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B decays and mixing
and consequences for the Standard Model



Preliminary remarks
Review + emphasis on B mixing

• Advertisement of other talks


• 11:00 Monday: Alejandro Vaquero, B → D* l ν and related anomalies

• 16:30 Monday: Enrico Lunghi, B and K physics, role of lattice QCD

• 09:30 Τuesday: Chris Bouchard, B → K l l and D → K l ν form factors and phenomenology

• 11:00 Tuesday: Simon Kuberski, Heavy flavor physics with O(a) improved Wilson quarks


• Survey of CKM status


• More in-depth summary of B meson mixing calculations



Introduction
Quark flavor in the Standard Model

• Are the 4 free parameters in the CKM matrix sufficient to 
describe all quark flavor-changing interactions?


• High intensity (& high energy) era:  
LOTS of experimental measurements of hadronic processes, 
many very precise


• Require similarly precise SM predictions


• Lattice QCD connects hadronic observables to quark parameters

VCKM =
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

=
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1
+ O(λ4)



CKM constraints — ( ρ, η ) plane
CKMfitter, Moriond 2021



CKM constraints — ( ρ, η ) plane

Sheldon Stone, TASI 1994

CKMfitter, Moriond 2021
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Precision test of actions
Kaon and pion decays

Figure 8: Comparison of lattice results (squares) for f+(0) with various model estimates
based on �PT [282, 284–287] (blue circles). The black squares and grey bands indicate our
averages (76) – (78). The significance of the colours is explained in Sec. 2.

ary conditions to determine the form-factor results directly at the relevant kinematical
point q2 = 0 [300, 301], avoiding in this way any uncertainty due to the momentum de-
pendence of the vector and/or scalar form factors. The ETM collaboration uses partially-
twisted boundary conditions to compare the momentum dependence of the scalar and
vector form factors with the one of the experimental data [32, 299], while keeping at the
same time the advantage of the high-precision determination of the scalar form factor at
the kinematical end-point q2

max
= (MK �M⇡)2 [36, 302] for the interpolation at q2 = 0.

According to the colour codes reported in Tab. 15 and to the FLAG rules of Sec. 2.2,
only the result ETM 09A with Nf = 2, the results FNAL/MILC 12I and RBC/UKQCD
15A with Nf = 2+ 1, and the results ETM 16 and FNAL/MILC 18 with Nf = 2+ 1 + 1
dynamical flavours of fermions, respectively, can enter the FLAG averages. We note that
the new entry in this edition is FNAL/MILC 18 for Nf = 2 + 1 + 1, which did not enter
the previous FLAG average due to its publication status [4].

AtNf = 2+1+1 the result from the FNAL/MILC collaboration, f+(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been tailored to reduce staggered
taste-breaking e↵ects, and includes simulations with three lattice spacings and physi-
cal light-quark masses. These features allow to keep the uncertainties due to the chiral
extrapolation and to the discretization artifacts well below the statistical error. The
remaining largest systematic uncertainty comes from finite-size e↵ects, which have been
investigated in Ref. [303] using one-loop �PT (with and without taste-violating e↵ects). In
Ref. [33], the FNAL/MILC collaboration presented a more precise determination of f+(0),
f+(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis is extended to
two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is sim-
ulated at four lattice spacings. They also added a simulation at a small volume to study

69

Figure 9: Comparison of lattice results for fK±/f⇡± . This ratio is obtained in pure QCD
including the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey
bands indicate our averages in Eqs. (81) – (83).

FNAL/MILC 17 has determined the ratio of the decay constants from a comprehensive
set of HISQ ensembles with Nf = 2 + 1 + 1 dynamical flavours. They have generated
24 ensembles for six values of the lattice spacing (0.03 � 0.15 fm, scale set with f⇡+)
and with both physical and unphysical values of the light sea-quark masses, controlling
in this way the systematic uncertainties due to chiral and continuum extrapolations.
With respect to FNAL/MILC 14A they have increased the statistics and added three
ensembles at very fine lattice spacings, a ' 0.03 and 0.042 fm, including for the latter
case also a simulation at the physical value of the light-quark mass. The final result of their
analysis is fK±/f⇡± = 1.1950(14)stat(

+0
�17)a2(2)FV (3)f⇡,PDG(3)EM (2)Q2 , where the errors

are statistical, due to the continuum extrapolation, finite-volume, pion decay constant
from PDG, electromagnetic e↵ects and sampling of the topological charge distribution.16

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study
of fK±/f⇡± is based on the same set of ensembles bar the ones at the finest lattice
spacings (namely, only a = 0.09� 0.15 fm, scale set with f⇡+ and relative scale set with
the Wilson flow [114, 316]) supplemented by some simulation points with heavier quark
masses. HPQCD employs a global fit based on continuum NLO SU(3) �PT for the
decay constants supplemented by a model for higher-order terms including discretization
and finite-volume e↵ects (61 parameters for 39 data points supplemented by Bayesian
priors). Their final result is fK±/f⇡± = 1.1916(15)stat(12)a2(1)FV (10), where the errors
are statistical, due to the continuum extrapolation, due to finite-volume e↵ects and the
last error contains the combined uncertainties from the chiral extrapolation, the scale-
setting uncertainty, the experimental input in terms of f⇡+ and from the uncertainty in
mu/md.

16To form the average in Eq. (81), we have symmetrized the asymmetric systematic error and shifted the
central value by half the di↵erence as will be done throughout this section.
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nf = 2 + 1

Leptonic decay 
constantsSemileptonic form factor 

(normalization)

Staggered
Domain wall

Agreement @ level < 1% 

FLAG, arXiv:2111.09849

https://inspirehep.net/literature/1971260


First row, unitarity, “Cabibbo anomaly”

• Note the precision on the axes!  Lots of effort to shrink the 
constraints!


• Dotted line corresponds to 


• Two puzzles: 
— Are 2 parameters enough to explain the 3 classes of 
constraints?  
— Are the parameters consistent with CKM unitarity?


• Tension with unitarity due to new result from nuclear decays


• Precision of lattice matrix elements now means unequal u/d 
mass and QED effects are required

|Vud |2 + |Vus |2 + |Vub |2 = 1



Including QED effects

• RM123 method to include isospin breaking effects in LQCD 
determinations of leptonic decays of mesons (must include soft 
photon in final state)


• Several technical issues to face: finite volume effects, cancellation of 
IR divergences


• First calculation found good agreement with chiral P.T. predictions


• Continuing progress to extend applicability to larger photon 
momentum, requires electromagnetic form factors

same does not hold as well in the case of final electrons (see
Ref. [8]). This important finding will be investigated by an
ongoing dedicated lattice study on the real photon emission
amplitudes in light and heavy P-meson leptonic decays.
After extrapolating our lattice data to the physical pion

mass and to the continuum and infinite volume limits, the
main result of the present work is

δRphys
Kπ ¼ −0.0122" 0.0016; ð6Þ

where the uncertainty includes both statistical and system-
atic errors, including an estimate of the uncertainty due to
the QED quenching. Our result (6) can be compared with
the current estimate δRphys

Kπ ¼ −0.0112 ð21Þ from
Refs. [17,18] adopted by the Particle Data Group
(PDG) [19].
Details of the simulation.—The gauge ensembles used in

this Letter were generated by the ETMC with Nf ¼ 2þ
1þ 1 dynamical quarks and used in Ref. [20] to determine
the up, down, strange, and charm quark masses. The main
parameters of the simulations are collected in [12]. We
employ the Iwasaki action [21] for gluons and the Wilson
twisted mass action [22–24] for sea quarks. In the valence
sector we adopt a nonunitary setup [25] in which the
strange quark is regularized as an Osterwalder-Seiler
fermion [26], while the up and down quarks have the
same action as the sea. Working at maximal twist, such a
setup guarantees an automatic OðaÞ improvement [24,25].
The two valence quarks in the Pmeson are regularized with
opposite values of the Wilson r parameter in order to
guarantee that discretization effects on the P-meson mass
are of order Oða2μΛQCDÞ. The lepton l is a free twisted-
mass fermion with mass ml ¼ mμ ¼ 105.66 MeV [19].
The neutrino is simply considered to be a free fermion field.
In this Letter we make use of the bootstrap samplings

generated for the input parameters of the quark mass
analysis of Ref. [20]. There, eight branches of the analysis
were adopted differing in (i) the continuum extrapolation,
adopting for the matching of the lattice scale either the
Sommer parameter r0 or the mass of a fictitious P meson
made up of two valence strangelike (charmlike) quarks,
(ii) the chiral extrapolation performed with fitting functions
chosen to be either a polynomial expansion or a ChPT
ansatz in the light-quark mass, and (iii) the choice between
the methods M1 and M2, which differ by Oða2Þ effects,
used to determine the mass renormalization constant
Zm ¼ 1/ZP in the RI’-MOM scheme.
Evaluation of the amplitudes.—Following Ref. [8] the

quantity δRK − δRπ is given by

δRKπ ¼ 2
δAK

Að0Þ
K

− 2
δMK

Mð0Þ
K

þ δΓðptÞ
K ðΔEγÞ

− 2
δAπ

Að0Þ
π

þ 2
δMπ

Mð0Þ
π

− δΓðptÞ
π ðΔEγÞ; ð7Þ

where δΓðptÞ
P ðΔEγÞ represents the OðαemÞ correction to the

tree-level decay rate for a pointlike meson and can be read
off from Eq. (51) of Ref. [8], while δAP and δMP are the
e.m. and IB corrections to the weak amplitude and mass of
the P meson, respectively.
Within the qQED approximation, the evaluation of δAP

and δMP requires the evaluation of only the connected
diagrams shown in Figs. 1–4 for Kl2 decays. The correc-
tions δAP and δMP can be written as

δAP ¼ δAQCD
P þ

X

i¼J;T;P;S

δAi
P þ δAl

P; ð8Þ

δMP ¼ δMQCD
P þ

X

i¼J;T;P;S

δMi
P; ð9Þ

where δAQCD
P (δMQCD

P ) represents the strong IB corrections
corresponding to the diagrams of Fig. 3, while the other
terms are QED corrections coming from the insertions of
the e.m. current and tadpole operators of the pseudoscalar
and scalar densities (see Refs. [2,27]).
In Eqs. (8) and (9), the term δAJ

P (δMJ
P) is generated by

the diagrams of Figs. 1(a)–1(c), δAT
P (δMT

P) by the diagrams
of Figs. 1(d)–1(e), δAP

P (δMP
P) by the diagrams of

Figs. 2(a)–2(b), and δAS
P (δMS

P) by the diagrams of
Figs. 3(a)–3(b). The term δAl

P corresponds to the photon
exchange between the quarks and the final lepton. It arises
from Figs. 4(a) and 4(b), while Fig. 4(c) (lepton wave
function renormalization) can be safely omitted, since it
cancels out exactly in the difference Γ0ðLÞ − Γpt

0 ðLÞ.

(a) (b) (c)

(d) (e)

FIG. 1. Connected diagrams contributing at OðαemÞ to the
Kþ → lþνl decay amplitude, in which the photon is attached to
quark lines: (a) exchange, (b),(c) self-energy, and (d),(e) tadpole
diagrams.

(a) (b)

FIG. 2. Connected diagrams contributing at OðαemÞ to the
Kþ → lþνl decay amplitude corresponding to the insertion of
the pseudoscalar density related to the e.m. shift of the critical
mass, δmcrit

f , determined in Ref. [5].
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The evaluation of δMQCD
P and the δMi

P is described in
Ref. [5], where the quark mass difference ðmd −
muÞðM̄S; 2 GeVÞ ¼ 2.38 ð18Þ MeV was determined using
the experimental charged and neutral kaon masses. The
terms δAQCD

P , δAi
P, and δAl

P are extracted from the
correlators described in Ref. [8]. Their numerical determi-
nation is illustrated briefly in Refs. [28,29] and in detail in
Ref. [30]. The quality of the extraction of δAl¼μ

P /δAð0Þ
P is

illustrated in [12].
Finite-volume effects at OðαemÞ.—The subtraction

Γ0ðLÞ − Γpt
0 ðLÞ makes the rate IR finite and cancels the

structure-independent FVEs. The pointlike decay rate
Γpt
0 ðLÞ is given by

Γpt
0 ðLÞ ¼ 2

αem
4π

YPðLÞΓtree
P ; ð10Þ

where the factor YPðLÞ is explicitly given by Eq. (98) of
Ref. [11]. Equation (8) is therefore replaced by

δAP ¼ δAQCD
P þ

X

i

δAi
P þ δAl

P −
αem
4π

YPðLÞA
ð0Þ
P ; ð11Þ

where YPðLÞ has the form

YPðLÞ ¼ bIR logðMPLÞ þ b0 þ
b1

MPL

þ b2
ðMPLÞ2

þ b3
ðMPLÞ3

þOðe−MPLÞ ð12Þ

with the coefficients bj (j ¼ IR; 0; 1; 2; 3) depending on the
dimensionless ratio ml/MP [11]. The important point is
that the SD FVEs start only at Oð1/L2Þ; i.e., all terms up to
Oð1/LÞ in Eq. (12) are “universal” [11]. Being independent
of the structure, they can be computed for a pointlike
charged meson.
The FVE subtraction (11) up to order Oð1/LÞ is

illustrated in Fig. 5 for δRK, δRπ , and δRKπ in the inclusive

case ΔEγ ¼ ΔEmax;P
γ ¼ MPð1 −m2

μ/M2
PÞ/2, which corre-

sponds to ΔEmax;K
γ ≃ 235 MeV and ΔEmax;π

γ ≃ 29 MeV,
respectively. It can be seen that after subtraction of the
universal terms the residual FVEs are almost linear in 1/L2

and ≈3 times smaller in the case of δRKπ .
Results for the ratio ΓðKl2Þ/Γðπl2Þ.—The (inclusive)

data for δRKπ, obtained using Eqs. (7), (11), and (12), are
shown in Fig. 6. The “universal” FVEs are subtracted from
the data and the combined chiral, continuum, and infinite-
volume extrapolations are performed using the following
ansatz:

δRKπ ¼ R0 þ Rχ logðmudÞ þ R1mud þ R2m2
ud þDa2

þ K2

L2

!
1

M2
K
− 1

M2
π

"
þ Kl

2

L2

!
1

ðEK
l Þ2

− 1

ðEπ
lÞ2

"

þ δΓptðΔEmax;K
γ Þ − δΓptðΔEmax;π

γ Þ; ð13Þ

(a) (b)

FIG. 3. Connected diagrams contributing at OðαemÞ and
Oðmd −muÞ to the Kþ → lþνl decay amplitude related to the
insertion of the scalar density (see Ref. [5]).

