A double-well potential by dressing ultracold atoms with multiple RFs

Oxford team: Chris Foot (PI), Shinichi Sunami (Postdoc/Junior Research Fellow), Abel Beregi (Postdoc), En Chang (PhD student), Erik Rydow (PhD student)

Collaborators: Ludwig Mathey (Hamburg), Vijay Singh(Abu Dhabi), Fabian Essler (Oxford)

Benasque, May 2024

Engineering and Physical Sciences Research Council

Outline

- Double well for RF-dressed atoms: methodology
 - T. Harte, E. Bentine, ..., C.J. Foot, PRA 97 013616 (2017)
- Matter-wave interferometry of 2D Bose gases using the double-well potential
 - S. Sunami, V. Singh, ..., L. Mathey, C.J. Foot, PRL 128, 250402 (2022)
- Quenching the Kosterlitz-Thouless (BKT) superfluid
 - A. Barker, S. Sunami, ... C.J. Foot, NJP 22 103040 (2020)
 - S. Sunami, V. Singh, ... L. Mathey, C.J. Foot, Science 382, 443 (2023)
- Experiments with bilayer 2D Bose gases, including effects of disorder
- Ways to improve RF-dressed traps and Outlook

Magnetic trapping potential modified by applied RF radiation.

Eigenenergies for the F=1 hyperfine level of Rb-87 in an inhomogeneous B-field.

Dressed atoms are confined on a contour of constant magnetic field, $|\mathbf{B}| = \text{const.}$ where the RF is resonant with the Zeeman splitting.

RF-dressed atoms in a quadrupole field

- RF + quadrupole field, $B_{quad} = B'(xe_x + ye_y 2ze_z)$
- Resonance occurs on the surface of a spheroid: $hf_{RF} = g_F \mu_B |B_{quad}|$
- Force of gravity breaks symmetry ⇒ atoms accumulate at bottom

• Highly anisotropic confinement \Rightarrow quasi-2D potentials: $f_z > 1$ kHz, $f_r < 10$ Hz.

Making a 2D quantum gas in the RF-dressed potential

- Cold atomic gas cooled to nanokelvin regime (Temperature = 30 50 nK)
- 10^5 rubidium atoms (10 atoms per μ m²)
- Ground state occupied for z-direction, excited states populated in x, y
- Kinematically constrained to 2D, while interaction is 3D (s-wave scattering; 'quasi-2D')

Other RF-dressing experiments

Atom chip: 1D confinement

 \rightarrow

Hélène Perrin, Romain Dubessy... Université Sorbonne Paris Nord

Barry Garraway's talk

Box traps on an atom chip for one-dimensional quantum gases. J. van Es, ... N van Druten, J. Phys. B: 43,155002 (2010)

Vienna group – investigation of 1D quantum gases

- Experimental observation of a generalized Gibbs ensemble.
 T. Langen, ... J. Schmiedmayer, Science 348, 207 (2015)
- Experimental characterization of a quantum many-body system via higher-order correlations.

T. Schweigler, ... J. Schmiedmayer, Nature 545, 323 (2017).

NASA experiment. Lundblad et al. (chip + quad field)

Recent developments in trapping and manipulation of atoms with adiabatic potentials. [Review article] B. Garraway & H. Perrin, J. Phys. B 49, 172001 (2016)

Multiple-RF dressing \Rightarrow double-well potential

Experimental apparatus: multiple-RF dressed potential

Matter-wave interferometry

First matter-wave interferometry of BEC @MIT. Science 275, 637 (1997)

probe the local phase difference

Matter-wave interferometry: detect slice of atoms

Analyse interference pattern to find the Correlation function

Physics of a 2D Bose gas

Single vortex has Energy proportional to $\ln(R)$, where *R* is system size.

$$E_v \approx \frac{\hbar^2 n_s}{2m} \int_{\xi}^{R} \frac{1}{r^2} 2\pi r dr = \frac{\hbar^2 n_s \pi}{m} \ln\left(\frac{R}{\xi}\right)$$

J = phase stiffness of wave function ξ = vortex core size (healing length)

 $\equiv \pi J \ln \left(R/\xi \right)$

<u>Vortex-antivortex pairs</u> have lower energy cost to create.

$$E_{\text{pair}} = 2\pi J \ln\left(\frac{a}{\xi}\right)$$

no flow at large distances for pair: cancellation of opposite circulations

Role of vortices in the BKT transition

Below T_c, quasi long-range order (QLRO)

 tightly bound pairs of vortices have little effect on the phase field at distances larger than their characteristic size.

