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Hadronic vacuum polarization contribution to the muon g−2
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not yet in WP
← Status for ahvp

µ [2203.15810, Colangelo et al.]

Prediction in [2002.12347, BMWc] deviates
signi�cantly from data-driven results.

High-precision lattice calculations
needed. Major challenges:
I Cuto� e�ects at short distances t
I Exponential deterioration of
signal-to-noise ratio at large t (with
traditional Monte Carlo methods)

Short term: Focus on benchmark quantities to compare among collaborations.
Time windows in the Time Momentum Representation [1801.07224, Blum et al.]

Long term: Improve overall precision of ahvp
µ .
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https://inspirehep.net/literature/2060022
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Euclidean time windows in the TMR: Isovector channel

Time-momentum representation [1107.4388, Bernecker and Meyer]:

(ahvp
µ )i :=

(α
π

)2
∫ ∞

0
dtK̃(t)G(t)W i(t; t0; t1)
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Current-current correlator:
G(t) = −a3

3

∑3
k=1

∑
~x 〈jem

k (t, ~x) jem
k (0)〉

Time windows [1801.07224, Blum et al.]:
W SD(t; t0; t1) = [1−Θ(t, t0,∆)]

W ID(t; t0; t1) = [Θ(t, t0,∆)−Θ(t, t1,∆)] ,

WLD(t; t0; t1) = Θ(t, t0,∆)

where
Θ(t, t′,∆) := 1

2

(
1 + tanh[(t− t′)/∆]

)

t0 = 0.4 fm, t1 = 1.0 fm,∆ = 0.15 fm.
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https://inspirehep.net/literature/919588
https://inspirehep.net/literature/1649231


2 + 1 flavor CLS ensembles
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O(a) improved Wilson-clover fermions.

Six values of a ∈ [0.039, 0.099] fm,
a factor of 6.4 in a2.

Open boundary conditions in
temporal direction.

mπ ∈ [129, 422] MeV

aTr[Mq] = 2aml + ams = const.

Scale: Either use
√
tphys
0 = 0.1443(15) fm [2112.06696, Straßberger et al.] or express

dimensionfull quantities in terms of afπ [1103.4818, Xu et al.][1904.03120, Gérardin et al.]
→ new Nf = 2 + 1 result by RQCD:

√
tphys
0 = 0.1449

(7)
(9) fm may be used in the future.
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https://inspirehep.net/literature/1988945
https://inspirehep.net/literature/893768
https://inspirehep.net/literature/1728554
https://indico.hiskp.uni-bonn.de/event/40/contributions/799/


Scale dependencies

We can determine the scale dependence via

∂(ahvp
µ )i

∂Λ
=
(α
π

)2
∞∑

0

dt

[(
∂

∂Λ
K̃(t)

)
W i(t; t0; t1) + K̃(t)

(
∂

∂Λ
W i(t; t0; t1)

)]
G(t)

Using a parametrization of the R-ratio, the Mainz group estimated
∆ahvpµ

ahvpµ ∆Λ
≈ 1.8 [1705.01775, Della Morte et al.] → Alberto: what about the windows?
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Computation via analytic formula or via ∂(ahvp
µ )i/∂Λ from the Γ-method.

My estimates for ∆(ahvpµ )i

(ahvpµ )i∆Λ
at mphys

π (no rigorous analysis!):

δahvp
µ δ(ahvp

µ )SD δ(ahvp
µ )ID δ(ahvp

µ )LD
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ahvp
µ from discretized vector currents

Work in isospin decomposition of the electromagnetic current

jem
µ = 2

3 ūγµu− 1
3 d̄γµd− 1

3 s̄γµs+ 2
3 c̄γµc+ . . . = jI=1

µ + jI=0
µ + 2

3 c̄γµc+ . . . , ,

Isovector: jI=1
µ = 1

2(ūγµu− d̄γµd), Isoscalar: jI=0
µ = 1

6(ūγµu+ d̄γµd− 2s̄γµs)

Two discretizations of the vector current: local and conserved

J (L),a
µ (x) = ψ(x)γµ

λa

2
ψ(x) ,

J (C),a
µ (x) =

1

2

(
ψ(x+ aµ̂)(1 + γµ)U †µ(x)

λa

2
ψ(x)− ψ(x)(1− γµ)Uµ(x)

λa

2
ψ(x+ aµ̂)

)

