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Axions were originally proposed to deal
with the strong CP problem
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Symmetries @ the classical level

U(Nf)L X U(Nf)RNSU(Nf)L X SU(Nf)R X U(l)L X U(l)R

Non trivial vacuum (quark condensate (i)1)) # 0 ) breaks
spontaneously non singlet chiral symmetries

SU(Nf)L X SU(Nf)R — SU(Nf)V

U(1)y  isthe conserved barion number



Diagonalized mass Ny
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Explicitely broken symmetries:
if the masses are different from zero SU(N¢)a Is broken
SU(Ny¢)vy is broken if the masses are not equal

ANOMALY: we have to introduce a regularization
Two examples:

a) GW fermions: the action is invariant under a global
chiral transformation but the fermion measure is not
invariant (Fujikawa)
b) Wilson fermions: the action is not invariant but the
measure is invariant



a) GW fermions: if we rotate the quark fields by a phase
Wi — €Yl by — b e
Then, because of the variation of the measure, the action is
modifiedas  Locp + Lim,r —
Ny

N v
Locp + ,C{miezm,,;} + | 0+ Z 20y 32];? GA GM
1=1

Indeed the functional integral depends on the invariant
combination |

det[m ¢]e "
and if we apply a rotation to make the masses real (and
positive)

0 — 0 — arg|det|/m|]
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b) Wilson Fermions: if we rotate the quark fields by a phase
i — e b — et
then the variation of the action is given by (Bochicchio & al.)

08 = ic(x) [0, (x) = 2Mipyse)(x) + X5(x)]

where the last term is the chiral rotation of the Wilson
term:

X5(£E) — 25 X5(37) — QMIZ’)%@D — (ZJ — 1)8/“]2(56) ZGG ]S\;J;f GA G'UJV( )

where the matrix elements of the operator on the |.h.s. are
of O(a) (or aZ with improved actions and operators)

Nyg?
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The 0 term and the strong CP problem

- Because of the anomaly QCD depends, in general, on a
parameter 0
- A priori 0 can have any value; physics invariant for 0 -=> 0 +

2T
- This parameter gives rise to CP (P) violation

- Neutron EDM <2.910%%¢ . cm implies 6 < 10~ -10710

Several possibilities among which:
-The mass of one quark 1s equal to zero
-Peccel-Quinn symmetry and the axion (Weinberg-

Wilczek); see also M. A. Shifman, A. 1. Vainshtein and V. 1.
Zakharov; A. R. Zhitnitsky, M. Dine, W. Fischler and M. Srednicki, ....

ot
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Figure 2:  Mean mass of the two lightest quarks, myg = $(my + mq). The bottom panel Figure 4: Lattice results and FLAG averages at N 7 =241 and 24141 for the up-down-quark

shows results based on sum rules [205, 208, 210] (for more details see Fig. 1).

masses ratio my /mgq, together with the current PDG estimate.

Nf my, mq mu/md R Q
241+1 2.14(8) 4.70(5) 0.465(24) 35.9(1.7) 22.5(0.5)
241 \M?(V 4.67(9) 0.485(19) 38.1(1.5) 23.3(0.5)

Table 11: Our estimates for the masses of the two lightest quarks and related, strong isospin-
breaking ratios. Again, the masses refer to the MS scheme at running scale = 2 GeV. Mass
values are given in MeV.



The common lore

1) Implement a continuum U(I)PQ global chiral
symmetry by adding extra particles (scalars, fermions);

2) The symmetry 1s spontaneously broken and this
gives rise to a Goldstone boson, the axion;

3) Since the quark masses are different from zero
the pseudo-Goldstone boson has a non zero mass
which depends on the quark masses.



At low energy, neglecting heavy degrees of freedom,
the effective action 1s given by

L — LSM -+ la'u¢a,u,¢ + Lint [&7 % au¢] -

(9' ¢) g ~G, G (2)
| f¢ 327‘(‘

where f¢ depends on the particular model.

This action, if not for the anomaly, 1s invariant under
the non linear U(I)PQ transformation ¢ -> ¢+a f¢.

