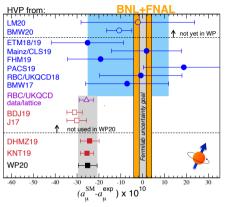
The hadronic vacuum polarization contribution to the muon g-2 from $\mathrm{O}(a)$ improved Wilson quarks

SIMON KUBERSKI WITH M.Cè, A.GÉRARDIN, G.VONHIPPEL, R.J.HUDSPITH, H.B.MEYER, K.MIURA, D.MOHLER, K.OTTNAD, S.PAUL, A.RISCH, T.SANJOSÉ, H.WITTIG

FIRST LATTICENET WORKSHOP ON CHALLENGES IN LATTICE FIELD THEORY SEPTEMBER 16, 2022

HADRONIC VACUUM POLARIZATION CONTRIBUTION TO THE MUON q-2



- \leftarrow Status for $a_{\mu}^{ ext{hvp}}$ [2203.15810, Colangelo et al.]
- Prediction in [2002.12347, BMWc] deviates significantly from data-driven results.
- High-precision lattice calculations needed. Major challenges:
 - Cutoff effects at short distances t
 - ► Exponential deterioration of signal-to-noise ratio at large t (with traditional Monte Carlo methods)
- Short term: Focus on benchmark quantities to compare among collaborations. Time windows in the Time Momentum Representation [1801.07224, Blum et al.]

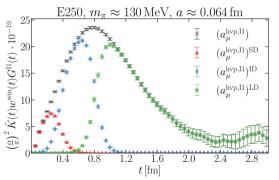
■ Long term: Improve overall precision of a_{μ}^{hvp} .

Simon Kuberski

EUCLIDEAN TIME WINDOWS IN THE TMR: ISOVECTOR CHANNEL

Time-momentum representation [1107.4388, Bernecker and Meyer]:

$$(a_{\mu}^{\text{hvp}})^i := \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dt \widetilde{K}(t) G(t) W^i(t; t_0; t_1)$$



■ Current-current correlator:

$$G(t) = -\frac{a^3}{3} \sum_{k=1}^{3} \sum_{\vec{x}} \langle j_k^{\text{em}}(t, \vec{x}) j_k^{\text{em}}(0) \rangle$$

■ Time windows [1801.07224, Blum et al.]:

$$W^{\text{SD}}(t; t_0; t_1) = [1 - \Theta(t, t_0, \Delta)]$$

$$W^{\text{ID}}(t; t_0; t_1) = [\Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta)]$$

$$W^{\text{LD}}(t; t_0; t_1) = \Theta(t, t_0, \Delta)$$

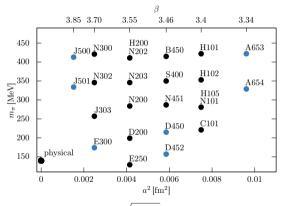
where

Where
$$\Theta(t, t', \Delta) := \frac{1}{2} \left(1 + \tanh[(t - t')/\Delta] \right)$$

 $t_0 = 0.4 \,\text{fm}, t_1 = 1.0 \,\text{fm}, \Delta = 0.15 \,\text{fm}.$

Simon Kuberski 2 / 27

2+1 flavor CLS ensembles



- lacktriangle O(a) improved Wilson-clover fermions.
- Six values of $a \in [0.039, 0.099]$ fm, a factor of 6.4 in a^2 .
- Open boundary conditions in temporal direction.
- $m_{\pi} \in [129, 422] \,\mathrm{MeV}$
- $a \operatorname{Tr}[M_{\mathbf{q}}] = 2am_{\mathbf{l}} + am_{\mathbf{s}} = \text{const.}$

Scale: Either use $\sqrt{t_0^{\rm phys}}=0.1443(15)\,{\rm fm}$ [2112.06696, Straßberger et al.] or express dimensionfull quantities in terms of $\underline{af_\pi}$ [1103.4818, Xu et al.][1904.03120, Gérardin et al.]

ightarrow new $N_{
m f}=2+1$ result by RQCD: $\sqrt{t_0^{
m phys}}=0.1449^{(7)}_{(9)}\,{
m fm}$ may be used in the future.