(a) (b) (c)

FIG. 4. Connected diagrams contributing at OðαemÞ to the
Kþ → lþνl decay amplitude corresponding to photon exchanges
involving the final-state lepton.

FIG. 5. Results for the corrections δRπ , δRK , and δRKπ for the
gauge ensemblesA40.20,A40.24,A40.32, andA40.40 sharing the
same lattice spacing, pion and kaon masses, but different lattice
sizes (see [12]). The universal FVEs, i.e., the terms up to order
Oð1/LÞ in Eq. (12), are subtracted for each quantity. The lines are
linear fits in1/L2.ThemaximumphotonenergyΔEγ corresponds to
the inclusive case ΔEγ ¼ ΔEmax;P

γ ¼ MPð1 −m2
μ/M2

PÞ/2.

FIG. 6. Results for the correction δRKπ [Eqs. (7) and (11)] after
the subtraction of both the universal FVEs in Eq. (12) and the
residual FVEs obtained from the fitting function (13). The dashed
lines are the (central) results at each β, while the shaded area
identifies the continuum limit at the 1-σ level. The cross is the
extrapolated value at mphys

ud ðM̄S; 2 GeVÞ ¼ 3.70ð17Þ MeV [20].
The blue dotted lines correspond to the value −0.0112ð21Þ from
Refs. [17,18] adopted by the PDG [19]. Errors are statistical only.

PHYSICAL REVIEW LETTERS 120, 072001 (2018)
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Giusti et al., PRL 120, 072001 (2018)
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D leptonic and semileptonic decays

Figure 22: Decay constants of the D and Ds mesons [values in Tab. 34 and Eqs. (171-179)].
As usual, full green squares are used in the averaging procedure, pale green squares have been
superseded by later determinations, while pale red squares do not satisfy the criteria. The
black squares and grey bands indicate our averages.

fm, compared to 0.065 fm and 0.048 fm used in Ref. [477]). Pion masses at this coarser
resolution reach 282 MeV and M⇡L is always kept larger than 4.

The Nf = 2 averages for fD and fDs/fD coincide with those in the previous FLAG
review and are given by the values in ETM 13B [56], while the estimate for fDs is the result
of the weighted average of the numbers in ETM 13B [56] and Balasubramanian 19 [58].
They read

Nf = 2 : fD = 208(7) MeV Ref. [56], (171)

Nf = 2 : fDs = 246(4) MeV Refs. [56, 58], (172)

Nf = 2 :
fDs

fD
= 1.20(0.02) Ref. [56]. (173)

Turning to Nf = 2+1 results, the �QCD collaboration presented in �QCD 20A [480]

a calculation of the D(⇤)
s , D(⇤) and � meson decay constants. The couplings of the vector

mesons to the tensor current are also computed. The computation is performed at a single
lattice spacing with a�1 ⇡ 1.7 GeV on a 2 + 1 domain wall fermion ensemble generated
by the RBC/UKQCD Collaboration. The sea pion mass is at its physical value and the
spatial extension is 5.5 fm. Overlap valence fermions are used with di↵erent values of the
light, strange and (quenched) charm quark masses. For the light quarks the corresponding
pion masses range between 114 and 208 MeV. The setup follows very closely the one in
�QCD 14 [24] (presented in the 2016 FLAG review). The decay constants fD and fDs

are obtained from an exactly conserved PCAC Ward identity so they do not depend on
renormalization factors. The results, however, do not enter the FLAG average as the
simulations do not meet the quality criteria concerning the number of lattice spacings
used in the continuum extrapolation.

A new result (RBC/UKQCD 18A) for the SU(3)-breaking ratio fDs/fD has been
reported in Ref. [70]. The setup includes 2+1 dynamical flavors of Domain Wall fermions.
This new result essentially supersedes RBC/UKQCD 17 [55] (discussed in the previous
FLAG review) by implementing a number of improvements. One level of stout smearing
for the gauge fields has been introduced before performing the charm-quark inversions,
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Figure 23: D ! ⇡`⌫ and D ! K`⌫ semileptonic form factors at q2 = 0. The Nf = 2 + 1
HPQCD result for fD⇡

+ (0) is from HPQCD 11, the one for fDK
+ (0) represents HPQCD 10B

(see Tab. 35).
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Figure 24: The form factors f+(q2) and f0(q2) for D ! K`⌫ plotted versus z (left panel) and
q2 (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred N+ = N0 = 3 BCL fit (five
parameters).
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FLAG, arXiv:2111.09849Much more on  from Chris Bouchard, Tues 09:30D → Kℓν

https://inspirehep.net/literature/1971260


Second row and unitarity

Figure 26: Comparison of determinations of |Vcd| and |Vcs| obtained from lattice methods
with nonlattice determinations and the Standard Model prediction based on CKM unitarity.
When two references are listed on a single row, the first corresponds to the lattice input
for |Vcd| and the second to that for |Vcs|. The results denoted by squares are from leptonic
decays, while those denoted by triangles are from semileptonic decays. The points indicated
as (q2 = 0) do not contribute to the average, and are shown to stress the decrease in the
final uncertainty obtained by considering the full q2 dependence. Notice that the HPQCD
21A point includes estimates of the electroweak and soft electromagnetic uncertainties that
we have not incorporated into our average.
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FLAG, arXiv:2111.09849 Fig. from MW, Eur. Phys. J A 57, 239 (2021) 

https://inspirehep.net/literature/1971260
https://inspirehep.net/literature/1854823
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FIG. 15: Heavy-HISQ form factor results for fs

0 together with
the fitted curve at the physical point with its error band.
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FIG. 16: Heavy-HISQ form factor results for fs

+ together with
the fitted curve at the physical point with its error band.

Results for the extrapolated form factors are given in
Figs. 15, 16, 17 and 18 together with the corresponding
lattice data. For the Bc ! Bs case an and cn take prior
values 0(1) and bn, dn and en take prior values 0(0.3) to
reflect the fact that they enter through loop e↵ects. In
the Bc ! Bd case we take prior values of 0(1) for an and
en and 0(0.3) for bn and dn. In both cases we take prior
values of 0(1) for A

n

ijk
except for when i = 1 or j = 1

where we use a prior values of 0(0.3) to account for the
HISQ one loop improvement.

As in the case of an NRQCD spectator quark, we
present coe�cients of the form factors fits from many dif-
ferent fits of the correlator data. Figs. 19 and 20, show
that the coe�cients are insensitive to the choice of the
parameters in the fits of the correlators.

FIG. 17: Heavy-HISQ form factor results for fd

0 together with
the fitted curve at the physical point with its error band.

FIG. 18: Heavy-HISQ form factor results for fd

+ together with
the fitted curve at the physical point with its error band.

D. Chained Fit

The form factor functions tuned to the physical-
continuum limit from NRQCD and heavy-HISQ are com-
pared in Figs. 21, 22, 23 and 24 in z-space. There is good
agreement across the entire physical range of z, with par-
ticularly good agreement for the more accurate Bc ! Bs

case.
Whilst the fit forms for the form factors from NRQCD

and heavy-HISQ at Eqs. (18) and (23) di↵er in appear-
ance, they both allow for e↵ects of discretisation and mis-
tuning of the quark masses. In the continuum limit with
physical masses, the two forms collapse such that the

parameters A
(n) from Eq. (19) and A

(n)
000 from Eq. (23)

coincide. Plotted among the functions from the heavy-
HISQ and NRQCD calculations is a function arising from

a ‘chained’ fit where the A
(n)
000 from the heavy-HISQ fit

were used as prior distributions for the A
(n) in the form

Charm decays in Bc
b

c s , d

Bc Bs , B0

HPQCD: Combined analysis of NRQCD and heavy-HISQ results on MILC 2+1+1 HISQ lattices

Vector form factor f+

Cooper et al., (HPQCD) Phys. Rev. D 102, 014513 (2020)
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FIG. 11: Lattice results and fitted f0 form factor data for
B+

c ! B0
s`⌫` with an NRQCD b quark. The grey band shows

the fitted form factor tuned to the limit of vanishing lattice
spacing and physical quark masses.

FIG. 12: Lattice results and fitted f+ form factor data for
B+

c ! B0
s`⌫` with an NRQCD b quark. The grey band shows

the fitted form factor tuned to the limit of vanishing lattice
spacing and physical quark masses.

heavy-HISQ approach is fit to

f(q2) = P (q2)
3X

n,i,j,k=0

A
(n)
ijk

z
n

p

⇥

⇣
amc

⇡

⌘2i ⇣amh

⇡

⌘2j

�(k)
Hc

N
(n)
mis , (23)

where, for k = 0, �(k)
M

= 1 and, for k 6= 0,

�(k)
Hc

=

✓
⇤QCD

MHc

◆k

�

✓
⇤QCD

MBc

◆k

(24)

FIG. 13: Lattice results and fitted f0 form factor data for
B+

c ! B0`⌫` with an NRQCD b quark. The grey band shows
the fitted form factor tuned to the limit of vanishing lattice
spacing and physical quark masses.
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FIG. 14: Fitted f+ form factor data for B+
c ! B0`⌫` with an

NRQCD b quark. The grey band shows the fitted form factor
tuned to the limit of vanishing lattice spacing and physical
quark masses.

where we take ⇤QCD = 500MeV. The mistuning terms
are given by

N
(n)
mis = 1 +

�m
val
c

mtuned
c

an +
�m

sea
c

mtuned
c

bn

+
�m

val
s

10mtuned
s

cn +
�m

sea
s

10mtuned
s

dn +
�ml

10mtuned
s

en, (25)

where we only include the term proportional to �m
val
s

for
the Bc ! Bs case. P (q2), �m and the tuned masses have
the same definitions as in the NRQCD case (Sec. IVB).
In the physical continuum limit, this form collapses to

P (q2)
P

n
z

n

p
A

(n)
000. Again we apply the constraint f0(0) =

f+(0) in the continuum limit (by fixing A
(0)
000 to be the

same in the two cases).

NRQCD
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FIG. 15: Heavy-HISQ form factor results for fs

0 together with
the fitted curve at the physical point with its error band.

FIG. 16: Heavy-HISQ form factor results for fs

+ together with
the fitted curve at the physical point with its error band.

Results for the extrapolated form factors are given in
Figs. 15, 16, 17 and 18 together with the corresponding
lattice data. For the Bc ! Bs case an and cn take prior
values 0(1) and bn, dn and en take prior values 0(0.3) to
reflect the fact that they enter through loop e↵ects. In
the Bc ! Bd case we take prior values of 0(1) for an and
en and 0(0.3) for bn and dn. In both cases we take prior
values of 0(1) for A

n

ijk
except for when i = 1 or j = 1

where we use a prior values of 0(0.3) to account for the
HISQ one loop improvement.

As in the case of an NRQCD spectator quark, we
present coe�cients of the form factors fits from many dif-
ferent fits of the correlator data. Figs. 19 and 20, show
that the coe�cients are insensitive to the choice of the
parameters in the fits of the correlators.

FIG. 17: Heavy-HISQ form factor results for fd

0 together with
the fitted curve at the physical point with its error band.
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FIG. 18: Heavy-HISQ form factor results for fd

+ together with
the fitted curve at the physical point with its error band.

D. Chained Fit

The form factor functions tuned to the physical-
continuum limit from NRQCD and heavy-HISQ are com-
pared in Figs. 21, 22, 23 and 24 in z-space. There is good
agreement across the entire physical range of z, with par-
ticularly good agreement for the more accurate Bc ! Bs

case.
Whilst the fit forms for the form factors from NRQCD

and heavy-HISQ at Eqs. (18) and (23) di↵er in appear-
ance, they both allow for e↵ects of discretisation and mis-
tuning of the quark masses. In the continuum limit with
physical masses, the two forms collapse such that the

parameters A
(n) from Eq. (19) and A

(n)
000 from Eq. (23)

coincide. Plotted among the functions from the heavy-
HISQ and NRQCD calculations is a function arising from

a ‘chained’ fit where the A
(n)
000 from the heavy-HISQ fit

were used as prior distributions for the A
(n) in the form

heavy HISQ
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FIG. 22: Fits of f+ for B+
c ! B0

s`⌫` tuned to the physical-
continuum limit.

FIG. 23: Fits of f0 for B+
c ! B0`⌫` tuned to the physical-

continuum limit.
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FIG. 24: Fits of f+ for B+
c ! B0`⌫` tuned to the physical-

continuum limit.