Let us define an effective axion action

G—Seﬁ(au¢a¢) — /D [Qp’ 1;) Gﬁ o :| G_S(warﬁz,Gﬁ

0,9,9)



Minimizing the Axion Potential

The minimum of the effective potential

Ve 1 g°
0p [y 3272

corresponds to ¢/ f, = -% and solve the strong CP
problem; from the second derivative of the effective
potential we may compute the axion mass

2 = i L (Q(x
mh= =g [ dQWRO)

(G, G () = 0




/ZERO TEMPERARTURE AND CHIRAL
EXPANSION

2 flavours: the relevant (naive) Ward identity

Xt = 7 (0|mytu + madd|0)—
1

. /d4x (0|T [(mua%u + deZ’y5d) ] (muﬂ%u + mdéi%d) [OH 0

Expanding at small quark masses and saturating the
T-product with Goldstone boson intermediate states

M. A. Shifman, A. I. Vainshtein and V. I. Zakharov ; W. A. Bardeen and S.-H.H. Tye




The result depends on the number of flavours. For
example 1f we add the strange quark and make an
expansion at small quark masses we get

3
Xt = —ng (m727 ""'7%27

) My, MgMeg
(

My + Mg + ms)(Mmymg + mgms + myms)

The topological susceptibility, and consequently the mass of
the axion, vanishes whenever the mass of a quark 1s equal to
zero. AT ZERO TEMPERATURE WE DO NOT NEED THE
LATTICE !

Similar results can be obtained in chiral perturbation theory,
where the NLO corrections were recently computed and it
was possible to extract the axion mass, self coupling and its
full potential at the percent level

P. Di Vecchia and G. Veneziano, Giovanni Grilli di Cortona, Edward Hardy, Javier
Pardo Vega, Giovanni Villadoro 1511.02867




Axion Bounds and Searches
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Georg Raffelt, MPI Physics, Munich Vistas in Axion Physics, INT, Seattle, 23-26 April 2012
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Fig. 3. Up-to-date experimental exclusion limits on the axion-photon coupling versus axion mass.

The projected sensitivities are represented by dashed lines. Two theoretical models are represented by the
diagonal dashed lines with the uncertainty band in yellow. Major features of the individual experiments are
described in the text. The acronyms of the experiments which are not discussed in the review include
CROWS (CERN Resonant Weakly interacting sub-electron volt particle Search), PVLAS (Polarization of the
Vacuum with Laser), HESS (High Energy Stereoscopic System), HB (horizontal branch) stars, MUSE (Multi
Unit Spectroscopic Explorer) and VIMOS (Visible Multi-Object Spectrograph).



THE AXION PHENOMENOLOGY
Basic Formula:

36 2, N,
* T 33T, 5P

where Qy and Ty are the present abundance and temperature
of photons while nd)*/s* 1s the ratio between the comoving
axion number density ny=m, 0”2 and the entropy density

computed at a late time t* such that the ratio n(l)/s became
constant



THE AXION EVOLUTION EQUATION

The number density Ng can be extracted by
solving the axion equation of motion

. i
g, LV

The temperature (and time) dependence of the Hubble
parameter H is determined by the Friedmann equations

and the QCD equation of state (measured in lattice
QCD).

dV (o S
) (1) 9t o = fymd (D) Eo

=)




At high temperatures the
Hubble friction wins and the

B -
NN

field is frozen to its initial It
value ¢,. Asthe Universe Te
cools the pull from the e

: : 3 du
potential wins over the T i Sb

friction (this happens when
T=Tosc m_« (Tosc) = 3
H(Tosc)) and the axion starts
oscillating around the
minimum.

Shortly after H becomes
negligible and the mass term
is the leading scale in the
evolution equation
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when H becomes negligible and the mass term 1s the leading
scale the approximate WKB solution has the form

o(t) ~ A(t) cos (/t dt'm¢(t’)> —

to

o (i) ([ aema)

where R(t) 1s the cosmic scale factor. Since the energy density
is given by P = mZ(I) A?/2, the solution implies that what
1s conserved in the comoving volume 1s not the energy density

but N(|> = p¢R3/m(|), which can be mterpreted as the number of
axions.

Through the conservation of the comoving entropy S, it follows
that n *¢ / s* becomes adiabatic invariant.