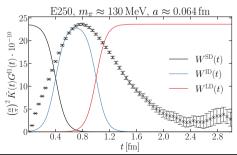
Simon Kuberski 3 /

SCALE DEPENDENCIES

■ We can determine the scale dependence via

$$\frac{\partial (a_{\mu}^{\text{hvp}})^{i}}{\partial_{\Lambda}} = \left(\frac{\alpha}{\pi}\right)^{2} \sum_{0}^{\infty} dt \left[\left(\frac{\partial}{\partial_{\Lambda}} \widetilde{K}(t)\right) W^{i}(t; t_{0}; t_{1}) + \widetilde{K}(t) \left(\frac{\partial}{\partial_{\Lambda}} W^{i}(t; t_{0}; t_{1})\right) \right] G(t)$$

■ Using a parametrization of the R-ratio, the Mainz group estimated $\frac{\Delta a_{\mu}^{\mathrm{hvp}}}{a_{\mu}^{\mathrm{hvp}}\Delta\Lambda} \approx 1.8$ [1705.01775, Della Morte et al.] \rightarrow Alberto: what about the windows?



Simon Kuberski 4/:

SCALE DEPENDENCIES

■ We can determine the scale dependence via

$$\frac{\partial (a_{\mu}^{\text{hvp}})^{i}}{\partial_{\Lambda}} = \left(\frac{\alpha}{\pi}\right)^{2} \sum_{0}^{\infty} dt \left[\left(\frac{\partial}{\partial_{\Lambda}} \widetilde{K}(t)\right) W^{i}(t; t_{0}; t_{1}) + \widetilde{K}(t) \left(\frac{\partial}{\partial_{\Lambda}} W^{i}(t; t_{0}; t_{1})\right) \right] G(t)$$

- Using a parametrization of the R-ratio, the Mainz group estimated $\frac{\Delta a_{\mu}^{\mathrm{hvp}}}{a_{\mu}^{\mathrm{hvp}}\Delta\Lambda} \approx 1.8$ [1705.01775, Della Morte et al.] \rightarrow Alberto: what about the windows?
- Computation via analytic formula or via $\partial (a_{\mu}^{\mathrm{hvp}})^i/\partial_{\Lambda}$ from the Γ -method.
- My estimates for $\frac{\Delta(a_{\mu}^{\text{hvp}})^i}{(a_{\mu}^{\text{hvp}})^i\Delta\Lambda}$ at m_{π}^{phys} (no rigorous analysis!):

Simon Kuberski 4/2

$a_u^{ m hvp}$ from discretized vector currents

■ Work in isospin decomposition of the electromagnetic current

$$j_{\mu}^{\rm em} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c + \dots = j_{\mu}^{I=1} + j_{\mu}^{I=0} + \frac{2}{3}\bar{c}\gamma_{\mu}c + \dots,$$

$$\text{Isovector: } j_{\mu}^{I=1}=\tfrac{1}{2}(\bar{u}\gamma_{\mu}u-\bar{d}\gamma_{\mu}d), \quad \text{Isoscalar: } j_{\mu}^{I=0}=\tfrac{1}{6}(\bar{u}\gamma_{\mu}u+\bar{d}\gamma_{\mu}d-2\bar{s}\gamma_{\mu}s)$$

■ Two discretizations of the vector current: local and conserved

$$J_{\mu}^{(\mathrm{L}),a}(x) = \overline{\psi}(x)\gamma_{\mu}\frac{\lambda^{a}}{2}\psi(x),$$

$$J_{\mu}^{(\mathrm{C}),a}(x) = \frac{1}{2}\left(\overline{\psi}(x+a\hat{\mu})(1+\gamma_{\mu})U_{\mu}^{\dagger}(x)\frac{\lambda^{a}}{2}\psi(x) - \overline{\psi}(x)(1-\gamma_{\mu})U_{\mu}(x)\frac{\lambda^{a}}{2}\psi(x+a\hat{\mu})\right)$$

