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The homology problem

⇧1

⇧2

Input: a (efficient description of a) simplicial 
complex K and an integer, l 

Output: yes if K has an l-dimensional hole, no 
otherwise 



Why is this problem 
interesting?

It has applications for topological 
data analysis - a practically useful 
problem! (Li et al, 2015)


There is a quantum algorithm for a 
closely related problem - can that 
algorithm be dequantised? (Lloyd et 
al, 2014)



What’s known about its 
complexity?

The problem was first defined formally in 
2002 (Kaibel-Pfetsch, 2002)


It is known to be NP-hard and retains its 
hardness when restricted to clique 
complexes (Adamaszek-Stacho, 2016) and 
when restricted to clique dense complexes 
(Lloyd-Schmidhuber 2022)


A similar problem for general chain 
complexes was shown to be QMA1-hard last 
year (Crichigno-Cade, 2021)

NP

NP-hard.



⇧1

⇧2

Our main results
Homology is QMA1-hard, and retains its 
hardness when restricted to clique 
complexes and to clique dense 
complexes.


NP

QMA1-hard

QMA1



Our main results
Why should this (seemingly classical problem) be 
related to quantum complexity classes?

Homology

Quantum Computing SUSY QM

Can we use this relationship to achieve quantum 
advantage for problems related to homology?



Outline of talk

Overview of simplicial homology


Quantum k-SAT


Our reduction from quantum k-SAT to homology


Quantum advantage for topological data analysis?



Simplicial homology



Simplicial homology

⇧1

⇧2

Simplicial complexes are formed 

by gluing along faces 

0-simplex
[x0]

x0

1-simplex
[x0x1]

x0 x1

2-simplex
[x0x1x2]

x0 x1

x2

3-simplex
[x0x1x2x3]

x0

x1

x2

x3



Boundary operator

∂n[x0x1⋯xn] = ∑n
i=0 (−1)i[x0⋯ ̂xi⋯xn]

delete ith vertex

− + =

x2

x2x1

x1x2

x3

x1

x3

x3x3

∂2( ) =

x2x1

x3



Properties of the boundary operator

Cycles don’t have boundaries: 


The boundary of a boundary vanishes: 

∂pc = 0
∂p−1∂p = 0

∂1( ) = −

x2

x2

x1

x1

x3

−
x3x2

−
x1x3

+ +

= 0



Holes in simplicial complexes
A hole, c:


is a cycle,    


isn’t a boundary 

∂pc = 0
c ≠ ∂p+1v

⇧1

⇧2

2-d hole
1-d hole

c ∈ ker(∂p)

c ∉ Im(∂p+1)



Homology groups
Given a simplicial complex, K, with boundary 
operator  define:
∂

Hp(K) :=
ker(∂p)

Im(∂p+1)

Given a simplicial complex, K, and an integer, 
p, decide if  or 
Hp(K) ≠ 0 Hp(K) = 0



Independence & clique 
complexes

The independence (clique) 
complex  ( ) of a 
graph is the simplicial 
complex defined by its 
independent sets (cliques)

We are interested in clique 
complexes, but  
and in the reduction we focus 
on independence complexes

I(G) Cl(G)

Cl(G) = I(G)



Quantum k-SAT and QMA1



Complexity class QMA1

|W>

UX

       = 1 if X in LYES 

P(1)  

        1/3 if X in LNO  ≤

{



Complexity class QMA1
A common choice of universal gate set is:

However any set {CNOT, U} is universal if U is basis changing. 

We choose {CNOT, U, Toffoli} where:

U = 1   3   4

     5  -4   3

“Pythagorean gate”

(Rational coefficients - important later)







Given a QMA1 verification circuit UX construct a Hamiltonian:




Such that: 

- if , 


- if , 


HX = ∑
a

Πa(UX)

X ∈ LYes HX |ψhist > = 0
X ∈ LNo < ψ |HX |ψ > ≥ ϵ∀ψ

E E

ϵ
YES NOExactly zero



The Hamiltonian HX = Hin + Hclock + Hprop + Hout

∑
in

|011 > < 011 | |011 > < 011 |



In order to reduce from quantum k-SAT to homology 
we need to encode the following projectors into an 
independence complex:



Reduction from quantum 
k-SAT to homology



Proof idea
Construct a graph where the independence complex has 2n (n-1)-
dimensional holes 


Construct gadgets which `fill in’ holes corresponding to the projectors 
in quantum k-SAT


Build up the graph corresponding to  - any remaining holes are 
satisfying solutions to quantum k-SAT

HX

2n holes!



Constructing the holes
Consider n disconnected triangles:

x1 x2 xn

a1 a2 an bnb2b1

The independence complex, , has dimension n and:


                   

Σn = I(Gn)

H0(Σn) = ℂ Hn−1(Σn) = (ℂ2)⊗n Hi(Σn) = 0∀i ≠ 0,n − 1

Gn=

Hilbert space of n qubits!