The biggest uncertainty comes therefore from the temperature
dependence of the axion potential V(¢)

THE AXION AT NON ZERO TEMPERATURE
Thatis WHEN LOCD ENTERS THE GAME

Chiral Lagrangians allow to study the temperature
dependence of the axion potential and 1ts mass to finite
temperatures below the crossover region T, ~150 MeV.

Around T, there 1s no known reliable perturbative expansion
under control and non-perturbative methods, such as lattice
QCD are required.

S. Borsanyi et al., Phys. Lett. B 752, 175 (2016) [arXiv:1508.06917 [hep-lat]]

C. Bonati, M. D’Elia, H. Panagopoulos and E. Vicari, Phys. Rev. Lett. 110, 252003 (2013) [arXiv:1301.7640 [hep-lat]].
C. Bonati, JHEP 1503, 006 (2015) [arXiv:1501.01172 [hep-lat]]

G. Y. Xiong, J. B. Zhang, Y. Chen, C. Liu, Y. B. Liu and J. P. Ma, Phys. Lett. B 752, 34

(2016) [arXiv:1508.07704

A. Trunin, F. Burger, E.-M. llgenfritz, M. P. Lombardo and M. Muller-Preussker, arXiv:1510.02265 [hep-lat].

M. I. Buchoff et al., Phys. Rev. D 89, 054514 (2014) [arXiv:1309.4149 [hep-lat]].



Axion properties at zero and finite T from Lattice QCD

SU(3) with light fermions at or close to the physical point

@ Trunin, Burger, llgenfritz, Lombardo, Muller-Preussker
J. Phys. Conf. Ser. 668, 012123 (2016) [arXiv:1510.02265 [hep-lat]].
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arXiv:1805.06001 [hep—lat].
C. Bonati, M. D'Elia, G. Martinelli, F. Negro, F. Sanfilippo, A. Todaro + ......
arXiv:1807.07954 [hep-lat]



At zero and non zero temperature T the Axion Potential can
be derived from the dependence of the vacuum free energy

F[6,T] on 6

The general form of F(6, T)

_ 1/T
F(O,T)= _Vi4 Iog/[@A][@w][@w] exp </o dt/d3x 59‘5)

Assuming analiticity at 8 = 0 the free energy density can be written as:
1 2 2 4
F(0,T) = F(0, T) = Sx(T)0?[1+ ba(T)6? + by(T)6* + -+ | |

and it is easy to see that

1, _ {Q@%0 —3(Q%)3
X_V4<Q )0 2 =~ 07, ~——

R%) o — 15(Q?)o(Q%*) o + 30(Q?)3
360(Q?)o

P

mass term

Quartic coupling

by = &

and so on, where { )o denotes the average at § = 0.




Thus for example the axion mass is related to the
topological susceptibility



Dilute Instanton Gas Approximation

At very high T (T > Agcp) one can show that the 6 dependence is
dominated by weakly interacting objects of topological charge +1 and
the free energy is given by (Gross, Pisarski, Yaffe 1981)

F(O, T)— F(0, T) =~ x(T)(1— cos#)

so that 1 1 ,
— b= —— by, =(=1)"
br=—15 bi=355 b=(-1) (2n+ 2)!

and the susceptibility scales with the temperature as following

X(T) oc mNr TA=5N=3Nr

when N light flavours are present.



Analytical expectations

For T < Agcp we can trade 6-dependence for m-dependence by using a
U(1)a transformation, and perform computations with ChPT
(see e.g. Grilli di Cortona, Hardy, Pardo Vega, Villadoro 1511.02867 for NLO).

For T > Agcp semiclassical (DIGA) and perturbative computations
become reliable and (Gross, Pisarski, Yaffe 1981)

DIGA: F(0,T)—F(0,T) ~x(T)(1— cosb)

PT:  x(T)oc mV T4 3N—35Nr
(see also Boccaletti, Nogradi 2001.03383).
The value of x(T) for T of the order of GeVs is relevant for axion
phenomenology, and Lattice QCD appears to be the only first principle

method available to reliably investigate this range of temperatures
(Berkowitz et al. 1505.07455).



Numerical problems

Lattice QCD simulations with physical light quarks are notoriously
complicated from the computational point of view.

