‘slow’) decay of correlations 
 quasi long-range order (QLRO)

exponentially decaying correlations 
(‘fast’ decay)

Below TC Above TC 
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Phase correlation function

Sunami et al., Phys. Rev. Lett. 128, 250402 (2022)

Correlation function in harmonic trap
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increasing
Temperature 

Scaled temperatures T / T0

where quantum degeneracy occurs at T0 . 



exponential

power-law
+LDA

Observation of the BKT Transition in a 2D Bose Gas via Matter-Wave Interferometry. S. Sunami, V. Singh, 
D.Garrick, A. Beregi, A.Barker, K.Luksch, E.Bentine, L. Mathey & C.J. Foot, Phys. Rev. Lett. 128, 250402 (2022).

Correlation function in harmonic trap
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increasing
Temperature 

exp

power-law

Scaled temperatures T / T0 ; quantum degeneracy at T0 . 



Quenching the 2D quantum gas→ bilayer

29

property of 
the system

time

Prethermalization ? 

Fast relaxation - phonons

Slower relaxation - vortices



Vortex-unbinding dynamics

Reverse Kibble-Zurek mechanism:
• ordered phase → disordered phase (vortices)

Kibble-Zurek mechanism:
• formation of vortices after quench of temperature
[ proposed mechanism for cosmic strings in early universe.] 
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vortex

no vortex

Experimental measurement of phase detects phonons and vortices
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phonons – ‘waviness’ of fringes
vortices – phase discontinuity 



Vortex detection
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Dynamics after quench

tc = time when system 
makes the transition 

superheated superfluid

increasing
Temperature 

10-3

linear

quadratic



Define fugacity, g
Free energy, 

BKT transition:      Below TC , tightly bound vortex pairs → Above TC , unbound vortices at random positions. 
• At the KT transition temperature, the vortex pairs dissociate so that individual vortices proliferate.

→

 = vortex core size

Number of microstates, 

R = system size

= probability of vortex at xi

= fugacity

Total probability 
of finding a vortex
in the system. 
(high for F < 0.) 

Entropy of vortex,



Time-dependent Renormalization Group picture: L. Mathey & A. Polkovnikov (2010)

Scaling: condenses the information exchange 
between experiment and theory (analytical 
theory & numerics) into a small set of 
universal numbers.

fugacity  nv , vortex 

number density, for large 

35L. Mathey & A. Polkovnikov. Phys. Rev. A 81, 033605 (2010)

The supercritical state relaxes to a disordered 
state by dynamical vortex unbinding. This 
dynamically suppressed vortex proliferation 
constitutes a reverse Kibble-Zurek effect. 



Disorder-induced superfluid transition: ongoing work

Disorder potential

Ψ2 ≃ 𝑛𝑒𝑖𝜙2

Ψ1 ≃ 𝑛𝑒𝑖𝜙1

bilayer quantum gas (J=0)

Disorder potential

VD

A. Beregi et al., in preparation

VD scan Theory: Carleo, Boeris, 
Holzmann, Sanchz-Palencia,
PRL 111, 050406 (2013)

See also Bourdel (2011, 2012)

Experiment:
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Abel Beregi, D.Phil. 
thesis, Oxford (2023) 

eta = power law of correl.  Probability of detecting a vortex  



Probing a bilayer system: measure both relative and common phase

Relative phase

Common phase

Ψ2 ≃ 𝑛𝑒𝑖𝜙2

Ψ1 ≃ 𝑛𝑒𝑖𝜙1

bilayer
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Antisymmetric mode

Symmetric mode



RF-dressed traps with flat potential (uniform atomic density)

Reduce radial trapping frequency, e.g. from 10 to 3 Hz
→ ‘flatter potentials’
• anisotropy of 1 : 300 (for Rb-87).
• density variation < 10% across cloud.

Two possible methods:

• Increase radio-frequency,                      
e.g. from 7 MHz to 21 MHz using coils 
with higher self-resonant frequency.

• Magnetic field from a single coil           
– flat contour

RF magnetic field             RF coils

Single coil:
isomagnetic contours

From Abel Beregi, D.Phil. 
thesis, Oxford (2023) 



RF-dressed traps with flatter potentials (more uniform atomic density)

Two possible methods:

• Increase radio-frequency.

• Magnetic field with flat contours

RF magnetic field             RF coils

Single coil:
isomagnetic contours

Contour flat,                                           
(on the length scale of the atom cloud).  

Single coil + Helmholtz pair (to independently 
control magnitude and vertical gradient)

From Abel Beregi
D.Phil. thesis, 
Oxford (2023) 



RF-dressed traps – future improvements to give longer lifetimes/ lower temperatures 

• The lifetime of RF-dressed trapped atoms is 
many seconds, with a minimum Rabi freq. 
much less than magneto-static traps.

• Loss mechanism is not fully characterised –
may be electrical noise. It is higher than the 
predicted intrinsic loss by non-adiabatic 
transitions (Landau-Zener).

• Lifetime may improve with increasing radio-
frequency, for the same double-well spacing.

• Magnetic field with flat contours gives gravity 
compensation over wide regions (> 10mm).  
 Good for atom interferometry, e.g. see Cass 
Sackett’s talk at this meeting, or other 
Atomtronics applications

• RF-dressing works very well for Rb-87 – good 
alternative to squashing between light sheets. 
(Being extended, elsewhere, to other species.)  

RF magnetic field             RF coils

Contours: single coil + Helmholtz pair

flat 
contour



• > 109 atoms in compressed MOT cloud

• 8 x 107 in RF-dressed potential 

• > 105 after evaporation to quantum degeneracy

• Highly anisotropic confinement  quasi-2D potentials: fz > 1 kHz, fr < 10 Hz.

𝒆𝒛
𝒆𝒙

Simplified loading scheme from MOT directly into RF-potential 
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Abel Beregi, D.Phil. 
thesis, Oxford (2023) 



2D quantum gases

• Introduction to the physics of 2D quantum gases

• Experiment: making multi-layer 2D traps (RF-dressed potentials )

• T. Harte, E. Bentine, ... , C.J. Foot, PRA 97 013616 (2017)

• New tool: matter-wave interferometry of 2D quantum gases

• S. Sunami, V. Singh, …, L. Mathey, C.J. Foot, PRL 128, 250402 (2022)

• Quenching the Kosterlitz-Thouless (BKT) superfluid 

• A. Barker, S. Sunami, … C.J. Foot, NJP 22 103040 (2020)

• S. Sunami, V. Singh, … L. Mathey, C.J. Foot, Science 382, 443 (2023)

Universal scaling of the dynamic BKT transition in quenched 2D Bose gases. 

• Ways to improve RF-dressed traps and Outlook

Funding. Thanks to EPSRC.
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Summary
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Phase-space 
density

Magnetic trap + optical box
= near-homogeneous system

Correlation function in uniform potential

University of Cambridge, UK. 
Quantum gases in optical boxes
N. Navon, R.P. Smith & Z. Hadzibabic
Nat. Phys. 17, 1334 (2021)
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New apparatus in Oxford Physics, using Rb-87 atoms 

20 mm

Pyramidal Magneto-Optical Trap (MOT)