Simon Kuberski 5 / 3

$\mathrm{O}(a)$ IMPROVED VECTOR CURRENTS

Improved vector currents are given by

$$J_{\mu}^{(\alpha),a,\mathrm{I}}(x) = J_{\mu}^{(\alpha),a}(x) + ac_{\mathrm{V}}^{(\alpha)}(g_0) \,\tilde{\partial}_{\nu} \Sigma_{\mu\nu}^{a}(x) \,, \qquad \text{with} \quad \alpha \in \mathrm{L}, \mathrm{C}$$

■ Renormalization and mass-dependent improvement of local currents via

$$\begin{split} J_{\mu}^{(\mathrm{L}),3,\mathrm{R}}(x) &= Z_{\mathrm{V}} \left[1 + 3 \overline{b}_{\mathrm{V}} a m_{\mathrm{q}}^{\mathrm{av}} + b_{\mathrm{V}} a m_{\mathrm{q},l} \right] J_{\mu}^{(\mathrm{L}),3,\mathrm{I}}(x) \,, \\ J_{\mu}^{(\mathrm{L}),8,\mathrm{R}}(x) &= Z_{\mathrm{V}} \left[1 + 3 \overline{b}_{\mathrm{V}} a m_{\mathrm{q}}^{\mathrm{av}} + \frac{b_{\mathrm{V}}}{3} a (m_{\mathrm{q},l} + 2 m_{\mathrm{q},s}) \right] J_{\mu}^{(\mathrm{L}),8,\mathrm{I}}(x) \\ &+ Z_{\mathrm{V}} \left(\frac{1}{3} b_{\mathrm{V}} + f_{\mathrm{V}} \right) \frac{2}{\sqrt{3}} a (m_{\mathrm{q},l} - m_{\mathrm{q},s}) J_{\mu}^{(\mathrm{L}),0,\mathrm{I}}(x) \,, \end{split}$$

lacksquare Two independent non-perturbative determinations of $Z_{
m V}, c_{
m V}^L, c_{
m V}^C, b_{
m V}, \overline{b}_{
m V}$:

Set 1: Large-volume, CLS ensembles [1811.08209, Gérardin et al.]

Set 2: Small volume, Schrödinger functional [2010.09539, ALPHA],[1805.07401, Fritzsch] differ by higher order cutoff effects. $f_{\rm V}$ is of ${\rm O}(g_0^6)$ and unknown.

Simon Kuberski 6 / 27

FINITE-SIZE EFFECTS

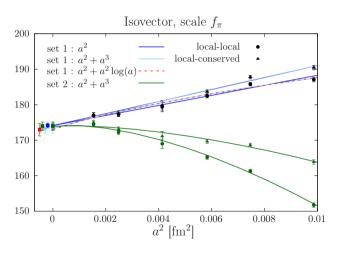
- Finite-size corrections applied to the isovector correlator.
- Correction for $t < \frac{(m_\pi L/4)^2}{m_\pi}$: Hansen-Patella method [1904.10010][2004.03935]
 - Expansion in the pion winding number.
 - Using monopole parametrization of the electromagnetic pion form factor.
- Large distances: MLL [1105.1892, Meyer] [hep-lat/0003023, Lellouch and Lüscher]:
 - Compute difference between finite and infinite-volume isovector correlator
 - ▶ Based on the time-like pion form factor.
 - ightharpoonup Applied at large Euclidean distances ightharpoonup less relevant for short and intermediate distance windows.
- This is the only correction applied to the lattice data! Of similar size as statistical uncertainty for $a_{\mu}^{\text{win}} \equiv (a_{\mu}^{\text{hvp}})^{\text{ID}}$.

Simon Kuberski 7 /

THE INTERMEDIATE-DISTANCE WINDOW

[2206.06582, Cè et al.]