Above T_c, short-ranged order

 unbound vortices at random positions 'scramble' the phase: absence of longrange order. No net circulation.

The insight of Kosterlitz and Thouless was that a transition can occur between a superfluid phase containing vortex pairs and a normal phase with individual 'unbound' vortices.

0.5 0.0

1.0

θ/π

BKT transition: Berezinskii (1972), Kosterlitz & Thouless (1972)

BKT transition:

- Infinite-order phase transition
- \circ Universal jump of superfluid density
- Vortex binding-unbinding mechanism
- Quasi-order with power-law correlation
- Initial observation with liquid He [Bishop 1978]:
- Cold-atom experiments: Paris, Cambridge, Oxford, Seoul, Chicago, Purdue, Heidelberg, ...

Universal jump in superfluid density

Kosterlitz-Thouless transition

Also known as the Berezinskii-Kosterlitz-Thouless transition

The Nobel Prize in Physics 2016

© Nobel Media AB. Photo: A. Mahmoud David J. Thouless Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud **F. Duncan M. Haldane** Prize share: 1/4

© Nobel Media AB. Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

- for theoretical discoveries of topological phase transitions and topological phases of matter.
- The KT-transition does not break any symmetry, something that was completely new and unexpected – it should not occur according to Mermin-Wagner Theorem.
- Different to long-range order and superfluidity with 'condensation'.
- The BKT phase transition does not rely on spontaneous symmetry breaking.

The BKT transition – reminder of previous slide

Below T_c, tightly bound pairs of vortices.

 $g_1(\mathbf{r}) = \langle \mathbf{S}(\mathbf{r}) \cdot \mathbf{S}(0) \rangle$ $= \langle e^{\mathbf{i}[\theta(\mathbf{r}) - \theta(0)]} \rangle \propto (\xi/r)^{\eta} \sim r^{-\eta}$

algebraic ('slow') decay of correlations \Leftrightarrow quasi long-range order (QLRO)

exponentially decaying correlations ('fast' decay)

 $= \langle e^{\mathrm{i}[\theta(\mathbf{r}) - \theta(0)]} \rangle \propto e^{-r/\xi}$

Correlation function in harmonic trap

Correlation function in harmonic trap

Scaled temperatures T / T_0 ; quantum degeneracy at T_0 .

Observation of the BKT Transition in a 2D Bose Gas via Matter-Wave Interferometry. S. Sunami, V. Singh, D.Garrick, A. Beregi, A.Barker, K.Luksch, E.Bentine, L. Mathey & C.J. Foot, Phys. Rev. Lett. 128, 250402 (2022).

Quenching the 2D quantum gas \rightarrow bilayer

Vortex-unbinding dynamics

Reverse Kibble-Zurek mechanism:

• ordered phase \rightarrow disordered phase (vortices)

Kibble-Zurek mechanism:

formation of vortices after quench of temperature
[proposed mechanism for cosmic strings in early universe.]

Experimental measurement of phase detects phonons and vortices

Vortex detection

x (pixel)

Dynamics after quench

Define fugacity, g

Free energy,

 $F = E_{v} - TS_{v}$ = $E_{core} + (\pi J - 2k_{B}T) \ln (R/\xi)$ Entropy of vortex,

BKT transition: Below T_c, tightly bound vortex pairs → Above T_c, unbound vortices at random positions.
 At the KT transition temperature, the vortex pairs dissociate so that individual vortices proliferate.

$$p_{i} = n_{v}\xi^{2} = \text{probability of vortex at } x_{i}$$
Number of microstates, $\Omega = \frac{\pi R^{2}}{\pi \xi^{2}}$

$$p_{i} \propto e^{-\beta E_{i}} = g = \text{fugacity}$$

$$P_{\text{vortex at } x_{i}}$$

$$P_{\text{vortex at } x_{i}}$$

$$P_{\text{vortex at } x_{i}}$$

$$P_{\text{vortex of } x_{i}} = e^{\ln(\Omega) - \beta E_{i}}$$

$$P_{\text{vortex } \infty} e^{-\beta F_{i}} = e^{\ln(\Omega) - \beta E_{i}}$$

Time-dependent Renormalization Group picture: L. Mathey & A. Polkovnikov (2010)