FIG. 25: Values for the physical-continuum form factors fs

0 =
fs

+ at q2 = 0 and fs

0 and fs

+ at q2
max are plotted against the

mass of the heavy-charm pseudoscalar meson. The curve is
the continuum limit of the heavy-HISQ fit function (Eq. (23))
extrapolated to the physical Bc and D masses. Note that the
region in which the heavy-HISQ calculation has results is the
region above M⌘c . See the text for a description of how the
extrapolation down to the D was done. Also plotted are the
form factor results for D ! K [3] (green squares) as well
as the NRQCD Bc ! Bs result presented in this work (red
circles).

for c to s/d decay depend on the mass of the spectator
quark? We can answer that question with our heavy-
HISQ calculation because we have results at a range of
spectator quark masses from mc upwards (see Fig. 2).
Our form factor fits (Sec. IV C) enable us to extrapolate
up to mb. Our most accurate results are for the c to s

decay case and we concentrate on that here.
Fig. 25 shows the fit curve from the heavy-HISQ results

for f
s

+ and f
s

0 as a function of the heavy-charm meson
mass (as a proxy for the spectator quark mass). The
form factor curves that are plotted are those for q

2 = 0
(where f+ = f0) and for the zero-recoil point (q2

max). At
q
2
max

the daughter meson is at rest in the rest-frame of
the Hc meson. The q

2 value at q
2
max falls slowly as the

heavy-quark mass increases above mc because the mass
di↵erence between Hc and Hs mesons falls. Examining
the region between M⌘c and MBc in Fig. 25 we see almost
no dependence on the spectator mass. The form factor
value that shows the most dependence is f+(q2

max
). This

is not surprising because f+ shows the biggest slope in
q
2 close to q

2
max and hence sensitivity to the value of

q
2
max. Note that the curve from the heavy-HISQ analysis

agrees with the NRQCD results at a spectator mass equal
to that of the b. As discussed in the previous subsection,
the form factors obtained from the two calculations agree
across the full q

2 range.
We can also investigate the behaviour of the heavy-

HISQ fit function as mh is taken below mc to ml where
contact is made with results for D ! K from [3]. For
the form factors at q

2 = 0, we have P (q2) = 1 and our fit
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FIG. 22: Fits of f+ for B+
c ! B0

s`⌫` tuned to the physical-
continuum limit.

FIG. 23: Fits of f0 for B+
c ! B0`⌫` tuned to the physical-

continuum limit.

FIG. 24: Fits of f+ for B+
c ! B0`⌫` tuned to the physical-

continuum limit.

FIG. 25: Values for the physical-continuum form factors fs

0 =
fs

+ at q2 = 0 and fs

0 and fs

+ at q2
max are plotted against the

mass of the heavy-charm pseudoscalar meson. The curve is
the continuum limit of the heavy-HISQ fit function (Eq. (23))
extrapolated to the physical Bc and D masses. Note that the
region in which the heavy-HISQ calculation has results is the
region above M⌘c . See the text for a description of how the
extrapolation down to the D was done. Also plotted are the
form factor results for D ! K [3] (green squares) as well
as the NRQCD Bc ! Bs result presented in this work (red
circles).

for c to s/d decay depend on the mass of the spectator
quark? We can answer that question with our heavy-
HISQ calculation because we have results at a range of
spectator quark masses from mc upwards (see Fig. 2).
Our form factor fits (Sec. IV C) enable us to extrapolate
up to mb. Our most accurate results are for the c to s

decay case and we concentrate on that here.
Fig. 25 shows the fit curve from the heavy-HISQ results

for f
s

+ and f
s

0 as a function of the heavy-charm meson
mass (as a proxy for the spectator quark mass). The
form factor curves that are plotted are those for q

2 = 0
(where f+ = f0) and for the zero-recoil point (q2

max). At
q
2
max

the daughter meson is at rest in the rest-frame of
the Hc meson. The q

2 value at q
2
max falls slowly as the

heavy-quark mass increases above mc because the mass
di↵erence between Hc and Hs mesons falls. Examining
the region between M⌘c and MBc in Fig. 25 we see almost
no dependence on the spectator mass. The form factor
value that shows the most dependence is f+(q2

max
). This

is not surprising because f+ shows the biggest slope in
q
2 close to q

2
max and hence sensitivity to the value of

q
2
max. Note that the curve from the heavy-HISQ analysis

agrees with the NRQCD results at a spectator mass equal
to that of the b. As discussed in the previous subsection,
the form factors obtained from the two calculations agree
across the full q

2 range.
We can also investigate the behaviour of the heavy-

HISQ fit function as mh is taken below mc to ml where
contact is made with results for D ! K from [3]. For
the form factors at q

2 = 0, we have P (q2) = 1 and our fit
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FIG. 11: Lattice results and fitted f0 form factor data for
B+

c ! B0
s`⌫` with an NRQCD b quark. The grey band shows

the fitted form factor tuned to the limit of vanishing lattice
spacing and physical quark masses.
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FIG. 12: Lattice results and fitted f+ form factor data for
B+

c ! B0
s`⌫` with an NRQCD b quark. The grey band shows

the fitted form factor tuned to the limit of vanishing lattice
spacing and physical quark masses.

heavy-HISQ approach is fit to

f(q2) = P (q2)
3X

n,i,j,k=0

A
(n)
ijk

z
n

p

⇥

⇣
amc

⇡

⌘2i ⇣amh

⇡

⌘2j

�(k)
Hc

N
(n)
mis , (23)

where, for k = 0, �(k)
M

= 1 and, for k 6= 0,

�(k)
Hc

=

✓
⇤QCD

MHc

◆k
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FIG. 13: Lattice results and fitted f0 form factor data for
B+

c ! B0`⌫` with an NRQCD b quark. The grey band shows
the fitted form factor tuned to the limit of vanishing lattice
spacing and physical quark masses.

FIG. 14: Fitted f+ form factor data for B+
c ! B0`⌫` with an

NRQCD b quark. The grey band shows the fitted form factor
tuned to the limit of vanishing lattice spacing and physical
quark masses.

where we take ⇤QCD = 500MeV. The mistuning terms
are given by

N
(n)
mis = 1 +

�m
val
c

mtuned
c

an +
�m

sea
c

mtuned
c

bn

+
�m

val
s

10mtuned
s

cn +
�m

sea
s

10mtuned
s

dn +
�ml

10mtuned
s

en, (25)

where we only include the term proportional to �m
val
s

for
the Bc ! Bs case. P (q2), �m and the tuned masses have
the same definitions as in the NRQCD case (Sec. IVB).
In the physical continuum limit, this form collapses to

P (q2)
P

n
z

n

p
A

(n)
000. Again we apply the constraint f0(0) =

f+(0) in the continuum limit (by fixing A
(0)
000 to be the

same in the two cases).

NRQCD heavy HISQ
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�(B+
c ! B0

s
¯̀⌫`) = 26.2(1.2)⇥ 109 s�1

�(B+
c ! B̄0 ¯̀⌫`) = 1.65(10)⇥ 109 s�1

SM predictions:
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FIG. 22: Fits of f+ for B+
c ! B0

s`⌫` tuned to the physical-
continuum limit.
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FIG. 23: Fits of f0 for B+
c ! B0`⌫` tuned to the physical-

continuum limit.

FIG. 24: Fits of f+ for B+
c ! B0`⌫` tuned to the physical-

continuum limit.

FIG. 25: Values for the physical-continuum form factors fs

0 =
fs

+ at q2 = 0 and fs

0 and fs

+ at q2
max are plotted against the

mass of the heavy-charm pseudoscalar meson. The curve is
the continuum limit of the heavy-HISQ fit function (Eq. (23))
extrapolated to the physical Bc and D masses. Note that the
region in which the heavy-HISQ calculation has results is the
region above M⌘c . See the text for a description of how the
extrapolation down to the D was done. Also plotted are the
form factor results for D ! K [3] (green squares) as well
as the NRQCD Bc ! Bs result presented in this work (red
circles).

for c to s/d decay depend on the mass of the spectator
quark? We can answer that question with our heavy-
HISQ calculation because we have results at a range of
spectator quark masses from mc upwards (see Fig. 2).
Our form factor fits (Sec. IV C) enable us to extrapolate
up to mb. Our most accurate results are for the c to s

decay case and we concentrate on that here.
Fig. 25 shows the fit curve from the heavy-HISQ results

for f
s

+ and f
s

0 as a function of the heavy-charm meson
mass (as a proxy for the spectator quark mass). The
form factor curves that are plotted are those for q

2 = 0
(where f+ = f0) and for the zero-recoil point (q2

max). At
q
2
max

the daughter meson is at rest in the rest-frame of
the Hc meson. The q

2 value at q
2
max falls slowly as the

heavy-quark mass increases above mc because the mass
di↵erence between Hc and Hs mesons falls. Examining
the region between M⌘c and MBc in Fig. 25 we see almost
no dependence on the spectator mass. The form factor
value that shows the most dependence is f+(q2

max
). This

is not surprising because f+ shows the biggest slope in
q
2 close to q

2
max and hence sensitivity to the value of

q
2
max. Note that the curve from the heavy-HISQ analysis

agrees with the NRQCD results at a spectator mass equal
to that of the b. As discussed in the previous subsection,
the form factors obtained from the two calculations agree
across the full q

2 range.
We can also investigate the behaviour of the heavy-

HISQ fit function as mh is taken below mc to ml where
contact is made with results for D ! K from [3]. For
the form factors at q

2 = 0, we have P (q2) = 1 and our fit
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FIG. 19: zp expansion coe�cients, for the calculation with a HISQ spectator quark, computed using the variations of correlator

fit parameters listed in Table VI for the Bc ! Bs form factors. The integer x coordinate of each result is given by n(3)
var +

3n(5)
var + 9n(6)

var where n(i)
var = 0, 1, 2 corresponding to original, first and second variations respectively listed in Table VI of set i.

FIG. 20: zp expansion coe�cients, for the calculation with a HISQ spectator quark, computed using the variations of correlator
fit parameters listed in Table VI for the Bc ! Bd form factors. The x coordinate is the same as that in Fig. 19.

FIG. 21: Fits of f0 for B+
c ! B0

s`⌫` tuned to the
physical-continuum limit. The form factor is plotted against
zp/|zp(t�)|.

FIG. 22: Fits of f+ for B+
c ! B0

s`⌫` tuned to the physical-
continuum limit.

E. Dependence of the form factors on the
spectator quark mass

In order to build up a picture of the behaviour of form
factors it is interesting to ask: how do the form factors

FIG. 19: zp expansion coe�cients, for the calculation with a HISQ spectator quark, computed using the variations of correlator

fit parameters listed in Table VI for the Bc ! Bs form factors. The integer x coordinate of each result is given by n(3)
var +

3n(5)
var + 9n(6)

var where n(i)
var = 0, 1, 2 corresponding to original, first and second variations respectively listed in Table VI of set i.
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FIG. 19: zp expansion coe�cients, for the calculation with a HISQ spectator quark, computed using the variations of correlator

fit parameters listed in Table VI for the Bc ! Bs form factors. The integer x coordinate of each result is given by n(3)
var +

3n(5)
var + 9n(6)

var where n(i)
var = 0, 1, 2 corresponding to original, first and second variations respectively listed in Table VI of set i.

FIG. 20: zp expansion coe�cients, for the calculation with a HISQ spectator quark, computed using the variations of correlator
fit parameters listed in Table VI for the Bc ! Bd form factors. The x coordinate is the same as that in Fig. 19.

FIG. 21: Fits of f0 for B+
c ! B0

s`⌫` tuned to the
physical-continuum limit. The form factor is plotted against
zp/|zp(t�)|.

FIG. 22: Fits of f+ for B+
c ! B0

s`⌫` tuned to the physical-
continuum limit.

E. Dependence of the form factors on the
spectator quark mass

In order to build up a picture of the behaviour of form
factors it is interesting to ask: how do the form factors

FIG. 20: zp expansion coe�cients, for the calculation with a HISQ spectator quark, computed using the variations of correlator
fit parameters listed in Table VI for the Bc ! Bd form factors. The x coordinate is the same as that in Fig. 19.

TABLE XI: The form factors from the chained fit evaluated
at q2 = 0 and q2

max.

q2 [GeV]2 fs

0 fs

+ fd

0 fd

+

0 0.621(10) 0.621(10) 0.555(16) 0.555(16)

q2
max 0.817(11) 0.911(18) 0.756(16) 0.910(28)

factor fit forms in the NRQCD study. We label this fit
NRQCD from heavy-HISQ in Figs. 21, 22, 23 and 24. As
with the separate fits for each case of spectator quark,
the form factors for Bc ! Bs and Bc ! Bd are fit si-
multaneously. This chained fit has �

2
/d.o.f. = 1.1 and

is consistent with both the separate fits. We make our
final predictions for the decay rates and values for �|V |

2

using the chained fit.

We include the coe�cients A
(n)
0,+ from the chained fit

in the ancillary json file BcBsd ff updated.json. To
assist those who wish to import the form factors from
these coe�cients, we provide values that the form factors
should take for both q

2 = 0 and q
2
max in Table XI.
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FIG. 21: Fits of f0 for B+
c ! B0

s`⌫` tuned to the
physical-continuum limit. The form factor is plotted against
zp/|zp(t�)|.