Constructing 2 qubit projectors

G2=
x1 x2

a1 a2 b2b1

=Σ2

b1b2

a2

x1

a1

x2



Constructing 2 qubit projectors

We have  and can choose a basis:


   |00> = [x1x2] + [x2a1] + [a1a2] + [a2x1]   

H1(Σn) = ℂ4

b1b2

a2

x1

a1

x2



Constructing 2 qubit projectors

We have  and can choose a basis:


   |01> = [x1x2] + [x2a1] + [a1b2] + [b2x1]   

H1(Σn) = ℂ4

b1b2

a2

x1

a1

x2



Constructing 2 qubit projectors

We have  and can choose a basis:


   |10> = [x1x2] + [x2b1] + [b1a2] + [a2x1]   

H1(Σn) = ℂ4

b1b2

a2

x1

a1

x2



Constructing 2 qubit projectors

We have  and can choose a basis:


   |11> = [x1x2] + [x2b1] + [b1b2] + [b2x1]   

H1(Σn) = ℂ4

b1b2

a2

x1

a1

x2



Constructing 2 qubit projectors
Consider the classical projector , we need to 
fill in the cycle corresponding to |oo>:

Π = |00 > < 00 |

b1b2

a2

x1

a1

x2

G2’==Σ′￼2

x1 x2

a1 b1

a2 b2

mmediator induces interactions

lifting the required state



The same process works for the other computational basis 
states. For the entangled states things get a little more 
complicated…

Π = ( |00 > − |11 > )( < 00 | − < 11 | )

x2

x1

m2 m3

m1

a1 b1

a2 b2

x1 b2

b1

x2a1

a2

m1

m2

m3

Σ′￼2 = G2’=



So, we created G2’=           such that:
x2

x1

m2 m3

m1

a1 b1

a2 b2

=



Taking stock…



Constructing three qubit projectors

To construct three qubit projectors we 
need to fill in three dimensional voids.


E.g. to lift the state |000> we need to fill 
the void:

x1

a1

x2 a2

x3

a3



Constructing three qubit projectors

To construct three qubit projectors we 
need to fill in three dimensional voids.


E.g. to lift the state |000> we need to fill 
the void:

x1

a1

x2 a2

x3

a3

m

Which we do by adding a mediator:



Constructing three qubit projectors

To construct three qubit projectors we 
need to fill in three dimensional voids.


E.g. to lift the state |000> we need to fill 
the void:

This corresponds to this new graph

|0i |1i |0i |1i

x1 x2

|0i |1i

x3



Constructing three qubit projectors

To fill in entangled projectors we have to  fill take linear 
combinations of voids, as we did in the 2-qubit case:

x1 x2

a2 b1

b3

x3

b2 a1

x1 x2

x3

a3

b2 a1

x1 x2

a2 b1

b3

x3

a3

|101i

� |010i

|101i � |010i



Constructing three qubit projectors

Again we do this by 
adding mediators, and 
connecting them to the 
faces surrounding the 
void to fill in.



Constructing three qubit projectors

This gives a graph:

|0i |1i

|0i|1i

x2

x1

m1

m2

|0i |1i

x3

m3

m4 m5



Taking stock…

Just the Pythagorean

gate left!



The Pythagorean projectors are the most technical 
challenging gadgets to construct:


|ψ > = − 5 |011 > + 4 |100 > + 3 |101 >

A-cycle B-cycle C-cycle

x1

x2 x3

a2

b1

x1

x2 x3

a2

b1

[B] :

x1

x2 x3

a3 a2

b1

[C] :

b01

x2 x3

a3 a2

b1

b01

x1

b3 b3



The Pythagorean projectors are the most technical 
challenging gadgets to construct:


[A]

[A]

[A]

[A]
[B]

[B] [B]

[B]

[C]

[C]

[C]

[A]

We can then glue the A

faces along the shared face

with opposite orientation:



This is 

implemented 

by this graph!



Summing up…
x2

x1

m2 m3

m1

a1 b1

a2 b2

|0i |1i

|0i|1i

x2

x1

m1

m2

|0i |1i

x3

m3

m4 m5

|0i |1i |0i |1i

x1 x2

|0i |1i

x3



Putting everything together…

Clique / independence homology 
are QMA1-hard with the graph, G, 
given as input.

We also show that the problem remains 
QMA1-hard when restricted to clique-
dense complexes.

NP

QMA1-hard

QMA1



Future work

Can we pin down the complexity more?


A promise version of the problem is 
contained in QMA - but it’s not clear 
that our initial construction satisfies 
the promise.


We are working on a new construction 
that does satisfy the promise - should 
appear shortly!

NP

QMA1
QMA



Quantum advantage for TDA?

Future work