Simon Kuberski 5 / 27



O(a) improved vector currents

Improved vector currents are given by

J (α),a,I
µ (x) = J (α),a

µ (x) + ac
(α)
V (g0) ∂̃νΣa

µν(x) , with α ∈ L,C

Renormalization and mass-dependent improvement of local currents via
J (L),3,R
µ (x) = ZV

[
1 + 3bVam

av
q + bVamq,l

]
J (L),3,I
µ (x) ,

J (L),8,R
µ (x) = ZV

[
1 + 3bVam

av
q +

bV
3
a(mq,l + 2mq,s)

]
J (L),8,I
µ (x)

+ ZV

(
1

3
bV + fV

)
2√
3
a(mq,l −mq,s) J

(L),0,I
µ (x) ,

Two independent non-perturbative determinations of ZV, c
L
V, c

C
V, bV, bV:

Set 1: Large-volume, CLS ensembles [1811.08209, Gérardin et al.]
Set 2: Small volume, Schrödinger functional [2010.09539, ALPHA],[1805.07401, Fritzsch]
di�er by higher order cuto� e�ects. fV is of O(g6

0) and unknown.
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https://inspirehep.net/literature/1704298
https://inspirehep.net/literature/1823720
https://inspirehep.net/literature/1674065


Finite-size effects

Finite-size corrections applied to the isovector correlator.

Correction for t < (mπL/4)2

mπ
: Hansen-Patella method [1904.10010][2004.03935]

I Expansion in the pion winding number.
I Using monopole parametrization of the electromagnetic pion form factor.

Large distances: MLL [1105.1892, Meyer] [hep-lat/0003023, Lellouch and Lüscher]:
I Compute di�erence between �nite and in�nite-volume isovector correlator
I Based on the time-like pion form factor.
I Applied at large Euclidean distances→ less relevant for short and intermediate
distance windows.

This is the only correction applied to the lattice data!
Of similar size as statistical uncertainty for awin

µ ≡ (ahvp
µ )ID.
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https://inspirehep.net/literature/1730813
https://inspirehep.net/literature/1790429
https://inspirehep.net/literature/899092
https://inspirehep.net/literature/525453


The intermediate-distance window

[2206.06582, Cè et al.]

https://inspirehep.net/literature/2095867


Continuum extrapolation at SU(3)f symmetric point
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local-local
local-conserved

Two sets of equally valid
improvement coe�cients.

No cuto� e�ects of O(a3)
resolved for Set 1.

Independent extrapolations
compatible in the continuum
→ strong cross-check of our
extrapolations.

No sign of modi�cation
a2 → (αs(1/a

2))Γ̂a2

[1912.08498, Husung et al.]
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https://inspirehep.net/literature/1771515


Chiral extrapolation of isovector contribution
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fπ rescaling, local-local
current and Set 1.

Curvature in ỹ = m2
π

8πf2π
is

needed to describe the data.

Singular �t ansatz favored,
also found in [2110.05493,
Colangelo et al.]

Variation in the chiral
extrapolation does not
change the result
signi�cantly.

awin
µ (ỹ) = γ1 (ỹ − ỹexp)+γ2 (f(ỹ)− f(ỹexp)) , f(ỹ) ∈ {0; log(ỹ); ỹ2; 1/ỹ; ỹ log(ỹ)}
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https://inspirehep.net/literature/1942019
https://inspirehep.net/literature/1942019


Model averages: Isovector contribution
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Isovector contribution Eight combinations of discretization
and improvement procedures.
Model averages in each category to
determine systematic uncertainty
from choice of �t model.
[2008.01069, Jay and Neil]

Final result by combining L and C
of Set 1.

Statistical

Continuum

Chiral
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https://inspirehep.net/literature/1809826


Isocalar and charm contribution

40

45

50

55

60

65

70

0.02 0.04 0.06 0.08 0.1 0.12

ỹ
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Isoscalar contribution: Non-singular �t ansatz, f(ỹ) ∈ {0; ỹ2; ỹ log(ỹ)}.
Charm contribution:
I Included in partially-quenched setup.
I E�ect of missing charm loops estimated to be < 0.02% for awin

µ .
I Mass-dependent renormalization scheme.
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Comparison with lattice results for awin,iso
µ

230 236 242

awin, iso
µ

RBC/UKQCD 18

Aubin et al. 19
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200 206 212

awin, ud
µ

26 27 28

awin, s
µ

2.5 3.0

awin, c
µ

-1.4 -1.0 -0.6

awin,disc
µ

awin,iso
µ = awin,I1

µ + awin,I0
µ + awin,c

µ = (236.60± 0.79stat ± 1.13syst ± 0.05Q)× 10−10

Tensions within lattice results seem to be resolved.
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Isospin breaking effects in awin
µ
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0.06426(76)
0.07634(97)
0.08636(106)

QEDL-action [0804.2044, Hayakawa
and Uno] for IR regularisation,
Coulomb gauge.