E. Dependence of the form factors on the
spectator quark mass

In order to build up a picture of the behaviour of form
factors it is interesting to ask: how do the form factors

Scalar form factor f0
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c ! d

Cooper et al., (HPQCD) Phys. Rev. D 102, 014513 (2020)

15

TABLE XII: Final results of the weighted integral of |f+(q2)|2
over the physical range of squared 4-momentum transfer.
Units are MeV.

B+
c ! B0

s`⌫` B+
c ! B0`⌫`

�|V |�2 1.738(55) ⇥ 10�11 2.29(12) ⇥ 10�11

form at Eq. (23) depends only on MHc . This permits a
straightforward extrapolation to the point MHc = MD in
the continuum limit. For the form factors at zero-recoil
(q2

max), constructing the extrapolation curve is compli-
cated by requiring the dependence of q

2
max on the mass

of the spectator quark. This requires knowledge of MHs

as a function of MHc . To achieve this, we fit our val-
ues of MHs taken from set 6, together with physical
values from experiment [33] at mh = ml, mb (i.e. MK

and MBs), using a simple fit form MHs = MHc(1 +P4
n=1 !n(⇤QCD/MHc)

n + A(a⇤QCD)2 + B(a⇤QCD)4).
Here A, B and !n take prior values 0(2) and we do
not include a⇤ terms for data from [33]. We find this
fit function reproduces our data, as well as the physical
values, well. Fig. 25 also shows the result of this down-
ward extrapolation. Whilst this extrapolation below mc

is outside the region where HQET is expected to be valid,
the curves nevertheless show approximately the correct
amount of upward movement necessary to reproduce the
D ! K results in [3] for f+ and f0 at zero-recoil and
q
2 = 0. The form factors at q

2 = 0 continue to show al-
most no spectator mass dependence, and this is in agree-
ment with the D ! K results.

F. Decay rate

The hadronic quantity required for determining the de-
cay rate and branching fraction is the integral

�|V |
�2 =

G
2
F

24⇡3

Z
t�

0
dq

2
|p2|

3
|f+(q2)|2, (26)

where V is the CKM element Vcs or Vcd. Table XII gives
values for this quantity for each of the Bc ! Bs and
Bc ! Bd processes based on the NRQCD and heavy-
HISQ chained form factor fit described in Sec. IV D. Val-
ues for di↵erent q

2 bins can also be obtained. Proceeding
with the total decay rate, combining these results with
existing CKM matrix values [33] Vcs = 0.997(17) and
Vcd = 0.218(4) yields the predictions

�(B+
c

! B
0
s
`⌫`) = 26.25(90)(83) ⇥ 109 s�1

�(B+
c

! B
0
`⌫`) = 1.650(61)(84) ⇥ 109 s�1 (27)

where the CKM matrix elements are responsible for the
first errors and the second errors arise from our lattice
calculations. The dominant source of lattice QCD un-
certainty is the fitting of 2-point and 3-point correlators
described in Sec. II B 3.
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FIG. 26: Final form factors from the chained fits of f0 (below)
and f+ (above) for B+

c ! B0
s`⌫` in the physical-continuum

limit, plotted against the entire range of physical q2. This fit
is described in Sec. IV D.

We can convert these results for the decay width into
a branching fraction using the lifetime of the Bc meson,
513.49(12.4) fs [42]. This gives

B(B+
c

! B
0
s
`⌫`) = 0.01348(46)(33)(43)

B(B+
c

! B
0
`⌫`) = 0.000847(31)(43)(20) (28)

where now the third uncertainty is from the lifetime.
We also present the ratio of the �|V |

�2 for Bc ! Bs

to Bc ! Bd taking correlations into account between
the numerator and denominator. From the chained fit of
B

+
c

! B
0
s
`⌫` and B

+
c

! B
0
`⌫` form factors, we obtain

�(B+
c

! B
0
s
`⌫`)|Vcd|

2

�(B+
c ! B0`⌫`)|Vcs|

2
= 0.759(44). (29)

In fact the uncertainty is roughly the same as if we were
to treat the numerator and denominator as uncorrelated.

V. CONCLUSIONS

We have reported here the first calculations of the de-
cay rates �(B+

c
! B

0
s
`⌫`) and �(B+

c
! B

0
`⌫`), demon-

strating the success of lattice QCD in studying decays of
heavy-light mesons. The use of HISQ-HISQ c ! s(d)
currents allows for a non-perturbative renormalisation
using the PCVC. We used two di↵erent formulations for
the spectator b quark, heavy-HISQ and NRQCD. Results
from the heavy-HISQ calculations are in good agreement
with the physical-continuum form factors derived from
the calculations using NRQCD b quarks, giving us con-
fidence in assessing and controlling the systematic errors
in each formulation. Simulating at a variety of specta-
tor masses in the heavy-HISQ calculation has provided
a check of the spectator-independence of the renormal-
isation procedure for the vector current. The NRQCD
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FIG. 27: Final form factors from the chained fits of f0 (below)
and f+ (above) for B+

c ! B0`⌫` in the physical-continuum
limit, plotted against the entire range of physical q2. This fit
is described in Sec. IV D.

study also accessed ZV away from zero-recoil to scruti-
nise momentum independence.

Our final form factors from the chained fit that com-
bines both NRQCD and heavy-HISQ results are plotted
against q

2 in Figs. 26 and 27.
The decay rates are predicted from our calculation

with 4.6% and 6.3% uncertainty for �(B+
c

! B
0
s
`⌫`) =

26.2(1.2) ⇥ 109 s�1 and �(B+
c

! B
0
`⌫`) = 1.65(10) ⇥

109 s�1 respectively. There is scope for significant im-
provement should future experiment demand more preci-
sion from the lattice. Such improvement would be readily

achieved by the inclusion of lattices with a finer lattice
in the heavy-HISQ calculation. ‘Ultrafine’ lattices with
a ⇡ 0.045 [fm] were used in [11] to provide results nearer
to the physical-continuum limit with amh ⇡ amb. Larger
statistical samples could also be obtained on the lattices
used here, at the cost of more computational resources.
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Figure 31: The form factors f+(q2) and f0(q2) for B ! ⇡`⌫ plotted versus z (left panel) and
q2 (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred N+ = N0 = 3 BCL fit (five
parameters).

about the compatibility of the procedures to arrive at a given z-parameterization.39 It is
also preferable to present covariance/correlation matrices with enough significant digits
to calculate correctly all their eigenvalues.

For the sake of completeness, we present also a standalone z-fit to the vector form
factor. In this fit, we are able to include the single f+ point at q2 = 17.34 GeV2 that we
mentioned above. This fit uses the FNAL/MILC and RBC/UKQCD results that do make
use of the kinematic constraint at q2 = 0, but is otherwise unbiased. The results of the
three-parameter BCL fit to the HPQCD, FNAL/MILC and RBC/UKQCD calculations
of the vector form factor are:

Nf = 2 + 1 : a+0 = 0.421(13) , a+1 = �0.35(10) , a+2 = �0.41(64) ; (237)

corr(ai, aj) =

0

@
1.000 0.306 0.084
0.306 1.000 0.856
0.084 0.856 1.000

1

A .

Note that the a+0 coe�cient, that is the most relevant for input to the extraction of Vub

from semileptonic B ! ⇡`⌫`(` = e, µ) decays, shifts by about a standard deviation.

8.3.2 Form factors for Bs ! K`⌫

Similar to B ! ⇡`⌫, measurements of Bs ! K`⌫ decay rates enable determinations of
the CKM matrix element |Vub| within the Standard Model via Eq. (236). From the lattice
point of view, the two channels are very similar. As a matter of fact, Bs ! K`⌫ is actually
somewhat simpler, in that the kaon mass region is easily accessed by all simulations making
the systematic uncertainties related to chiral extrapolation smaller.

At the time of our FLAG 19 review [4], results for Bs ! K`⌫ form factors were
provided by HPQCD [568] and RBC/UKQCD [555] for both form factors f+ and f0, in
both cases using Nf = 2+ 1 dynamical configurations. HPQCD has recently emphasized
the value of using ratios of form factors for the processes Bs ! K`⌫ and Bs ! Ds`⌫ for the
determination of |Vub/Vcb| [569]. In the FLAG Review 19 [4], FNAL/MILC preliminary
results had been reported for both Nf = 2 + 1 [570] and Nf = 2 + 1 + 1 [562], but were

39Note that generating synthetic data is a trivial task, but less so is choosing the number of required points
and the q

2 values that lead to an optimal description of the form factors.
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 and  form factors awaiting updatesB → π B → D

B ! D (Nf = 2 + 1)

ain Central Values Correlation Matrix

a+0 0.896 (10) 1 0.423 -0.231 0.958 0.596

a+1 -7.94 (20) 0.423 1 0.325 0.498 0.919

a+2 51.4 (3.2) -0.231 0.325 1 -0.146 0.317

a00 0.7821 (81) 0.958 0.498 -0.146 1 0.593

a01 -3.28 (20) 0.596 0.919 0.317 0.593 1

Table 52: Coe�cients and correlation matrix for the N+ = N0 = 3 z-expansion of the B ! D
form factors f+ and f0. The chi-square per degree of freedom is �2/dof = 4.6/6 = 0.77. The
lattice calculations that enter this fit are taken from FNAL/MILC [604] and HPQCD [605].
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Figure 34: The form factors f+(q2) and f0(q2) for B ! D`⌫ plotted versus z (left panel)
and q2 (right panel). See text for a discussion of the data sets. The grey and salmon bands
display our preferred N+ = N0 = 3 BCL fit (five parameters).

correlated. The Fermilab/MILC (HPQCD) statistical error is 58% (31%) of the total error
for every f+ value, and 64% (49%) for every f0 one. Using this information we can easily
build the o↵-diagonal block of the overall covariance matrix (e.g., the covariance between
[f+(q21)]FNAL and [f0(q22)]HPQCD is (�[f+(q21)]FNAL⇥ 0.58) (�[f0(q22)]HPQCD⇥ 0.49), where
�f is the total error).

For our central value, we choose an N+ = N0 = 3 BCL fit, shown in Tab. 52.
The coe�cient a+3 can be obtained from the values for a+0 –a

+
2 using Eq. (528). We find

�2/dof = 4.6/6 = 0.77. The fit, which is dominated by the FNAL/MILC calculation, is
illustrated in Fig. 34.

Reference [601] is the only existing Nf = 2 work on B ! D`⌫ transitions, that
furthermore provided the first available results for Bs ! Ds`⌫. This computation uses
the publicly available ETM configurations obtained with the twisted-mass QCD action at
maximal twist. Four values of the lattice spacing, ranging between 0.054 fm and 0.098 fm,
are considered, with physical box lengths ranging between 1.7 fm and 2.7 fm. At two values
of the lattice spacing two di↵erent physical volumes are available. Charged-pion masses
range between ⇡ 270 MeV and ⇡ 490 MeV, with two or three masses available per lattice
spacing and volume, save for the a ⇡ 0.054 fm point at which only one light mass is
available for each of the two volumes. The strange- and heavy-valence quarks are also
treated with maximally twisted-mass QCD.
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Talk by Alejandro Vaquero next, covering new results for  form factorsB → D*



Third column

• Persistent tension between inclusive and exclusive 
determinations


• Much more about  in Alejandro Vaquero’s talk on 
Monday at 11:00


• Details of form factor calculations also in Chris Bouchard’s 
talk on Tuesday at 09:30


• More exclusive modes being measured, requiring 
corresponding form factors

B → D*ℓν

Figure 38: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines corre-
spond to 68% and 95% C.L. contours, respectively. The result of the global fit (which does not
include |Vub/Vcb| from baryon modes) is (|Vcb|, |Vub|) = (39.16± 0.67, 3.62± 0.14)⇥ 10�3 with
a p-value of 0.39. The lattice and experimental results that contribute to the various contours
are the following. B ! ⇡`⌫: lattice (FNAL/MILC [554] and RBC/UKQCD [555]) and ex-
periment (BaBar [648, 649] and Belle [650, 651]). B ! D`⌫: lattice (FNAL/MILC [604]
and HPQCD [605]) and experiment (BaBar [663] and Belle [662]). B ! D⇤`⌫: lattice
(FNAL/MILC [603]) and experiment (Belle [656]). B ! ⌧⌫: lattice (fB determinations
in Fig 27) and experiment (BaBar [526] and Belle [525]). Bs ! K`⌫/Bs ! Ds`⌫: lat-
tice (HPQCD [568], RBC/UKQCD [554], FNAL/MILC [571], HPQCD [610]) and experi-
ment (LHCb [665]). ⇤b ! p`⌫/⇤b ! ⇤c`⌫: lattice (Detmold 15 [514]) and experiment
(LHCb [632]). The inclusive determinations are taken from Refs. [165, 260, 664] and read
(|Vcb|, |Vub|)incl = (42.00± 0.64, 4.32± 0.29)⇥ 10�3.
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s

b c

Bs Ds

covariance matrix between the form factor values obtained
from correlator fits on a given ensemble along with
correlated lattice spacing uncertainties. The goodness of
fit obtained is χ2=Ndof ¼ 0.51, with 58 degrees of freedom.
The fit parameters that are constrained by the fit are listed in
Table X of Appendix C.
In Fig. 6 we show our results and fit function in z-space

for the productP × f of each form factor and its pole factor,
P, given by 1 − q2=MH0;"

c
in Eq. (26). This shows that the z-

dependence of P × f is relatively benign for both form
factors and the main mh-dependent effect is the smooth
reduction in value of P × f asmh increases. The final result
at the physical b quark mass is given by the grey band.
In Fig. 7, we show the results and fit function in q2-

space. The form factors for the physical b quark mass (i.e.,
those corresponding to Bs → Ds decay) are given by the
grey band.
From Fig. 6 it is clear that the largest effect in the lattice

results is a z-independent shift as a function of heavy quark
mass. Not surprisingly then, the parameters that are best
constrained by the fit are d0i000 ¼ dþi000 and ρ