1) Huge lattice artifacts problem: The study of X(T) in the high temperature phase 1s
much worst, since topological observables are extremely sensitive to the explicit chiral
symmetry breaking of the lattice fermion discretization;

2) Small box problem: At high T we have x (1) — 0
the probability P(Q) of observing a configuration with charge Q
gets strongly peaked at Q =0

3) Freezing problem: As the continuum limit 1s approached autocorrelation times grows
exponentially fast with the inverse lattice spacing, and simulations get
stuck 1n a fixed topological sector



2) And 3)

The problems on the lattice: freezing

As the continuum limit is approached it gets increasingly difficult to
correctly sample the various topological sectors.

exponential critical slowing-down
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from Bonati, D’Elia, Mariti, Martinelli, Mesiti, Negro, Sanfilippo, Villadoro 1512.06746



A new approach to the finite volume effect

Multicanonical algorithm (Berg, Neuhaus 9202004) to overcome the “low
probability” regions problem: sample a non-physical distribution and
reweight the results.

S is the original action, S’ = S — V is the modified action

[O(x)e*Wax  (0e Vs
(O)s = =0 = (e—V>5/S

/

If the sampling of e~ is “difficult’ and the sampling of e~°
is more efficient to use the r.h.s. than the l.h.s.

The algorithm is stochastically exact irrespectively of the specific form of

the potential V/, however a wise choice is needed to make it efficient.

is “easy”, it

1o solve the small box problem we
use the multicanonical approach -
Bonati et al. 1807.07954: a
modified distribution is sampled
and the results are a posteriori re-
weighted (in a stochastically

exact way) to extract expectation
values for the original distribution.

A possible pitfall

A common pitfall when using reweighting is to extend it beyond its range
of applicability, by trying to connect almost orthogonal distributions.

NOT good GOOD

Whenever the state @ = 0 is “macroscopically populated” in the

distribution e

=5 the reweighting is solid.



The QCD case

In the QCD case one can think of proceeding analogously to the quantum
rotor case, by adding a potential V(Q) to the action.

Technical difficulty: the simulation algorithm used in QCD (Hybrid Monte
Carlo) requires V(Q) to be a differentiable function of the gauge field.

Lattice technicality that solves the difficulty: most of the discretizations of
the topological charge used on the lattice are not integer at a # 0.

Using smoothing techniques (cooling, smearing, ...) one can built
discretizations of Q that are more and more peaked at integer values.

Stout smearing has the advantage of being a differentiable smoothing, so
we can use V(Qp), where Q, is the discretized topological charge defined

after some stout smearin steps. . . . .
s How to choose an appropriate discretization of @

Q. has to be the discretized Q defined after some stout smearing steps.

How many steps?

| | Just a few steps. The distribution of Q; has almost no peak on integer
0 L L ! values (good for HMC) and Q; has negligible overlap with the “true”
\ integer valued topological charge (bad for the sampling)

27 A lot of steps. The distribution of Q; is strongly peaked on integer values
Q. (n, =20)
me st 0 - T " -
—Q (n, ,=80) L
- bad for HMC) and Q; has high overlap with the “true” integer valued
“o 5000 10000 topological charge (good for the sampling)
RHMC trajectories

Figure 5. Monte-Carlo history of the topological charges obtained after 80 cooling steps and after . . . . .
20 stout-smearing steps (with pg = 0.1), for the run on the 32% x 8 lattice at 3 = 4.14, adopting a In PraCtICG It was found that 10 - 20 Smea r|ng Steps (de pend|ng on the
bias potential as in Eq.(2.12), with B = 6 and C' = 2, and illustrated in Fig. 3. Iattice Spacing) are a gOOd Compromise.

Correlation 0.86



The potential V

The form of the potential V' is not critical for the exactness of the method
(but remember the pitfall) but it is important for the practical
effectiveness of the approach.