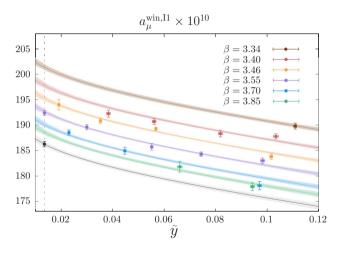
Continuum extrapolation at $SU(3)_{ m f}$ symmetric point



- Two sets of equally valid improvement coefficients.
- No cutoff effects of $O(a^3)$ resolved for Set 1.
- Independent extrapolations compatible in the continuum → strong cross-check of our extrapolations.
- No sign of modification $a^2 \to (\alpha_{\rm s}(1/a^2))^{\hat{\Gamma}}a^2$ [1912.08498, Husung et al.]

Simon Kuberski 8 /

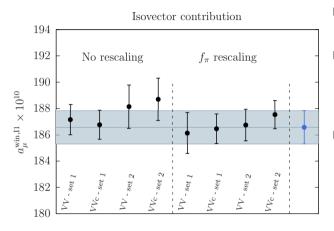
CHIRAL EXTRAPOLATION OF ISOVECTOR CONTRIBUTION



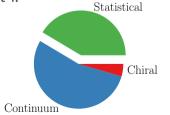
- \blacksquare f_{π} rescaling, local-local current and Set 1.
- \blacksquare Curvature in $\tilde{y} = \frac{m_{\pi}^2}{8\pi f_{\pi}^2}$ is needed to describe the data.
- Singular fit ansatz favored. also found in [2110.05493. Colangelo et al.]
- Variation in the chiral extrapolation does not change the result significantly.

$$a_{\mu}^{\text{win}}(\tilde{y}) = \gamma_1 \left(\tilde{y} - \tilde{y}^{\text{exp}} \right) + \gamma_2 \left(f(\tilde{y}) - f(\tilde{y}^{\text{exp}}) \right), \qquad f(\tilde{y}) \in \{0; \log(\tilde{y}); \tilde{y}^2; 1/\tilde{y}; \tilde{y} \log(\tilde{y}) \}$$

MODEL AVERAGES: ISOVECTOR CONTRIBUTION

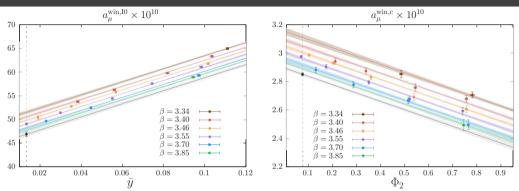


- Eight combinations of discretization and improvement procedures.
 - Model averages in each category to determine systematic uncertainty from choice of fit model. [2008.01069, Jay and Neil]
- Final result by combining L and C of Set 1.



Simon Kuberski 10 / 2

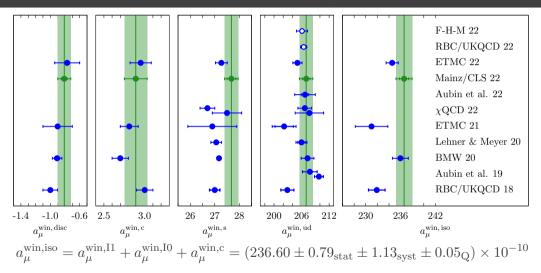
ISOCALAR AND CHARM CONTRIBUTION



- Isoscalar contribution: Non-singular fit ansatz, $f(\tilde{y}) \in \{0; \ \tilde{y}^2; \ \tilde{y} \log(\tilde{y})\}$.
- Charm contribution:
 - Included in partially-quenched setup.
 - ▶ Effect of missing charm loops estimated to be < 0.02% for $a_{\mu}^{\rm win}$.
 - ► Mass-dependent renormalization scheme.

Simon Kuberski 11 /

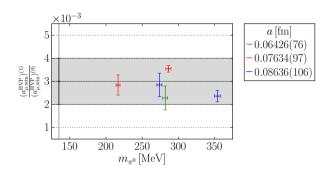
Comparison with lattice results for $a_u^{ m win,iso}$



■ Tensions within lattice results seem to be resolved.