0
0 ¼ ρþ0 , i.e., the

parameters that control this heavy-quark mass extrapola-
tion. We find that d0;þ1000 ¼ 1.397ð82Þ and ρ0;þ0 ¼ 0.419ð20Þ.
Other coefficients are not as well constrained by the fit,
including those that allow for discretization effects.
Allowing for such terms in the fit, however, means that
their impact on the final uncertainty is included.
Figure 8 shows the physical fþ and f0 form factors on

the same plot and covering the full q2 range for the Bs →
Ds decay. Figure 9 plots the associated error budget for the
two form factors throughout the q2 range. The dominant
uncertainty comes from statistical errors. There are also
significant uncertainties from the q2 andmh dependence for

FIG. 5. Results of tests of the fs0ðq2maxÞ fit. The top three blue
points show fs0ðq2maxÞ at continuum and physical b mass, if data
from the fine, superfine or ultrafine ensembles are not used in the
fit. The fourth and fifth blue points show the result if data at the
highest/lowest amval

h0 value on each ensemble are removed. The
point labeled Nfit ¼ 3 is the result of extending the sum in
Eq. (28) so that it truncates at 3 rather than 2 in each of the i, j, k
directions. The points labeled þ log2ðMηh=MηcÞ represents the
result of adding a ρ2 log2ðMηh=MηcÞ term in the first set of
brackets in Eq. (28), where ρ2 is a new fit parameter with the same
prior distribution as ρ. Similarly for the þ logðMηh=MηcÞ=Mηh
point. The point labelled “no log” results from omitting the factor
ð1þ ρ logðMηc=MηhÞÞ. The lowest point shows the value from
the fit result for Rs

0ðq2maxÞ, multiplied by the experimental value
for

ffiffiffiffiffiffiffiffiffi
MBc

p
[28] and the result of our determination of fBc

at the
physical point detailed in Appendix A of [49].

FIG. 6. Pfs0;þ in z-space, where P is the appropriate pole function for each form factor given in Eq. (26). The colored points show
lattice results, i.e., outputs from the correlator fits. The colors correspond to the legend given in Fig. 7. Sets listed in this legend follow
the order of sets in Table I. The lowest grey band shows the result of our fit at a ¼ 0 and physical l,s, c and bmasses. Each of the higher
grey bands show the fit form evaluated at the heavy quark masses, lattice spacings and l,s and cmasses of each of our sets of lattice data.
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In Fig. 11, we compare our final form factors to those
determined from the lattice QCD calculation using the
NRQCD approach for the b quark already used as a
comparison at q2max in Fig. 4 [35]. The NRQCD calculation
works directly at the b quark mass but on relatively coarse
lattices and hence is unable to obtain results at large
physical momenta for the Ds meson. The results close
to zero-recoil are extrapolated to q2 ¼ 0 using a z-space
parametrization. As the figure shows, our results are in
excellent agreement with the NRQCD calculation but are
more precise for both fs0ðq2Þ and fsþðq2Þ throughout all q2.
This is because we can avoid the significant systematic

uncertainty that the NRQCD calculation has from the
perturbative matching to continuum QCD of the
NRQCD current that couples to the W.
The Bs → Dslν form factors have also recently been

obtained by the Fermilab Lattice/MILC collaborations
from their earlier B → D form factors and ratios of Bs →
Ds and B → D form factors using the Fermilab formalism
for b and c quarks in [69]. Our results are consistent with
theirs (shown in Fig. 20 of [69]) but we have a smaller
uncertainty at q2 ¼ 0.

C. RðDsÞ
Using our calculated form factors fs0;þðq2Þ, we can

calculate the differential rate for Bs → Dslν decay from
Equation (1). This is a function of the lepton mass and so
differs between the heavy τ and the light e, μ leptons. The
differential rate for μ and τ is compared in Fig. 12. We take
the meson and lepton masses needed for Eq. (1) from [28]
and ηEW ¼ 1.011ð5Þ [23]. The distribution in the τ case is
cut off at q2 ¼ m2

τ and so, although there is enhancement
from m2

l=q
2 terms in Eq. (1) that reflect reduced helicity

suppression, the integrated branching fraction for the τ case
is smaller than for the μ.
The ratio of branching fractions for semileptonic B

decays to τ and to e=μ is being used as a probe of lepton
universality with an interesting picture emerging [36,37].
Here we provide a new SM prediction for the quantity

RðDsÞ ¼
BðBs → DsτντÞ
BðBs → DslνlÞ

; ð34Þ

where l ¼ e or μ [the difference between e and μ is
negligible in comparison to our precision on RðDsÞ].
Our result is

FIG. 10. Results for fs0;þðq2Þ against q2 at the physical point,
comparing the ratio method (from Appendix B) and the direct
method (from Sec. III B).

FIG. 11. Our final result for fs0;þðq2Þ compared to form factors
calculated using an NRQCD action for the b quark [35]. Part of
the NRQCD band is shaded darker than the rest (q2⪆9.5 GeV2)
to signify the region where lattice results were directly calculated.
The NRQCD form factors in the rest of the q2 range are the result
of an extrapolation using a BCL parametrization.

FIG. 12. Differential decay rates for the Bs → Dsμνμ and
Bs → Dsτντ decays, calculated using the form factors determined
in this work.
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HPQCD: Heavy HISQ on MILC’s nf = 2+1+1 HISQ lattices
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FLAG2021: Fit to  form factor data has χ2/d.o.f. = 1.54Bs → K

LHCb, Phys. Rev. Lett. 126, 081804 (2021)
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Figure 2: Measurements of |Vub|/|Vcb| in this Letter and in Ref. [7], and ratio inferred from the
PDG [24] averages of exclusive |Vub| and |Vcb| measurements, where the ⇤0

b ! pµ�⌫̄µ result is
not included. The form factor calculation used in each case is mentioned [29–31].

where the uncertainties are statistical, systematic, from the external inputs (D�
s

branching fraction, B
0
s lifetime and |Vcb|) and the B

0
s ! D

�
s form factor inte-

gral, respectively. Combining the systematic uncertainties, the branching fraction is
B(B0

s ! K
�
µ
+
⌫µ) = (1.06± 0.05 (stat)± 0.08 (syst))⇥ 10�4.

The ratio of CKM elements |Vub|/|Vcb| is obtained through the relation
RBF = |Vub|2/|Vcb|2 ⇥ FFK/FFDs . For the FFK value, a recent LQCD prediction is used
for the high q

2 range, FFK(q2 > 7GeV2
/c

4) = 3.32± 0.46 ps�1 [29], while a LCSR calcu-
lation is used for the low q

2 range, FFK(q2 < 7GeV2
/c

4) = 4.14± 0.38 ps�1 [30], due to
the lower accuracy of LQCD calculatons in this region. The obtained values are

|Vub|/|Vcb|(low) = 0.0607± 0.0015 (stat)± 0.0013 (syst)± 0.0008 (Ds)± 0.0030 (FF),

|Vub|/|Vcb|(high) = 0.0946± 0.0030 (stat)+ 0.0024
� 0.0025 (syst)± 0.0013 (Ds)± 0.0068 (FF),

where the latter two uncertainties are from the D
�
s branching fraction and the form

factor integrals. The discrepancy between the values of |Vub|/|Vcb| for the low and high
q
2 ranges is due to the di↵erence in the theoretical calculations of the form factors. To
illustrate this, the LQCD calculation in Ref. [29] gives FFK = 0.94 ± 0.48 ps�1 at low
q
2, which can be compared to the chosen LCSR value, 4.14 ± 0.38 ps�1 [30]. Figure 2
depicts the |Vub|/|Vcb| measurements of this Letter, |Vub|/|Vcb|(low) = 0.061± 0.004 and
|Vub|/|Vcb|(high) = 0.095± 0.008, with the uncertainties combined. The |Vub|/|Vcb| mea-
surement obtained with the ⇤0

b baryon decays [7], for which a form factor model based on
a LQCD calculation [31] was used, is also shown.

In conclusion, the decay B
0
s ! K

�
µ
+
⌫µ is observed for the first time. The branching

fraction ratios in the two q
2 regions reported in this Letter represent the first experimental

ingredient to the form factor calculations of the B
0
s ! K

�
µ
+
⌫µ decay. Moreover, the

|Vub|/|Vcb| results will improve both the averages of the exclusive measurements in the
(|Vcb|, |Vub|) plane and the precision on the least known side of the CKM unitarity triangle.
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leading-order lattice HQET to get the form factors at one
point, q2 ¼ 22.12 GeV2. While our results are consistent
with those from Refs. [31,32], they are in tension with
HPQCD’s results [30]. We note that Ref. [30] employs
the so-called modified z expansion, where the chiral-
continuum extrapolation is combined with the z expansion
into one fit function by modifying the z coefficients with
lattice spacing and light-quark-mass dependent terms. This
procedure may affect the shape of the form factors. Indeed,
in their calculation of the form factors for the B → Klþl−

decay in Ref. [83], the HPQCD Collaboration compared
the form factors obtained after the modified z expansion
with the results from a two-step method that is very similar
to ours, performing first a chiral-continuum extrapolation,
and then a z-expansion fit. While they find only small
differences between the two sets of form factors, those
obtained from their implementation of the two-step method
are in better agreement with the results of Ref. [18].
However, unlike the case at hand, the form factors of
Ref. [18] are not in significant tension with HPQCD’s
results of Ref. [83]. We see that the tension between our
Bs → Klν form factor results and those of Ref. [30]
increases with decreasing q2 to roughly 2.3σ at q2 ¼ 0.
The RBC and UKQCD Collaborations [31], on the
other hand, adopt the same procedure as we do, namely
a chiral-continuum extrapolation at high q2, followed by a
z-expansion extrapolation to q2 ¼ 0.
A comparison of the form factor at q2 ¼ 0 is shown in

Fig. 14, where we also include results from calculations
using light-cone sum rules [34,35], a relativistic quark
model [33], and NLO perturbative QCD [36].

VII. PHENOMENOLOGICAL APPLICATIONS

The angular-dependent differential decay rate for
Bs → Klν is given in Eq. (2.3). One can construct at most
three independent observables from there. In the following,
we will consider the differential decay rate dΓ=dq2 in
Sec. VII A, the forward-backward asymmetry Al

FBðq2Þ in
Sec. VII B, and the lepton polarization asymmetry Al

polðq2Þ
in Sec. VII C. The latter two quantities are sensitive to the
mass of the final-state charged lepton. In Sec. VII D, we
also construct the ratios of the scalar and vector form
factors between the Bs → Klν and Bs → Dslν decays. In
Sec. VII E, we briefly compare our results for several
quantities with those found in Refs. [30,31].

A. Decay rate

The differential decay rate can be obtained from Eq. (2.3)
by integrating over the angle θl, which yields

dΓ
dq2

¼
Z

1

−1

d2Γ
dq2d cos θl

d cos θl

¼ G2
FjVubj2

128π3M2
Bs

!
1 −

m2
l

q2

"
2

jpKj

×
#
16

3
M2

Bs
jpKj2

!
1þ m2

l

2q2

"$$$$fþðq2Þj2

þ 2m2
l

q2
ðM2

Bs
−M2

KÞ2jf0ðq2Þj2
%
: ð7:1Þ

In Fig. 15, we plot the Standard Model predictions of the
differential decay rate divided by jVubj2 over the whole
kinematic range of q2 for Bs → Kμν and Bs → Kτν.
One can also explore the ratio of the differential decay

rates

Rτ=μðq2Þ ¼ dΓðBs → KτνÞ=dq2

dΓðBs → KμνÞ=dq2
: ð7:2Þ

Figure 16 shows the prediction for Rτ=μðq2Þ.
The total decay rate is given by

ΓðBs → KlνÞ ¼
Z

q2max

m2
l

dq2
dΓ
dq2

; ð7:3Þ

with q2max ¼ t− ¼ ðMBs
−MKÞ2, as in Eq. (6.4). The

numerical results for Γ=jVubj2 are

jVubj−2ΓðBs → KμνÞ ¼ 4.26ð0.92Þ ps−1; ð7:4aÞ

jVubj−2ΓðBs → KτνÞ ¼ 3.27ð0.47Þ ps−1: ð7:4bÞ

In Appendix C, we also provide partially integrated
differential decay rates in evenly spaced q2 bins.