We tested several possibilities (on [—Qmax, @max] and extended to
constant outside this interval):

V(Q) = bQ?: most natural choice at T = 0 but at high T it tends to
oversample the large |Q| region (pitfall danger)

V(Q) = b|Q|: DIGA inspired choice, problems at Q = 0 likely due to the
non-differentiability

V(Q) = Vb2Q? + €: it seems DIGA for large |Q| and it does not
oversample this region, no problems at @ = 0. It works




An example of application of the method
QCD with Nf = 2+ 1 flavours at physical masses, Qmax =3 b =16, ¢ = 2

3 T T T ‘ T 3
8x32°, T~430MeV |
2 — 2

= ‘ - 1
1 - - _

: 1 . 8x32° 1
2+ — 2 T~430MeV —
3 ' 25|00 | soloo ' 7550 ' 10000 30 ' 25|00 ' 50|00 | 75‘00 ' 10000

MC trajectories MC trajectories
a*y = (4.1+1.6) x 1078 a*y =(6.1+1.1) x 1078

The error computation is much more solid (no more rare events) and
taking into account the computational overhead of the method (< 50%),
we have a ~ 45% improvement in efficiency.




Discussion and possible improvements

@ for larger T the method becomes much more convenient since y — 0,
moreover for higher T the overhead also gets smaller

@ still room for further coding improvements to reduce the overhead

@ possibility of improving the choice of the potential V

» use of the systematic iterative procedure described by Berg, Neuhaus
9202004

> use out-of-equilibrium methods like metadynamics (Laio, Parrinello
0208352, Laio, Martinelli, Sanfilippo 1508.07270)

@ possibility of reducing also the freezing problem using the same
algorithm with a proper choice of the potential



1) Lattice artefacts

To reduce lattice artefacts we use the spectral projectors definition of the

topological charge.

This definition was introduced in Giusti & Luscher 0812.3638 for Wilson-type
fermion discretizations and was extended to the staggered case in Bonanno,

Clemente, D'Elia, Sanfilippo 1908.11832.

At T = 0 the spectral projector definition was shown in Alexandrou et al.
1709.06596 to have much smaller discretization errors than the other
commonly adopted discretizations. Possible explanation (still to be really

understood): since the same Dirac operator 1s used in the weight of the
configuration and in the measure, some discretization effects get cancelled.



Non-chiral fermions and would-be-zero modes

In the QCD path-integral, field configurations are weighted with
the determinant of the Dirac operator:

det{ +mg} =[] (A+my).

AeR

The Index Theorem relates the presence of zero-modes in the
spectrum of ) to the topological charge of the gluon field:

Q = Index{P} = Tr{vs} =ny —n_. J

If a configuration has @) # 0, lowest eigenvalues are A, = my.

On the lattice, however, some fermionic discretizations (e.g.,
staggered) do not have exact zero-modes. = The determinant
fails to efficiently suppress non-zero charge configurations.

Amin = Mg — Mg +1iXo, Ao — 0. J
a—0




Non-chiral fermions and large lattice artifacts

Bad suppression of non-zero charge configurations — large
discretization corrections = continuum extrapolation not
under control (Bonati et al., 2018):

’/
, s
/
50 s
~ 4
/ 4
7/

Bonati et al.

v [MeV]

Borsanyi et al.

000005 0001 00015 0002 00025 0003 00035
2 2
a [fm7]
In (Borsanyi et al., 2016) lattice artifacts affecting x at high-T
have been suppressed a posteriori by reweighting configurations

with the corresponding continuum lowest eigenvalues of Ip.




Spectral projectors with staggered fermions

In the continuum, only zero-modes contribute to . This is not
true on the lattice for staggered fermions, due to the absence of
exact zero-modes:

Q = Tr{ys} — Tr{[5Py},

_ T - _
Prr = D a < Wely D spaqul = AU

To avoid a mode over-counting, taste degeneration has to be
considered (n; = 2%2):

1
QO,stag - Tr{FSIP)M}
n
Lattice charge gets a renormalization Zg W = g—f;’, which can be

derived from Ward identities for the flavor-singlet axial current:

Zp (ZP>2 - (Tr{Pa})

Qstag — Z_SQO,staga Z_S TI'{P5PMF5]P)M}> .