Simon Kuberski 12

ISOSPIN BREAKING EFFECTS IN $a_u^{ m win}$



- QED_L-action [0804.2044, Hayakawa and Uno] for IR regularisation, Coulomb gauge.
- Reweighting based on perturbative expansion [1303.4896, de Divitiis et al.] in $\Delta \varepsilon = \varepsilon \varepsilon^{(0)} = (\Delta m_{\rm u}, \Delta m_{\rm d}, \Delta m_{\rm s}, \Delta \beta = 0, e^2)$
- Work in progress: Andreas Risch's contribution at the 2022 workshop of the TI.
- IB in scale setting [2112.08262, Segner et al.] and QED-FV effects to be considered.

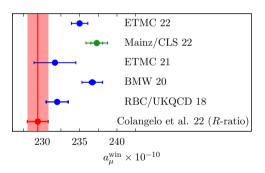
■ Uncertainty on relative correction 0.3(1)% doubled in final result for $a_{\mu}^{\rm win}$.

Simon Kuberski 13 /

Comparison with results for $a_{\mu}^{ m win}$

■ Isospin-breaking correction $+(0.70 \pm 0.47) \times 10^{-10}$ included:

$$a_{\mu}^{\text{win}} = (237.30 \pm 0.79_{\text{stat}} \pm 1.13_{\text{syst}} \pm 0.05_{\text{Q}} \pm 0.47_{\text{IB}}) \times 10^{-10}$$



- \blacksquare 3.9 σ tension with data-driven estimate in [2205.12963, Colangelo et al.].
- Genuine difference between lattice and data-driven results?

Simon Kuberski 14/

THE SHORT-DISTANCE WINDOW

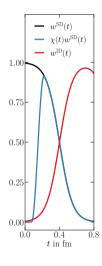
THE SHORT-DISTANCE WINDOW

- Short-distance cutoff effects are dominant source of uncertainty in $(a_{\mu}^{\text{hvp}})^{\text{SD}}$.
- Log-enhanced cutoff effects are present at very short distances of the TMR integral [0807.1120, Della Morte et al.][2106.15293, Cè et al.] [Rainer Sommer's talk at Lattice22] \rightarrow also present in $a_{\mu}^{\rm hvp}$!

- Tree-level improvement may help to reduce cutoff effects, as used for $(a_{\mu}^{\text{hvp}})^{\text{SD}}$ in [2206.15084, Alexandrou et al.].
- Use of perturbation theory at $O(\alpha_s^4)$ at very short distances (already suggested in [1107.4388, Bernecker and Meyer]) removes logarithmic contribution.

Simon Kuberski 15 / 3

THE REGULATED SHORT-DISTANCE WINDOW



■ Regulate the short distance part [Rainer Sommer's talk at Lattice22]:

$$\int_0^\infty dt F(t) = \int_0^\infty dt [1 - \chi(t)] F(t) + \lim_{a \to 0} a \sum_{t=0}^\infty \chi(t) F(t).$$

Combine perturbation theory at short distances with the continuum lattice result.

Choose sufficiently smooth and short ranged regulator, e.g.,

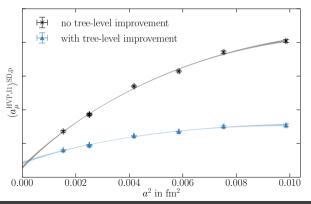
$$\chi(t) = \theta(t - u_0) \left(1 - \cos \left[\frac{(t - u_0)\pi}{(2\delta)} \right]^2 \theta(u_0 + \delta - t) \right)$$

with the Heaviside step function $\theta(t)$ and $u_0 = \delta = 0.075 \, \mathrm{fm}$.

Simon Kuberski 16 / 27

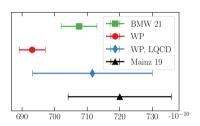
THE REGULATED SHORT-DISTANCE WINDOW

- Test regulators, improvement schemes and discretization prescriptions.
- Continuum extrapolation of regulated short-distance window $(a_{\mu}^{\rm HVP,I1})^{\rm SD,p}$ at the ${\rm SU}(3)_{\rm f}$ -symmetric point.



- No log-enhanced cutoff effects expected.
- Tree-level improvement:
 - Based on massless, free theory.
 - Reduces cutoff effects at $a = 0.1 \,\mathrm{fm}$ from 18% to 6%.
- Different data sets offer insight in systematic uncertainties.