FIG. 14. Comparison of the theoretical calculations of the
Bs → Klν form factors at q2 ¼ 0. The results shown are from
light-cone sum rules (LCSR) [34,35], NLO perturbative QCD
(pQCD) [36], relativistic quark model (RQM) [33], and (2þ 1)-
flavor lattice QCD (LQCD) from the HPQCD Collaboration [30],
the RBC and UKQCD Collaborations [31], and the Fermilab
Lattice and MILC Collaborations.
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The kinematic constraint Eq. (2.2) is satisfied within
errors.4 Enforcing this kinematic constraint, as explained
below, further improves the fþ form-factor fit. The fit
parameters also satisfy the unitarity condition [73] and the
condition estimated from heavy-quark power counting
[79]. Adding the heavy-quark constraint does not affect
the fit results. The kinematic constraint is enforced by
requiring fþ and f0 to be exactly equal at the q2 ¼ 0 point.
In practice, we set a prior in the z-parametrization fit

fþðq2 ¼ 0Þ − f0ðq2 ¼ 0Þ ¼ 0; ð6:9Þ

with width ϵ ¼ 10−10. When further increasing the expan-
sion order to K ¼ 4, the central value of the form factors at
q2 ¼ 0 agrees with the results with K ¼ 3, but the error
increases. The unitarity and heavy-quark constraints are
still satisfied automatically. The results stabilize at K ¼ 4
and do not change withK ¼ 5. We conclude that the K ¼ 4
fit with the kinematic constraint includes the systematic
uncertainty due to truncating the z-parametrization series.
The left panel of Fig. 12 shows the preferred K ¼ 4

form-factor results, with poles removed, as functions of z.
The q2 ¼ 0 point is at the right end of the plot. Note that
the shape of the form factors as functions of z is para-
metrization dependent. For convenience, the right panel of
Fig. 12 shows the form factors as functions of q2. The q2

dependence of the form factors is parametrization inde-
pendent and can be used directly to compare with results of
other groups.

C. Comparison with existing results

Several other groups have also calculated the same
form factors. We note that Refs. [30,31] use the BsK
threshold instead of Bπ in their implementation of the

z parametrization. Since the z parameter, by definition [see
Eq. (6.3)], depends on the threshold (tcut), we cannot
directly compare the z dependence of our form factors
with those of Refs. [30,31]. We therefore compare our form
factors with those from other lattice QCD calculations only
as functions of q2. This is shown in Fig. 13.
The results of the HPQCD Collaboration [30] are based

on (2þ 1)-flavor-MILC-asqtad configurations for the sea
quarks, and employ the HISQ action for the light valence
quarks, and lattice NRQCD for the heavy b quark. The
RBC and UKQCD Collaborations [31] use (2þ 1)-flavor-
domain-wall fermions for the sea quarks and light valence
quarks, and a variant [81,82] of the Fermilab action for
the heavy b quark. The ALPHA Collaboration [32] uses

FIG. 13. Theoretical lattice QCD calculations of the Bs → Klν
form factors from the HPQCD Collaboration [30], the RBC and
UKQCD Collaborations [31], the ALPHA Collaboration [32],
and the Fermilab Lattice and MILC Collaborations, marked as
“This work” in the figure. Different treatments of the bottom
quark on the lattice are listed in parenthesis.

FIG. 12. Preferred K ¼ 4 z-parametrization fit results for the form factors fþ (upper curve) and f0 (lower curve) as functions of z and
q2. The kinematic constraint Eq. (6.9) is applied. The corresponding bands with larger errors are the results of the chiral-continuum
extrapolation, as shown in Sec. IV D. They are used as inputs for the z-parametrization fit. The bands with smaller errors are the resultant
z-parametrization fits. The q2 ¼ 0 point corresponds to z ¼ 0.205 as shown in Table VIII. The meson poles are listed in Table IX.

4Note that the kinematic constraint is automatically satisfied in
Eq. (3.5) before taking the extrapolation as is being done in this
section. After the extrapolation, this constraint is not guaranteed
if not imposed in the fit.
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Figure 32: The form factors f+(q2) and f0(q2) for Bs ! K`⌫ plotted versus z (left panel) and
q2 (right panel). In the left plot, we remove the Blaschke factors. See text for a discussion
of the data sets. The grey and salmon bands display our preferred N+ = N0 = 4 BCL fit
(seven parameters).
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FNAL/MILC 15D [576] 2+1 A F � F � X BCL
HPQCD 13E [577] 2+1 A � � � � X BCL

Table 49: Summary of lattice calculations of the B ! K semileptonic form factors.

results for Nz = 4 z-expansion of the tensor form factor and its correlations with the
expansions for the vector and scalar form factors, which we consider the FLAG estimate,
are shown in Tab. 50. Partial decay widths for decay into light leptons or ⌧+⌧� are
presented as a function of q2. The former is compared with results from LHCb [581],
while the latter is a prediction.

The averaging of the HPQCD and FNAL/MILC results for the B ! K form factors
is similar to our treatment of the B ! ⇡ and Bs ! K form factors. In this case,
even though the statistical uncertainties are partially correlated because of some overlap
between the adopted sets of MILC ensembles, we choose to treat the two calculations as
independent. The reason is that, in B ! K, statistical uncertainties are subdominant and
cannot be easily extracted from the results presented by HPQCD and FNAL/MILC. Both
collaborations provide only the outcome of a simultaneous z-fit to the vector, scalar and
tensor form factors, that we use to generate appropriate synthetic data. We then impose
the kinematic constraint f+(q2 = 0) = f0(q2 = 0) and fit to (N+ = N0 = NT = 3)
BCL parameterization. The functional forms of the form factors that we use are identical
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FIG. 5. The points show our lattice QCD results for each form factor as given in Tables VIII, IX, X and XI multiplied by the
pole function of Eq. (26) and plotted in z-space. The legend gives the mapping between symbol colour and shape and the set
of gluon field configurations used, as given by the lattice spacing, and the heavy quark in lattice units. The blue curve with
error band is the result of our polynomial fit in z with lattice spacing and heavy quark mass dependence (Eq. (27)), evaluating
the result in the continuum limit and for the b quark mass, to give the physical form factor for Bc ! J/ .

use are given, with their uncertainties, in Table XIV. To
determine the mistuning of the u/d = l quark mass in
the sea we take

am
tuned
l

= am
tuned
s

/�[ms/ml], (34)

with �[ms/ml] = 27.18(10) from [49].
We take priors of 0(1) for each bn for each form factor,

multiplying terms of order O(a2) by 0.5 because a
2 errors

are removed in the HISQ action at tree-level [7]. We also
use priors of 0.0(0.5) for each Bn, Cn and Dn for each
form-factor since sensitivity to sea quark masses enter
only at 1-loop. All remaining priors are taken as 0(1). We
have checked that the prior width is conservative using
the empirical Bayes criterion [50].

In doing our fit to Eq. (27) we impose the kinematical
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FIG. 11. Angular di↵erential decay rates for B�
c ! J/ `

�
⌫`

for the ` = µ case. From the top down, d�/dq2d cos(✓J/ ),
d�/dq2d cos(✓W ) and d�/dq2d�. Each rate is normalised by
the total decay rate �(B�

c ! J/ (! µ
+
µ
�)µ�

⌫µ).

inant contribution to AFB for m
2
`

<< q
2, is less than or

equal to zero across the full physical q
2 range. The be-

haviour of AFB near q
2 = 0 in the ` = µ case originates

from the �2m
2
`
/q

2
HtH0 cos(✓W ) term in Eq. 2. When

m
2
`
/q

2
⇡ O(1) it is apparent from Figure 10 that this

term will dominate over the H
2
+ � H

2
� contribution. In

the middle plot of Figure 13 we see that A�e is equal to
unity across the full q

2 range, in line with the expecta-
tion that in the massless limit the lepton is produced in
a purely left handed helicity eigenstate. In the bottom
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FIG. 12. The di↵erential rate d�/dq2 for B
�
c ! J/ `

�
⌫`

for the ` = µ case, normalised by the total decay rate �.

plot of Figure 13 we see that the longitudinal polarisa-

tion fraction, F
J/ 

L
, approaches unity near q

2 = 0 where
H0 and Ht dominate the total rate, and goes to 1/3 at
q
2
max where H0 = H+ = H� and Ht = 0.
We also compute the total decay rate for the cases

` = e and ` = µ. We find

�(B�
c

! J/ µ
�
⌫µ)

|⌘EWVcb|
2

= 1.74(12) ⇥ 1013 s�1 (40)

= 11.47(79) ⇥ 10�12 GeV .

and

�(B�
c

! J/ e
�
⌫e)

|⌘EWVcb|
2

= 1.75(12) ⇥ 1013 s�1 (41)

= 11.52(80) ⇥ 10�12 GeV

with the ratio �e/�µ = 1.003996(91). We see that e↵ects
from including mµ amount to 0.4% of the rate. The error
budget for the total rate for the ` = µ case is given in
Table XVII. Not surprisingly we see that the largest con-
tributions come from the discretisation e↵ects from the
heavy quark mass, the statistical uncertainties on the
finest (ultrafine) lattices and the quark mass mistuning
term, predominantly that from the sea quarks. Both of
these uncertainties can be reduced in future by increas-
ing statistics on ultrafine lattices, adding more results on
lattices that include physical u/d quarks and obtaining
results on exafine (a =0.03 fm) lattices.

We can compare our results for the total rate to those
from earlier, non-lattice QCD approaches such as po-
tential models and QCD sum rules. In these other ap-
proaches it is much harder to quantify sources of uncer-
tainty and derive an error budget. One way to obtain a
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Bc semileptonic decays: b ➙ u 
III. RESULTS

A. Form factors

We use the correlation function fits on each set indicated
in Table IX of Appendix A 4. The energies and matrix
elements on each set are stored (with all correlations) in the
ancillary file corrfit_results.tar [10]. We fit the
subsequent form factor data to the form described in
Sec. II F 2. Fitting with noise added to both the data and
priors, as demonstrated in [48] to compensate for the
reduced χ2=d:o:f: from fitting with a SVD cut, we find
χ2=d:o:f: ¼ 0.65 and χ2=d:o:f: ¼ 0.43 for the cases Bc →
Dl and Bc → Ds, respectively.
We check that our priors are sensible and conservative by

performing empirical Bayes analyses [34]. We use the
lsqfit.empbayes_fit function to test the width of
the parameters in the following two sets: ρðnÞ and Aðnr00Þ,
and AðnrjkÞ for jþ k > 0. The widths of each parameter in
these sets are varied simultaneously by a common multi-
plicative factor w. The empirical Bayes analyses show that
the values for w are around 0.5, so our priors are moderately
conservative.
In Fig. 4, we present our form factors in the limit of

vanishing lattice spacing and physical quark masses across

the entire physical range of q2. Details of the fits of the
correlation functions and lattice form factors from which
Fig. 4 is derived are given in Appendixes A and B.
Appendix C provides details of our form factors in the
limit of vanishing lattice spacing and physical quark
masses.
Figure 5 shows the form factors fl;s0;þ on the same plot.

This figure shows how the form factors vary as the daughter
quark mass changes from ms to ml ¼ ms=27.4. We plot
each form factor from q2 ¼ 0 up to the zero-recoil point
where q2 ¼ ðMBc

−MDðsÞ Þ, which depends on the daughter
quark mass. The form factors for the strange daughter quark
are larger than those for the light daughter quark at all q2

values. This mirrors what is seen, for example, in the
comparison of D → π and D → K form factors [49].
For the case Bc → Ds, we show in Fig. 6 the ratio

fTðmbÞ=fþ across the entire range of q2. Large energy
effective theory (LEET) [41] expects this ratio near q2 ¼ 0

FIG. 4. Fit functions for the Bc → Dl and Bc → Ds form
factors fl0;þ and fs0;þ;T , respectively, tuned to the continuum
limit with physical quark masses. The tensor form factor is at the
scale 4.8 GeV.

FIG. 5. Fit functions for the four form factors fl;s0;þ tuned to the
continuum limit with physical quark masses.

FIG. 6. Ratio of the tensor and vector form factors of Bc → Ds
across the entire range of physical q2. The behavior is in
agreement with LEET [41], which predicts a constant ratio
ðMBc

þMDs
Þ=MBc

.
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The adjustment for Ds is negligible, and this is also
expected to be the case for the Bc meson. The sizes of
the errors achieved in our calculations here are such that
effects from topological freezing (which could be of similar
size for form factors as those seen for decay constants) are
negligible, so we ignore them. In the future, more accurate
form factor calculations may need to incorporate adjust-
ments due to nonequilibrated topological charge distribu-
tions on the ultrafine and finer lattices.
The heavy-HISQ method sees all flavors of quarks

implemented with the HISQ [4] formalism. This is a fully
relativistic approach which involves calculations for a set of
quark masses on ensembles of lattices with a range of fine
lattice spacings, enabling a fit from which the physical
result at the b quark mass in the continuum can be
determined. In our heavy-HISQ method, we utilize a
valence HISQ quark with mass mh that takes values
between mc and mb. We describe this quark as “heavy.”
In the limit of physical quark masses, the heavy quark will
coincide with the b quark. Regarding the mesons that this

quark forms with a constituent charm, strange or light
quark, we adopt nomenclature for these mesons that is
similar to mesons with a constituent bottom quark. For
example, we label the low-lying heavy-charm pseudoscalar
meson as Hc. If we were to take mh ¼ mb, then this meson
would coincide with the Bc pseudoscalar meson.
This heavy-HISQ calculation uses bare heavy quark

masses amh ¼ 0.5, 0.65, 0.8 on all four sets in Table I. The
masses of the corresponding heavy-charm pseudoscalar
mesons Hc are plotted in Fig. 1. The mass of the heaviest
heavy-charm pseudoscalar meson is only 6% lighter than
the physical Bc meson.
Momentum is inserted only into the valence light

(strange) quark of the DlðsÞ meson; thus, the initial Hc
meson is always at rest on the lattice. The momentum
insertion is implemented through partially twisted boun-
dary conditions [29,30] in the ð 1 1 1 Þ direction. The
twists used on each set are given in Table II. The twist angle
θ is related to the three-momentum transfer q ¼ p1 − p2 by

jqj ¼ πθ
ffiffiffi
3

p

aNx
: ð5Þ

For example, zero twist (θ ¼ 0) corresponds to zero recoil
where q2 takes its maximum physical value, which we
denote as q2max. In previous studies, such as Fig. 3 in [6], it
has been observed that the continuum dispersion relation is
closely followed for mesons with staggered quarks, par-
ticularly on the finer lattices. The twists we use allow a
considerable proportion of the physical q2 range to be
probed. Most of the twists in Table II originate from a
variety of past calculations in which the corresponding
propagators were saved for future use.
Figure 2 shows the q2 realized by the twists in Table II.