Reweighting based on
perturbative expansion
[1303.4896, de Divitiis et al.] in
∆ε = ε− ε(0) =
(∆mu,∆md,∆ms,∆β = 0, e2)

Work in progress: Andreas Risch’s contribution at the 2022 workshop of the TI.

IB in scale setting [2112.08262, Segner et al.] and QED-FV e�ects to be considered.

Uncertainty on relative correction 0.3(1)% doubled in �nal result for awin
µ .
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https://inspirehep.net/literature/783312
https://inspirehep.net/literature/783312
https://inspirehep.net/literature/1224545
https://indico.ph.ed.ac.uk/event/112/contributions/1663/attachments/999/1389/IB_discussion_Andreas_Risch.pdf
https://inspirehep.net/literature/1990787


Comparison with results for awin
µ

Isospin-breaking correction +(0.70± 0.47)× 10−10 included:
awin
µ = (237.30± 0.79stat ± 1.13syst ± 0.05Q ± 0.47IB)× 10−10

230 235 240

awin
µ × 10−10

Colangelo et al. 22 (R-ratio)

RBC/UKQCD 18

BMW 20

ETMC 21

Mainz/CLS 22

ETMC 22

3.9σ tension with data-driven estimate in [2205.12963, Colangelo et al.].
Genuine di�erence between lattice and data-driven results?
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https://inspirehep.net/literature/2087900


The short-distance window



The short-distance window

Short-distance cuto� e�ects are dominant source of uncertainty in (ahvp
µ )SD.

Log-enhanced cuto� e�ects are present at very short distances of the TMR
integral [0807.1120, Della Morte et al.][2106.15293, Cè et al.] [Rainer Sommer’s talk at
Lattice22]→ also present in ahvp

µ !

Tree-level improvement may help to reduce cuto� e�ects, as used for (ahvp
µ )SD

in [2206.15084, Alexandrou et al.].
Use of perturbation theory at O(α4

s ) at very short distances (already suggested
in [1107.4388, Bernecker and Meyer]) removes logarithmic contribution.
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https://inspirehep.net/literature/790136
https://inspirehep.net/literature/1871641
https://indico.hiskp.uni-bonn.de/event/40/contributions/656/
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The regulated short-distance window
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Regulate the short distance part [Rainer Sommer’s talk at Lattice22]:
∫ ∞

0
dtF (t) =

∫ ∞

0
dt[1− χ(t)]F (t) + lim

a→0
a

∞∑

0

χ(t)F (t) .

Combine perturbation theory at short distances with the
continuum lattice result.

Choose su�ciently smooth and short ranged regulator, e.g.,

χ(t) = θ(t− u0)

(
1− cos

[
(t− u0)π

(2δ)

]2

θ(u0 + δ − t)
)

with the Heaviside step function θ(t) and u0 = δ = 0.075 fm.
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https://indico.hiskp.uni-bonn.de/event/40/contributions/656/


The regulated short-distance window

Test regulators, improvement schemes and discretization prescriptions.
Continuum extrapolation of regulated short-distance window (aHVP,I1

µ )SD,p

at the SU(3)f -symmetric point.
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no tree-level improvement

with tree-level improvement

No log-enhanced cuto� e�ects
expected.

Tree-level improvement:
I Based on massless, free theory.
I Reduces cuto� e�ects at

a = 0.1 fm from 18% to 6%.

Di�erent data sets o�er insight
in systematic uncertainties.
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Noise reduction in the long-distance tail



ahvp
µ : Publication in 2019 [1904.03120, Gérardin et al.]
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2.2% uncertainty: Dominated by statistical
uncertainties of light quark contribution.

Variance reduction is needed to reach
sub-percent precision (2.2% statistical
uncertainty on physical mass ensemble).
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https://inspirehep.net/literature/1728554


Variance reduction: Low Mode Averaging

Employ Low Mode Averaging (LMA) [hep-lat/0106016, Ne� et al.][hep-lat/0402002,
Giusti et al.][hep-lat/0401011, DeGrand et al.][...] to reduce the variance of the
isovector contribution.