Choice of the cut-oftf mass M

The choice of the cut-off mass M is irrelevant in the continuum
limit. Its renormalized value Mr = M /Zg must be kept
constant as a — 0 to guarantee O(a2) corrections:

xsp(a, Mg) = x + csp(Mg)a® + o(a?). )

To avoid the direct computation of Zg for each lattice spacing,
one can observe that, for staggered fermions:

Mg R =My/Zs.

If a Line of Constant Physics is known, it is sufficient to keep

M/mq = MR/mq,R J

constant as a — 0 to have Mg constant too.
Is there an optimal choice for Mr? One would like to have small
corrections, i.e., csp(MR) < Cgluo-




Optimal choice for the cut-off mass M /m,

Guiding principle: choose M/mg to include all relevant Would-Be
Zero-Modes (WBZMs) in spectral sums. E.g., look at chirality:

rx = |ulDsux| vs A\/my.

However, distinguishing between WBZMs and non-chiral modes is

ambiguous — choose cut-off to include “chiral enough” modes.

l
0.6 14 1
ol

< optimal interval for M /m

Figure refers to: Ny = 241
QCD, T ~0,V =48* a ~
0.057 fm, mq = ms.

Vertical  lines: op-
timal choices for
M /ms € [0.05,0.15].
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Afm



Continuum limit of y/* at T =0
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Lattice Setup: Ny = 2 + 1 rooted stout staggered fermions at
physical point.
Expected continuum scaling for Spectral Projectors (SP):

1/4
XS{D (a, M/ms)

= % 4 cgp(M/my)a® + o(a?).
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ChPT prediction

4 Gluonic, Bonati et al., 2016
¢ Gluonic, this work
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.00 1.2

M/ms  inside  optimal
interval — reduction
of lattice artifacts:

csp(0.06)/cgluo ~ 11072,
csp(0.1)/cgluo ~ 3- 1071,

Spectral  determination:
very good  agreement
with gluonic and leading
order Chiral Perturba-
tion  Theory  (ChPT)

determinations.




Continuum extrapolation T'= 0 vs M /my

Choosing M /ms inside the optimal range we observe:

@ good agreement within the errors for determinations obtained for
different values of M /ms (Fig. on the left)

@ significant reduction of lattice artifacts compared to the standard
gluonic computation (Fig. on the right)

90 1 _ 1.0

804 T ¥

o 0.6
(D1
e J!
= 0471 - S 0.4 }{{
2 < { { E N
"= 65 ChPT g I E E E }

. | Spectral Proj. 0.21 } } {
601 ¥ Spectral Proj. final result $ E §
55 ¢ Gluonic, Bonati et al., 2016 0.0 1 T I
% Cluonic, this work
50
; ; : . : . —0.2 & . : : : ;
0.05 007 009 011 013 0.15 0.05 0.07 0.09 0.11 0.13 0.15

M /mg M/m



Continuum extrapolation T' = 430 vs M /m

Choosing M /my inside the optimal range we observe:

@ good agreement within the errors for determinations obtained for
different values of M /mg (Fig. on the left)

@ significant reduction of lattice artifacts compared to the standard
gluonic computation can be achieved with suitable choice of M /m;
(Fig. on the right)
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Chirality vs M /my at finite T

Same strategy as 17" = 0: consider r\ = |’U&F5U>\| vs A/mg to estimate
optimal range for M /ms.

At finite T" more clear separation of WBZMs compared to T' = 0 case,
although some ambiguity is still present.
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i i Vertical  lines: op-
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1.2
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Continuum limit of x/* at finite T (T = 430 MeV)

Same lattice setup of the T'= 0 case. Also in this case, we consider
the following continuum-scaling function for Spectral Projectors (SP):

Xsp (a, M/my) = x'/* + csp(M/my)a® + o(a?).