The values of q2=q2max are given for each twist and heavy
quark mass for both Hc → Dl and Hc → Ds. Twists that
give negative q2 are unphysical but will nevertheless aid the
fits of the form factors across the physical range. For all of
the sets except one, all of the q2 range is covered for the
lightest heavy quark mass value amh ¼ 0.5 (recall that
Fig. 1 shows the corresponding mass of the heavy-charm
pseudoscalar mesons). For the finest lattice, set 4 in Table I,
Fig. 2 shows for the largest heavy quark mass, close to mb.

FIG. 1. The massMHc
of the heavy-charm pseudoscalar meson

is plotted against the lattice spacing squared for each of the values
amh ¼ 0.5, 0.65, 0.8 used in the heavy-HISQ calculation. Values
for MHc

are obtained from fitting the correlation functions as
described in Sec. II E. The continuum-physical point is denoted
by a cross at a ¼ 0 fm and MHc

¼ MBc
from experiment [28].

Data from sets 1–4 are denoted by the colors red, blue, green and
magenta, respectively. Data for amh ¼ 0.5, 0.65, 0.8 can be
identified by the diamond, triangle and circle markers, respec-
tively. These choices will be repeated in all subsequent plots.

TABLE II. Twists used for heavy-HISQ calculations on each of the four sets given in Table I. The twists are in the
ð 1 1 1 Þ direction and defined in Eq. (5). The corresponding values of q2 as a proportion of q2max are shown in
Fig. 2.

Set twists θ for Bc → Ds Twists θ for Bc → Dl

1 0, 0.4281, 1.282, 2.141, 2.570 0, 0.4281, 1.282, 2.141, 2.570
2 0, 0.8563, 2.998, 5.140 0, 3.000, 5.311
3 0, 1.261, 2.108, 3.624, 4.146 0, 1.261, 2.108, 2.666
4 0, 0.706, 1.529, 2.235, 4.705 0, 0.706, 1.529, 2.235, 4.705
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C. Extracting form factors from matrix elements

The conserved HISQ vector current is given explicitly in
Appendix A of [31]. It takes the form of a complicated
linear combination of multilink point-split operators. While
the conserved current has the advantage that it does not
require a multiplicative renormalization factor, its form is
unwieldy for lattice computations. Hence, we elect to use
simple local currents that are not conserved and determine
the corresponding renormalizations.
Our calculation uses HISQ quarks exclusively. In par-

ticular, since we use HISQ for both the parent heavy quark
and the daughter light or strange quark, we can use the
partially conserved vector current Ward identity to relate
matrix elements of the renormalized local vector current
ZVV

μ
local with matrix elements of the local scalar density

through

qμhDlðsÞjVμ
localjHciZV ¼ ðmh −mlðsÞÞhDlðsÞjSlocaljHci: ð6Þ

This holds since the mass and scalar density multiplicative
renormalization factors Zm and ZS satisfy ZmZS ¼ 1. Using
Eq. (6) to determine ZV is a fully nonperturbative strategy.
Up to discretization effects, the renormalization factor is
independent of q2, so it is sufficient to deduce its value at
zero recoil (q ¼ 0 and maximum q2). Using different
staggered “tastes” of mesons in Eq. (6) will contribute a

discretization error that is accounted for when fitting the
lattice form factor data. At zero recoil, Eq. (6) only features
matrix elements of the scalar density and the temporal
component of the vector current, so we do not compute
matrix elements of the spatial components of the vector
current (though they will be considered in Sec. IV B as part
of our investigation towards future improvements).
Combining Eqs. (6) and (1) yields

flðsÞ0 ðq2Þ ¼ hDlðsÞjSlocaljHci
mh −mlðsÞ

M2
Hc

−M2
DlðsÞ

: ð7Þ

We use Eq. (7) to extract f0 from the given combination of
quark masses, meson masses and the matrix element of the
scalar density.
Equation (1) for μ ¼ 0 can be trivially rearranged to

yield

flðsÞþ ðq2Þ¼
ZVhDlðsÞjV0

localjHci−q0flðsÞ0 ðq2Þ
M2

Hc
−M2

DlðsÞ
q2

p0
2þp0

1−q0
M2

Hc
−M2

DlðsÞ
q2

: ð8Þ

At zero recoil, the denominator vanishes so fþ cannot be
extracted here. In practice, using Eq. (8) near zero recoil is
problematic since both the numerator and denominator
approach 0 as q2 increases towards its maximum value at
zero recoil. This is discussed further in Appendix B. [In
Sec. IV B, we consider an alternative extraction of fþ by
using Eq. (1) with μ ≠ 0.]
Finally, the tensor form factor is obtained through

fsTðq2Þ ¼
ZThDsjT1;0

localjHciðMHc
þMDs

Þ
2iMHc

p1
2

; ð9Þ

where T1;0
local is the local tensor operator and ZT is its

multiplicative renormalization factor that takes the lattice
tensor current to the MS scheme. We use values of the
associated multiplicative renormalization factor ZT
obtained using the RI-SMOM intermediate scheme. We
give these values in Table III. Values in the RI-SMOM
scheme at scale 3 GeVare converted to scale 4.8 GeV in the

FIG. 2. The q2 values on each set as a proportion of the
maximum value q2max ¼ ðMHc

−MDlðsÞ Þ
2. From top to bottom,

data from sets 1–4 are displayed (see Table I). For different amh
on a given set, the same twists were used. As described in the
caption for Fig. 1, data from sets 1–4 and heavy quark masses
amh are denoted by different colors and marker styles. Values
used here for the masses of the initial and final mesons are found
from fits of correlation functions (to be discussed in Sec. II E).

TABLE III. Values used for the multiplicative renormalization
factor ZT of the tensor operator obtained from Tables VIII and IX
in [32] at scalemb in the MS scheme. The set handles correspond
to those given in Table I. The top row gives the mean values of
ZT , and the rows beneath give the covariance matrix scaled by a
factor of 105.

Sets 1 and 2 Set 3 Set 4

0.9980 1.0298 1.0456
0.6250 0.6242 0.6059

0.6250 0.6057
0.6250
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LHCb is working on an analysis of 
ℬ(Bc → D(*)ℓν)/ℬ(Bc → J/ψ ℓν)

the residual momentum dependence of the form factors not
accounted for by the pole factor Pðq2Þ−1. Note that the y
axis is smaller in Figs. 25 and 26 than for Figs. 23 and 24
since most of the q2 dependence of the form factors has
been removed on multiplying by the pole factor Pðq2Þ. The
polynomial for f0 appears linear in z-space to a good
approximation. For fþ;T, the fit curves show a small
amount of curvature. We compare fits with Nn ¼ 3 and
4 in Appendix B 3 to ensure that our truncation of the z-
expansion is appropriate.
As is standard with heavy-HISQ analyses of decays of a

valence b quark, the q2 dependence of the form factors is
inferred from data on multiple lattices, which each have a
different range of q2 since q2max varies with amh. This can
make the plots shown in Figs. 23–26 difficult to interpret

since there are several different extrapolations taking place
simultaneously to reach the fit curve in the continuum limit
with physical quark masses. Considering just the data at
zero recoil can provide a clearer understanding of how the
fit curves shown in the figures relate to the lattice data for
the form factors. Figure 27 shows, for both the cases Bc →
Dl and Bc → Ds, data for f0 at zero recoil plotted against
MHc

alongside the fit function tuned to the continuum limit
with physical light, strange and charm quark masses. This
figure shows how the dependence on the heavy quark mass
is resolved by the factors ΩðnÞðΛ=MHlðsÞ Þ

r in Eq. (16). For
the purposes of presenting the fit as a continuous function
of the MHc

, we approximate the heavy-light and heavy-
strange pseudoscalar mass as MHq

≈MHc
− ðMBc

−MBq
Þ

where q ¼ l or s. The lattice data follow the curve closely.
The error band is most narrow at around 4 GeV, and the
error flares slightly as MHc

approaches MBc
.

2. Imposition of the kinematic constraints

The form factors must obey f0ð0Þ ¼ fþð0Þ in the
continuum limit for all masses of the heavy-charm pseu-
doscalar meson (see Sec. II F 2). Since we take t0 ¼ 0 in
Eq. (15), z ¼ 0 at q2 ¼ 0. Hence, the kinematic constraint

FIG. 24. Data and fit for the form factors fs0;þ;T . The scale of the
y-axis is shared with Fig. 23.

FIG. 25. Data and fit for the form factors fl0;þ multiplied by the
pole factor Pðq2Þ [see Eq. (16)]. The fit band is the polynomialP

n c
ðnÞð−zÞn [coefficients cðnÞ are defined in Eq. (C2)].
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from the CKM element Vub. For the ratio of widths with τ
and μ in the final state, we find that

ΓðBþ
c → D0τþντÞ

ΓðBþ
c → D0μþνμÞ

¼ 0.682ð37Þ: ð30Þ

Much of the error on our form factors cancels in this ratio,
and we achieve an uncertainty of 7%.
We compare our results with those for the decay mode

Bþ
c → J=ψlþνl. We take the form factors for this decay

from HPQCD’s lattice QCD calculation in [3]. We combine
these form factors with those for Bþ

c → D0lþνl computed
in this study to find the ratios

!!!!
Vcb

Vub

!!!!
2 ΓðBþ

c → D0μþνμÞ
ΓðBþ

c → J=ψμþνμÞ
¼ 0.257ð36Þð18Þ;

!!!!
Vcb

Vub

!!!!
2 ΓðBþ

c → D0τþντÞ
ΓðBþ

c → J=ψτþντÞ
¼ 0.678ð69Þð45Þ: ð31Þ

The first error comes from our form factors for
Bþ
c → D0μþνμ, and the second error comes from the form

factors for Bþ
c → J=ψμþνμ in [3]. We treat the form factors

for Bþ
c → J=ψμþνμ as uncorrelated to the Bþ

c → D0lþνl
form factors (a conservative strategy). In Fig. 10, we plot
the ratio of dΓ=dq2 for the two processes for m2

l < q2 <
ðMBc

−MJ=ψÞ2 and each of the cases l ¼ μ, τ. Note that
the ratio plotted is the inverse of the one used in Eq. (31).
A possible method for determining the ratio of

jVcsj=jVubj is to determine the ratio of branching fractions
for the Bc decay to D0eþνe and Bseþνe. Using our form
factors for Bc → D and the form factors for Bc → Bs from
[7], we find

jVubj2

jVcsj2
BðBþ

c → B0
seþνeÞ

BðBþ
c → D0eþνeÞ

¼ 5.95ð84Þð19Þ × 10−3: ð32Þ

References [53,54] point out that the weak matrix
elements for Bc → D and Bc → Bs have a simple ratio
at the zero-recoil point in the limit ofmb ≫ mc ≫ ΛQCD. In
this limit, the Bc meson is a pointlike particle, and the weak
matrix elements factorize into a factor that depends on the
daughter meson decay constant and a factor that depends
on the Bc wave function, which is the same in both
processes. Thus, the ratio of weak matrix elements becomes

hDjVμjBci
hBsjVμjBci

!!!!
zero−recoil

¼ MDfD
MBs

fBs

: ð33Þ

Using the decay constants from [24], the rhs evaluates to
0.32. We expect an uncertainty on this value of size
ΛQCD=mc (∼30%) since the HQET result relies on
mc ≫ ΛQCD. By using our form factors for Bc → D and
those for Bc → Bs from [7], we find that the lhs evaluates to
0.571(17)(8), much larger than the prediction from HQET.
We conclude that HQET is not a reliable guide here.
Calculations from three-point sum rules [54] give 0.5(2).

FIG. 9. Differential decay rate η−2EWjVubj−2dΓðBþ
c →

D0lþνlÞ=dq2 as a function of q2 for the cases l ¼ μ in blue
and l ¼ τ in red.

TABLE VI. For Bþ
c → D0lþνl, we give values for the branch-

ing ratios (BR) for each of the cases l ¼ e, μ, τ. We take the
lifetime of the Bc meson to be 513.49(12.4) fs [52]. The errors
from the lifetime and the CKM matrix element Vub are shown
explicitly. The error from ηEW is negligible. We ignore uncer-
tainties from long-distance QED contributions since the meson
D0 in the final state is neutral.