Simon Kuberski 17 /



- 2.2% uncertainty: Dominated by statistical uncertainties of light quark contribution.
- Variance reduction is needed to reach sub-percent precision (2.2% statistical uncertainty on physical mass ensemble).



Simon Kuberski 18 / 27

VARIANCE REDUCTION: LOW MODE AVERAGING

- Employ Low Mode Averaging (LMA) [hep-lat/0106016, Neff et al.][hep-lat/0402002, Giusti et al.][hep-lat/0401011, DeGrand et al.][...] to reduce the variance of the isovector contribution.
- lacksquare Split up the quark propagator ($Q=\gamma_5 D_{
 m W}$)

$$Q^{-1} = Q^{-1}(\mathbf{P}_{L} + \mathbf{P}_{H}) = \sum_{i=1}^{N_{L}} \frac{1}{\lambda_{i}} v_{i} v_{i}^{\dagger} + Q^{-1} \mathbf{P}_{H}$$

in low and high mode contributions using the projectors

$$\mathbf{P}_{\mathrm{L}} = \sum_{i=1}^{N_{\mathrm{L}}} v_i v_i^{\dagger} \,, \qquad \mathbf{P}_{\mathrm{H}} = \mathbf{1} - \mathbf{P}_{\mathrm{L}}$$

with the eigenmodes v_i and the (real) eigenvalues λ_i of Q.

■ Even-odd preconditioning reduces memory by factor 2 [1004.2661, Blossier et al.].

Simon Kuberski 19 /

LOW MODE AVERAGING: CONNECTED TWO-POINT FUNCTION

■ The connected two-point function contains two quark propagators

$$C_{AB}(x_0, y_0) = \sum_{\mathbf{x}, \mathbf{y}} \left\langle \text{Tr} \left[\gamma_5 \Gamma_A Q^{-1}(x, y) \gamma_5 \Gamma_B Q^{-1}(y, x) \right] \right\rangle$$

with γ_5 insertions because we use Q.

lacksquare We get four different terms ($t\equiv x_0-y_0$),

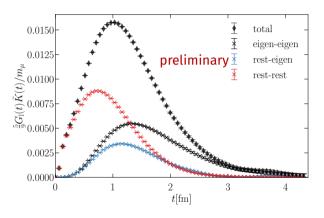
$$C(t) = C^{ll}(t) + C^{hl}(t) + C^{lh}(t) + C^{hh}(t),$$

each can be defined and computed separately:

- ► Evaluate $C^{ll}(t)$ with full volume average.
- ightharpoonup Evaluate $C^{hl}(t)+C^{lh}(t)$ by inversion on eigenmodes (alternative: stochastic).
- ightharpoonup Evaluate C^{hh} stochastically.
- Use Truncated Solver Method [0910.3970, Bali et al.] to reduce cost of inversions.
- Exact deflation does not reduce the cost with Lüscher's deflated solver.

Simon Kuberski 20 /

VARIANCE REDUCTION: LOW MODE AVERAGING

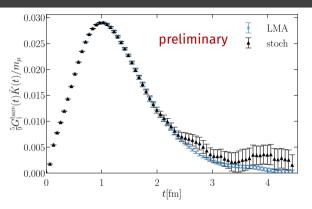


- Light-connected contribution to a_{μ}^{hvp} for $m_{\pi} \approx 129 \, \mathrm{MeV}$ in a $12.4 \, \mathrm{fm} \times (6.2 \, \mathrm{fm})^3$ box at $a = 0.064 \, \mathrm{fm}$.
- 800 eigenmodes of the even-odd preconditioned Dirac-Wilson operator $\gamma_5\hat{D}$.

■ All-to-all evaluation of low eigenmodes dominates correlator and its variance for t > 1.5 fm.

Simon Kuberski 21 / 2

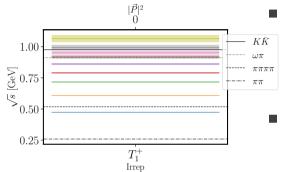
VARIANCE REDUCTION: LOW MODE AVERAGING



- Comparison of stochastic evaluation and LMA at similar statistics.
- Ongoing calculation: Sub-percent precision reached.
- LMA also applied on less challenging ensembles.