70
% SP, M/m,=0.3
01 T sp, M/m,=05 i
504 Spectral lattice artifacts
are suppressed compared
401

to the gluonic case when
M /m is chosen in the

previously determined

optimal interval:
csp(0.3)/Caluo ~ 5 - 1072,
csp(0.5)/cgluo ~ 1071,

Borsanyi et al., 2016
¢ Gluonic

0 1 2 3 4
a? [fm?] x107*




Continuum extrapolation T' = 430 vs M /m

x4 [MeV]

Choosing M /my inside the optimal range we observe:

@ good agreement within the errors for determinations obtained for

different values of M /mg (Fig. on the left)

@ significant reduction of lattice artifacts compared to the standard
gluonic computation can be achieved with suitable choice of M /m
(Fig. on the right)
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Borsanyi et al., 2016
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All results and comparison with others groups

100
801

60 1
401

201

x4 [MeV]

Petreczky et al., 2016

Gluonic

Spectral Projectors 1
Borsanyi et al., 2016

(el ol g

g 2 3 4

: T/T. _
Borsanyi et al. 1606.07494: physical quark masses, thermodynamical
integration at fixed Q and a posteriori near zero mode reweighting
(note: no isospin symmetry breaking for all the data above).
Petreczky et al. 1606.03145: m, ~ 160 MeV, x rescaled using DIGA

expectations x o< m7 o< mi.



x(T) for T' > T, from Spectral Projectors

The Dilute Instanton Gas Approximation (DIGA) predicts:

XM ~T™" T>T.,,  bpiaa =2
Our data for T' 2 300 MeV
are in very good agreement

with a decaying power-law,
with exponents:

bsp = 2.06(41)
bgluo = 2.1(1.1)

Compare also with result
from Borsanyi at al., 2016:

log {x"/*[MeV]}

b=1.96(2).

E Gluonic
i Spectral Projectors L
§ Borsanyi et al., 2016

Best fit lines are ~ parallel,

' T T T T T 1/4 : ~
0.0 0.2 0.4 06 08 70 12 " SP prefactor of x*/™ is ~ a
factor of 2 larger compared to

log(T/T.)
previous results, i.e., an order
of magnitude for .

see also Vicente Azcoiti 2101.06439 [hep-lat] and Phys.Rev.D 100 (2019) 7, 074511
e e-Print: 1907.01872 and refs. therein



https://arxiv.org/abs/2101.06439
https://arxiv.org/abs/1907.01872

Are we satisfied ? No,
too many systematic uncertainties and limitations remain

Conclusions and perspectives

We presented results for x(T) in the high temperature regime of QCD,
obtained by using the spectral projector discretization and the
multicanonical algorithm.

pro: much better control on the systematics of the continuum

extrapolation due to smaller lattice artifacts and to the presence of a new
parameter.

con: errors still bigger than we hoped for. ..

A precise unbiased first-principle calculation of x(T) is still an extremely
challenging task. Larger statistics and smaller lattice spacings are required
to settle this problem.

New algorithms to cope with the exponential critical slowing down of
topological modes are being developed /tested.



Lattice QCD for Cosmology

Sz. Borsanyi, Z. Fodor, K.-H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A.
Pasztor, F. Pittler, J. Redondo, A. Ringwald, K. K. Szabo

Talks by Kalman SZABO and Dr. Szabolcs BORSANYI @ LATTICE 2016

1) Upgraded and extended analysis of the equation of state (energy and
entropy density) as a function of T with nf=2+1+1 staggered fermions
+ bottom using perturbation theory

1) Study of the topological susceptibility up to quite large values of T

1) Detailed study of discretization errors



EFFECTIVE DEGREES OF FREEDOM
AS A FUNCTION OF THE TEMPERATURE
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Figure 1: The effective degrees of freedom for the energy density (g,) and for the entropy density (gs).
The line width is chosen to be the same as our error bars at the vicinity of the QCD transition where we
have the largest uncertainties. At temperatures T' < 1 MeV the equilibrium equation of state becomes
irrelevant for cosmology, because of neutrino decoupling. The EoS comes from our calculation up to
T = 100 GeV. At higher temperatures the electroweak transition becomes relevant and we use the results
of Ref. [13]. Note that for temperatures around the QCD scale non-perturbative QCD effects reduce g,
and g, by 10-15% compared to the ideal gas limit, an approximation which is often used in cosmology.
For useful parametrizations for the QCD regime or for the whole temperature range see [17].