Split up the quark propagator (Q = γ5DW)

Q−1 = Q−1(PL + PH) =

NL∑

i=1

1

λi
viv
†
i +Q−1PH

in low and high mode contributions using the projectors

PL =

NL∑

i=1

viv
†
i , PH = 1−PL

with the eigenmodes vi and the (real) eigenvalues λi of Q.

Even-odd preconditioning reduces memory by factor 2 [1004.2661, Blossier et al.].
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https://inspirehep.net/literature/559003
https://inspirehep.net/literature/643837
https://inspirehep.net/literature/643837
https://inspirehep.net/literature/642207
https://inspirehep.net/literature/852021


Low mode averaging: Connected two-point function

The connected two-point function contains two quark propagators
CAB(x0, y0) =

∑

x,y

〈
Tr
[
γ5ΓAQ

−1(x, y)γ5ΓBQ
−1(y, x)

]〉

with γ5 insertions because we use Q.
We get four di�erent terms (t ≡ x0 − y0),

C(t) = C ll(t) + Chl(t) + C lh(t) + Chh(t) ,

each can be de�ned and computed separately:
I Evaluate Cll(t) with full volume average.
I Evaluate Chl(t) + Clh(t) by inversion on eigenmodes (alternative: stochastic).
I Evaluate Chh stochastically.

Use Truncated Solver Method [0910.3970, Bali et al.] to reduce cost of inversions.
Exact de�ation does not reduce the cost with Lüscher’s de�ated solver.
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https://inspirehep.net/literature/834740


Variance reduction: Low Mode Averaging
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Light-connected contribution to
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µ for mπ ≈ 129 MeV in a

12.4 fm× (6.2 fm)3 box at
a = 0.064 fm.

800 eigenmodes of the
even-odd preconditioned
Dirac-Wilson operator γ5D̂.

All-to-all evaluation of low eigenmodes dominates correlator and its variance
for t > 1.5 fm.

preliminary
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Variance reduction: Low Mode Averaging

0 1 2 3 4
t[fm]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

5 9
G

b
ar

e
l

(t
)K̃

(t
)/
m
µ

LMA

stoch
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Ongoing calculation: Sub-percent precision reached.

LMA also applied on less challenging ensembles.

preliminary
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Variance reduction: Spectroscopy

0
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Dedicated spectroscopy analysis of
�nite-volume energies and amplitudes
to reconstruct the tail of the isovector
correlation function [1808.05007,
Andersen et al.][1904.03120, Gérardin et al.].

Analysis at close-to-physical masses
ongoing [2112.07385, Paul et al.],
up to 9 energy levels resolved.

Spectral decomposition of the vector correlator:

Gl(t) =
∑

n

|An|2e−Ent , En = 2
√
m2
π + k2

Computation of the pion transition form factor to correct for �nite-size e�ects
with less model dependence ongoing.
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https://inspirehep.net/literature/1687570
https://inspirehep.net/literature/1687570
https://inspirehep.net/literature/1728554
https://inspirehep.net/literature/1989897


Variance reduction: Spectroscopy

Reconstruction of the light-connected TMR correlator at long distances at
close-to-physical pion mass, presented in Srijit Paul’s talk at Lattice22.
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Variance reduction: Spectroscopy
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Variance reduction: comparison
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Comparison of statistical uncertainties of the TMR correlator based on
stochastic evaluation, reconstruction and LMA.
Signi�cantly less noise in LMA correlator.
Exponential noise reduction in reconstructed correlator.

preliminary
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Conclusions

Intermediate window

We observe tension with data-driven estimates for awin
µ .

Systematic e�ects from continuum extrapolation seem to be under control:
I Non-perturbative O(a) improvement
I 6 resolutions < 0.1 fm with a2max/a

2
min > 6.

I Two discretizations of the vector current, two sets of improvement procedures.
I So-far no sign of logarithmic corrections to a2 scaling.

Uncertainties from chiral extrapolation and �nite-volume correction are
subleading.
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Outlook

Similar tension found for ∆αhad(Q2) at low Q2 [2203.08676, Cè et al.].

Investigation of other windows might help to clarify the situation.

Short-distance window:
I Cuto� e�ects from short-distance singularities need proper treatment
[0807.1120, Della Morte et al.][2106.15293, Cè et al.] [Rainer Sommer’s talk].

I Systematic uncertainties will dominate and need to be properly estimated.

Sub-percent precision on ahvp
µ needs reduction of our statistical uncertainties.

Spectroscopy and variance reduction techniques will help to improve our
calculation signi�cantly close to physical pion mass.
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