Simon Kuberski 22 / 3

VARIANCE REDUCTION: SPECTROSCOPY



Dedicated spectroscopy analysis of finite-volume energies and amplitudes to reconstruct the tail of the isovector correlation function [1808.05007, Andersen et al.][1904.03120, Gérardin et al.].

Analysis at close-to-physical masses ongoing [2112.07385, Paul et al.], up to 9 energy levels resolved.

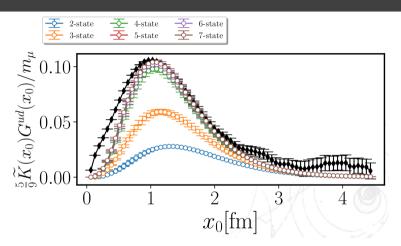
Spectral decomposition of the vector correlator:

$$G_l(t) = \sum_n |A_n|^2 e^{-E_n t}, \qquad E_n = 2\sqrt{m_\pi^2 + k^2}$$

■ Computation of the pion transition form factor to correct for finite-size effects with less model dependence ongoing.

Simon Kuberski 23 / :

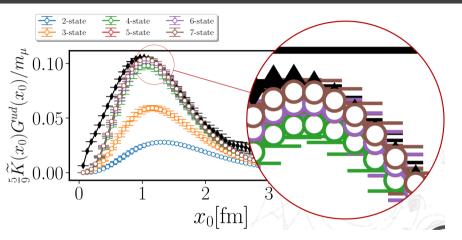
VARIANCE REDUCTION: SPECTROSCOPY



■ Reconstruction of the light-connected TMR correlator at long distances at close-to-physical pion mass, presented in Srijit Paul's talk at Lattice22.

Simon Kuberski 24 / 27

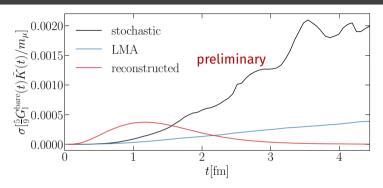
VARIANCE REDUCTION: SPECTROSCOPY



■ Reconstruction of the light-connected TMR correlator at long distances at close-to-physical pion mass, presented in Srijit Paul's talk at Lattice22.

Simon Kuberski 24 / 27

VARIANCE REDUCTION: COMPARISON



- Comparison of statistical uncertainties of the TMR correlator based on stochastic evaluation, reconstruction and LMA.
- Significantly less noise in LMA correlator.
- Exponential noise reduction in reconstructed correlator.

Simon Kuberski 25 / 27

CONCLUSIONS

Intermediate window

- lacktriangle We observe tension with data-driven estimates for a_{μ}^{win} .
- Systematic effects from continuum extrapolation seem to be under control:
 - ightharpoonup Non-perturbative O(a) improvement
 - 6 resolutions $< 0.1 \,\mathrm{fm}$ with $a_{\mathrm{max}}^2/a_{\mathrm{min}}^2 > 6$.
 - ► Two discretizations of the vector current, two sets of improvement procedures.
 - ightharpoonup So-far no sign of logarithmic corrections to a^2 scaling.
- Uncertainties from chiral extrapolation and finite-volume correction are subleading.

Simon Kuberski 26 / 27

OUTLOOK

- Similar tension found for $\Delta\alpha_{\rm had}(Q^2)$ at low Q^2 [2203.08676, Cè et al.].
- Investigation of other windows might help to clarify the situation.
- Short-distance window:
 - ► Cutoff effects from short-distance singularities need proper treatment [0807.1120, Della Morte et al.][2106.15293, Cè et al.] [Rainer Sommer's talk].
 - Systematic uncertainties will dominate and need to be properly estimated.
- lacksquare Sub-percent precision on $a_{\mu}^{
 m hvp}$ needs reduction of our statistical uncertainties.
- Spectroscopy and variance reduction techniques will help to improve our calculation significantly close to physical pion mass.

Simon Kuberski 27 / 27