TOPOLOGICAL SUSCEPTIBLITY
AS A FUNCTION OF THE TEMPERATURE

VERY GOOD 10° [ ; e —
AGREEMENT WITH ? ? é i
DILUITE
INSTANTON GAS
APPROXIMATION

x[fm™]

100 200 500 1000 2000
T[MeV]

Figure 2:  Continuum limit of x(7"). The insert shows the behaviour around the transition temperature.
The width of the line represents the combined statistical and systematic errors. The dilute instanton gas
approximation (DIGA) predicts a power behaviour of T—" with b=8.16, which is confirmed by the lattice
result for temperatures above ~ 1 GeV. BUT
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Some approximations
have been used to
compute the Equation
of State (EOS)
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discussed here



A Trying to reduce discretization errors which
¢ for staggered fermions are rather large.
Q At zero temperature 5
- M
X = X
¥ zyi
T T T
0.14 it g
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Lines of Constants Physics (LCP) and
ne=3+1 vsne=2+1+1

o | oo+
my =m3(8) mua=Rm(B) me.=Cmi(B)

o 2
v v a=a*(p) 1/R=2763 C=11.85
then compute w, A

ne=3+1, with the same 1, = m=t(3)

S
and obtain m7(T3) w(()g) and w(()g)

change lattice fermions, compute miermlons (B)

in such a 1, (3) w(S) w(3)
) .
way that T afermlons _ fer?nions CLSt (6)
. W
is the same 0
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Reweighting of the chiral condensate to
reduce discretization errors

I (o)

n=1 o=+41

The ch01ce of Q[U] looks rather arbitrary and has
a huge effect (1-2 order of magnitude)
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A Al BUT THE REAL TRUMP CARD IS:
v ¥/ 1) Athigh T calculation at fixed
topological sector Q=0,1 only;
' 2) ZQ/ZO(T) computed via average
N A action and condensate
v v " - dlogZq/Zy
Compute °9Q = dlogT
dﬁ d log m f
-+ _
dloga -0 Z dloga isla-o
Z Z
—Q(T) fTOdIOgT b (T7) Q(T)
Z() ZO




QUENCHED CASE

[1508.06917]
DIGA = _
integral 8x32 —&— |
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Somehow a circular argument: Freezing at

high temperatures and small lattice spacing
= small Q =» only Q=0,1 -> diluite
instanton gas

Freezing and or physical small volumes
can mimic large discretization errors

But it 1s not enough yet:

dlog Z5'/Zs*  dB

dlogT

o

o _ Q| 1 2|Q| 4772}
oo = (¥¥r)ole + my \ 2my & Z A U] + 4m} o

dloga

™w




But it 1s not enough yet: by hand treatment
of Instanton-Antistanton configurations
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But it 1s not enough yet: 3+1 versus 2+1+1 T high
temperatures (indeed they approximate with R?)

Z
Z

phys
my ;Z:l

= exp ( / . dlog myg m-ud(%bud)) 7
24+1+1 mP ¥* 0

3+1
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But it 1s not enough yet: since 1t 1s
difficult to compute <Sg >1-0

they propose to compute <S, >q_
with Q=2,3, etc

<Sg >1-O :<Sg >Q_O/‘Q‘ y

Also a riscaling of the topological
susceptibility of a factor

4 mu md /(mu+md)*2 = 0.88

by hand
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AXION RESULTS

Given that b,(T) converges relatively fast to the value

predicted by a single cosine potential, we can assume

V(¢)=-x(T) cos((l)/fd)) for T >Tc

Using the most conservative results for the fit
X(T)/x(0) = (L8 £ 1.5)(T./T)* "=

we plot the prediction for the parameter f¢ as a

function of the mitial value of the axion field

39~/ f¢ assuming that the axion contribution

make up for the whole observed dark matter

bund
abundance Qo = 0.259(4)




Predictions for o

(almost one order of magnitude larger than the instanton value)
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MAIN MESSAGE

In particular for the value of f<|> ~ 1012 GeV the axion field
starts oscillating around Tosc=4.3 GeV. An even longer
extrapolation is required for f(l)z 1.67 10! GeV corresponding

to Q,=0.1 Qpy, where the axion starts oscillating around
Tosc=7.2 GeV.




MAIN MESSAGE

The results however rely
on the extrapolation of
the axion mass fit formula == & &
up to few GeV

THE CONTROL OF & #
THE LARGE T REGION &
IS VERY IMPORTANT | 5@