L. Mathey & A. Polkovnikov. Phys. Rev. A **81**, 033605 (2010)

$$x = \frac{1}{2\eta} - 2$$

$$y = \sqrt{2\pi}g_v$$
fugacity $\propto n_v$, vortex
number density, for large η

$$\begin{cases} \frac{dx}{dt} = -\frac{(x+2)^3y^2}{8t} \\ \frac{dy}{dt} = -\frac{xy}{t} \end{cases}$$

Scaling: condenses the information exchange between experiment and theory (analytical theory & numerics) into a small set of universal numbers.

The supercritical state relaxes to a disordered state by dynamical vortex unbinding. This dynamically suppressed vortex proliferation constitutes a reverse Kibble-Zurek effect.

Disorder-induced superfluid transition: ongoing work

Probing a bilayer system: measure both relative and common phase

RF-dressed traps with flat potential (uniform atomic density)

Reduce radial trapping frequency, e.g. from 10 to 3 Hz

- \rightarrow 'flatter potentials'
- anisotropy of 1 : 300 (for Rb-87).
- density variation < 10% across cloud.

Two possible methods:

 Increase radio-frequency,
 e.g. from 7 MHz to 21 MHz using coils with higher self-resonant frequency.

Magnetic field from a single coil
 – flat contour

RF-dressed traps with flatter potentials (more uniform atomic density)

Two possible methods:

Increase radio-frequency. ۰

Magnetic field with flat contours

Single coil:

RF magnetic field

RF coils

-30

-15

Single coil + Helmholtz pair (to independently control magnitude and vertical gradient)

RF-dressed traps – future improvements to give longer lifetimes/ lower temperatures

- The lifetime of RF-dressed trapped atoms is many seconds, with a minimum Rabi freq. much less than magneto-static traps.
- Loss mechanism is not fully characterised may be electrical noise. It is higher than the predicted intrinsic loss by non-adiabatic transitions (Landau-Zener).
- Lifetime may improve with increasing radiofrequency, for the same double-well spacing.
- Magnetic field with flat contours gives gravity compensation over wide regions (> 10mm).
 ⇒ Good for atom interferometry, e.g. see Cass Sackett's talk at this meeting, or other Atomtronics applications
- RF-dressing works very well for Rb-87 good alternative to squashing between light sheets. (Being extended, elsewhere, to other species.)

Contours: single coil + Helmholtz pair

Simplified loading scheme from MOT directly into RF-potential

Abel Beregi, D.Phil. thesis, Oxford (2023)

• Highly anisotropic confinement \Rightarrow quasi-2D potentials: $f_z > 1$ kHz, $f_r < 10$ Hz.

Summary

Engineering and Physical Sciences Research Council

2D quantum gases

- Introduction to the physics of 2D quantum gases
- Experiment: making multi-layer 2D traps (RF-dressed potentials)
 - T. Harte, E. Bentine, ..., C.J. Foot, PRA 97 013616 (2017)
- New tool: matter-wave interferometry of 2D quantum gases
 - S. Sunami, V. Singh, ..., L. Mathey, C.J. Foot, PRL 128, 250402 (2022)
- Quenching the Kosterlitz-Thouless (BKT) superfluid
 - A. Barker, S. Sunami, ... C.J. Foot, NJP 22 103040 (2020)
 - S. Sunami, V. Singh, ... L. Mathey, C.J. Foot, Science 382, 443 (2023) Universal scaling of the dynamic BKT transition in quenched 2D Bose gases.
- Ways to improve RF-dressed traps and Outlook

Funding. Thanks to EPSRC.

Ultracold Quantum Matter Lab

Engineering and Physical Sciences Research Council

Thanks to: Prof. Ludwig Mathey, Hamburg and Dr Vijay Singh, Hamburg / Abu Dhabi Technology Innovation Institute.

Dr Shinichi Sunami

Prof. Chris Foot

Dr Abel Beregi

Erik Rydow

Dr Charu Mishra

Oscar Chang

Correlation function in uniform potential

New apparatus in Oxford Physics, using Rb-87 atoms