Decay mode BR × 105

Bþ
c → D0eþνe 3.37ð48Þlatticeð8ÞτBc ð42ÞCKM

Bþ
c → D0μþνμ 3.36ð47Þlatticeð8ÞτBc ð42ÞCKM

Bþ
c → D0τþντ 2.29ð23Þlatticeð6ÞτBc ð29ÞCKM

FIG. 10. We plot the ratio of dΓ=dq2 for each of the processes
Bþ
c → J=ψlþνl and Bþ

c → D0lþνl for the q2 range of the Bþ
c →

J=ψlþνl decay. The decay width for the former process is
derived from form factors found in [3], and the decay width of the
latter process is derived from form factors determined in this
study. The case l ¼ μ is shown in blue, and the case l ¼ τ is
shown in red.
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Inclusive decays

• Gambino and Hashimoto (PRL 125, 032001 (2020)) proposal 
to determine inclusive decay rates from lattice QCD


• Want


• Can compute


• Can be related to integral over W


• Progress reported at Lattice 2022 by A. Smecca, A. 
Barone, R. Kellermann

2

where GF is the Fermi constant. The momentum trans-
fer qµ and the lepton energy E` are evaluated in the rest
frame of the initial B̄s meson. The leptonic tensor Lµ⌫

is explicitly written as Lµ⌫ = pµ
`
p⌫
⌫̄

� p` · p⌫̄gµ⌫ + p⌫
`
pµ⌫̄ �

i✏µ↵⌫�p`,↵p⌫̄,� for massless neutrinos. The hadronic ten-
sor Wµ⌫(p, q) is defined through

Wµ⌫(p, q) =
X

Xc

(2⇡)3�(4)(p � q � r)

⇥ 1

2EBs

hB̄s(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |B̄s(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and q0 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc, respectively.
Thus, the total decay rate can be calculated as

� =
G2

F
|Vcb|2

24⇡3

Z q2
max

0
dq2

p
q2

2X

l=0

X̄(l), (3)

where q2
max = ((m2

Bs
� m2

Ds
)/2mBs)

2 and

X̄(l) ⌘
Z

mBs�
p

q2

p
m

2
Ds

+q2

d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is assumed to be perpendicular
to that. The repeated indices in (5)–(7) are not summed.
The integral with respect to ! in (4) represents the sum
over states that could appear for a given momentum q.

On the lattice, as a counterpart of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [9]

CJJ

µ⌫
(t; q) =

X

x

eiq·x

2mBs

hB̄s(0)|J†
µ
(x,t)J⌫(0,0)|B̄s(0)i (8)

from four-point functions including the interpolating op-
erators for the B̄s meson state |B̄s(0)i. Now we intro-

duce the transfer matrix on the lattice e�Ĥt to express
the time dependence of the matrix element in (8) as

1

V

1

2mBs

hB̄s(0)|J̃†
µ
(�q)e�ĤtJ̃⌫(q)|B̄s(0)i, (9)

where J̃⌫(q) denotes a Fourier transform of the inserted
current: J̃⌫(q) =

P
x eiq·xJ⌫(x). On the other hand, the

integral over ! in (4) can be rewritten in the form

Z 1

0
d!K(!, q)hB̄s(0)|J̃†

µ
(�q)�(Ĥ � !)J̃⌫(q)|B̄s(0)i

= hB̄s(0)|J̃†
µ
(�q)K(Ĥ, q)J̃⌫(q)|B̄s(0)i.

(10)

Here K(!, q) represents an integral kernel determined
by the explicit form of the integrands (5)–(7). The !-
integral is implicit on the right hand side; all the inter-
mediate states may exist between the currents. Compar-
ing the right hand side with (9), we find that the integral
(10) can be evaluated if the kernel operator is well ap-
proximated by a polynomial of the form

K(Ĥ, q) = k0(q) + k1(q)e�Ĥ + · · · + kN (q)e�NĤ (11)

with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be achieved
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|B̄s(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
h µ| ⌫i

' c⇤0
2

+
NX

j=1

c⇤
j

h µ|T ⇤
j
(e�Ĥ)| ⌫i

h µ| ⌫i
. (12)

(The dependence on q is omitted for simplicity.) T ⇤
j
(x)

stands for the shifted Chebyshev polynomials, which
are derived from the standard Chebyshev polynomials
Tj(x) as T ⇤

j
(x) ⌘ Tj(2x � 1), so that they are de-

fined in the range 0  x  1. Their first few terms
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according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among polynomials of order N .

The integral kernel K(!, q) is chosen as
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for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to
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where GF is the Fermi constant. The momentum trans-
fer qµ and the lepton energy E` are evaluated in the rest
frame of the initial B̄s meson. The leptonic tensor Lµ⌫

is explicitly written as Lµ⌫ = pµ
`
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� p` · p⌫̄gµ⌫ + p⌫
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sor Wµ⌫(p, q) is defined through
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It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and q0 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc, respectively.
Thus, the total decay rate can be calculated as
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while the i-th direction is assumed to be perpendicular
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The integral with respect to ! in (4) represents the sum
over states that could appear for a given momentum q.

On the lattice, as a counterpart of the hadronic ten-
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elements of the form [9]
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ing the right hand side with (9), we find that the integral
(10) can be evaluated if the kernel operator is well ap-
proximated by a polynomial of the form
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(e�Ĥ)| ⌫i/h µ| ⌫i can be constructed from

CJJ

µ⌫
(t + 2t0)/CJJ

µ⌫
(2t0) = h µ|e�Ĥt| ⌫i/h µ| ⌫i.

The coe�cients c⇤
j

in (12) are obtained from

c⇤
j

=
2

⇡

Z
⇡

0
d✓K

✓
� ln

1 + cos ✓

2

◆
cos(j✓), (13)

according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among polynomials of order N .

The integral kernel K(!, q) is chosen as

K(l)
�

(!) = e2!t0(�
p

q2)2�l(mBs � !)l

⇥✓�(mBs �
p

q2 � !) (14)

for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to

2

where GF is the Fermi constant. The momentum trans-
fer qµ and the lepton energy E` are evaluated in the rest
frame of the initial B̄s meson. The leptonic tensor Lµ⌫

is explicitly written as Lµ⌫ = pµ
`
p⌫
⌫̄

� p` · p⌫̄gµ⌫ + p⌫
`
pµ⌫̄ �

i✏µ↵⌫�p`,↵p⌫̄,� for massless neutrinos. The hadronic ten-
sor Wµ⌫(p, q) is defined through

Wµ⌫(p, q) =
X

Xc

(2⇡)3�(4)(p � q � r)

⇥ 1

2EBs

hB̄s(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |B̄s(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and q0 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc, respectively.
Thus, the total decay rate can be calculated as

� =
G2

F
|Vcb|2

24⇡3

Z q2
max

0
dq2

p
q2

2X

l=0

X̄(l), (3)

where q2
max = ((m2

Bs
� m2

Ds
)/2mBs)

2 and

X̄(l) ⌘
Z

mBs�
p

q2

p
m

2
Ds

+q2

d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is assumed to be perpendicular
to that. The repeated indices in (5)–(7) are not summed.
The integral with respect to ! in (4) represents the sum
over states that could appear for a given momentum q.

On the lattice, as a counterpart of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [9]

CJJ

µ⌫
(t; q) =

X

x

eiq·x

2mBs

hB̄s(0)|J†
µ
(x,t)J⌫(0,0)|B̄s(0)i (8)

from four-point functions including the interpolating op-
erators for the B̄s meson state |B̄s(0)i. Now we intro-

duce the transfer matrix on the lattice e�Ĥt to express
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for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to

where �̃B(0; t) is a B-meson creation/annihilation operator projected onto zero spatial
momentum by integrating over space at a time t. A zero-momentum B meson is thus
created at time tsrc and annihilated at tsnk. The two currents are inserted in between, at
times t2 and t1. The charmed hadrons are created at time t1 with a momentum insertion
�q and propagate until they are transformed back to the B-meson state at time t2.

The four-point function Cµ⌫ is saturated by the B-meson non-local matrix element

Mµ⌫(t; q) = e�mBt

Z
d3x

eiq·x

2mB

hB̄(0)|J†
µ(x,t)J⌫(0,0)|B̄(0)i , (2.19)

when the double limit tsrc ! �1, tsnk ! 1 is taken. To include a proper normalization,
one can analyse

Mµ⌫(t2 � t1; q) = ZB lim
tsnk!+1
tsrc!�1

Cµ⌫(tsnk, t2, t1, tsrc; q)

C(tsnk � t2)C(t1 � tsrc)
, (2.20)

where C(t) is the B-meson two-point function

C(t) = T h0| �̃B(0; t)�̃†
B

(0; 0)|0i (2.21)

and ZB is its residue when a large time separation is taken, C(t) ! ZBe�mBt.
Starting from eq. (2.19) we can establish the connection between Mµ⌫(t; q) and the

hadronic tensor given in eq. (2.11). We have

Mµ⌫(t; q) =

Z
d3x

eiq·x

2mB

hB̄(0)|J†
µ(0,0)e�tĤ+iP̂ ·xJ⌫(0,0)|B̄(0)i

=
(2⇡)3

2mB

hB̄(0)|J†
µ(0,0)e�tĤ�3(P̂ + q)J⌫(0,0)|B̄(0)i

=

Z 1

0
d! Wµ⌫(!, q) e�!t . (2.22)

The problem of the calculation of X̄(q2) is now reduced to that of trading the integral
of Wµ⌫(!, q) with the kernels e�t! for the integral with the kernels ⇥(l)(!max � !) (or
K(l)(!, q2)).

The general inverse problem represented by the extraction of hadronic spectral densities
from Euclidean correlators is notoriously ill-posed. Recently, methods to cope with these
problems have been proposed, and they treat the above mentioned integrals with some
kernels. In this paper we use two approaches proposed in refs. [13, 21]. The differences
between the two methods will be discussed in detail in the following sections. Here we
concentrate on the common starting point of the two approaches, which are actually closely
related to each other.

We start by introducing an arbitrary length scale a. On the lattice this will be identified
with the lattice spacing. The correlators Mµ⌫(t; q) will be computed at times t = a⌧ where
⌧ � 0 is an integer. By introducing the variable x = e�a! (and its inverse mapping
! = � log(x)/a), standard theorems of numerical analysis guarantee that any C1 function
f(!) ⌘ g(x) in the interval ! 2 [0, 1] (corresponding to x 2 [0, 1]), vanishing at ! = 1
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B-mixing in the Standard Model
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B mixing: recent LQCD results

• ETMC (Carrasco et al., JHEP 03 (2014) 016) — ratio method (incl. static limit), twisted mass valance and sea (nf = 2), RI-MOM


• Fermilab/MILC (Bazavov et al., PRD 93, 113016 (2016)) — Fermilab b, AsqTad valance and sea (nf = 2+1), mostly non-
perturbative


• RBC/UKQCD (Boyle et al., arXiv:1812.08791) — domain wall valance (extrapolating to the b) and sea (nf = 2+1), ratios only


• HPQCD (Dowdall et al., PRD 100, 094508 (2019)) — NRQCD b, HISQ valance and sea (nf = 2+1+1, MILC), perturbative


• Results presented for “bag factors”

BðiÞ
Bq
ðμÞ≡ hBqjO

q
i jB̄qi

ðμÞ
MS

ηqi ðμÞf2Bq
M2

Bq

; ð2Þ

where here μ is the renormalization scale, andMBq
and fBq

are the mass and weak decay constant of the Bq meson:

h0jΨ̄i
qγ0γ5Ψi

bjBqðp⃗ ¼ 0Þi ¼ fBq
MBq

: ð3Þ

The normalization parameter ηqi ðμÞ is chosen so that the
bag parameters equal 1 in the “vacuum saturation approxi-
mation,” where gluon (and other QCD) exchanges between
the initial and final B̄q and Bq are ignored (see [8,10] for
more details):

ηq1 ¼
8

3
;

ηq2 ¼ −
5

3

! MBq

mbðμÞ þmqðμÞ

"
2

;

ηq3 ¼
1

3

! MBq

mbðμÞ þmqðμÞ

"
2

;

ηq4 ¼ 2

#! MBq

mbðμÞ þmqðμÞ

"
2

þ 1

6

$
;

ηq5 ¼
2

3

#! MBq

mbðμÞ þmqðμÞ

"
2

þ 3

2

$
: ð4Þ

We use renormalization scale μ ¼ mbðmbÞ; the correspond-
ing values for the normalization factors are given in Table I.

The bag parameters provide both computational advan-
tages and physical insights. The leading-order logarithms in
chiral perturbation theory, coming from the matrix element
of the 4-quark operator and f2Bq

, partly cancel in the ratio;
see Appendix B. In particular, the coefficient of the chiral
logarithm from the tadpole diagrams is reduced by a factor
of 4. Therefore bag parameters should be less dependent
upon the light-quark mass; we find very little mass
dependence. Finite-volume effects will be correspondingly
reduced. We also find that most of the dependence on
lattice spacing cancels. Finally, as we will show, the bag
parameters all turn out to be of order one, suggesting that
vacuum saturation is a useful approximation. For these
reasons, we focus here on bag parameters; values for the
matrix elements are easily obtained from the bag param-
eters given values for the decay constants [2,13].

B. Lattice QCD 4-quark operators and matching

Matrix elements of the 4-quark operators are regulator
dependent, and so we need to convert matrix elements
calculated in our simulation (with the lattice regulator) into
the corresponding matrix elements for the more conven-
tional MS scheme. The differences between the two
schemes are ultraviolet and so can be calculated using
QCD perturbation theory. To the lowest and first order in αs
the relationship has the form (for μ ¼ mb)

hOii
ðmbÞ
MS

¼ ð1þ αsziiÞhOiilatt þ
X

j≠i
αszijhOjilatt

þO
!
α2s ;

αsΛQCD

mb
; αsðaΛQCDÞ2

"
: ð5Þ

The coefficients zij relevant to our simulation were calcu-
lated in [14] and are summarized in Table II. The scale
for αs depends on the lattice spacing; we use the same
values for αs used in [15] to calculate renormalizations for
the axial-vector current that couples to Bq mesons (see
Table IV for the values).

TABLE I. Normalizations ηqi ðmbÞ for bag parameters [Eq. (4)].
These are calculated using MBs

¼ 5.3669ð2Þ GeV and MBd
¼

5.2796ð2Þ GeV [11]; m̄bðm̄bÞ ¼ 4.162ð48Þ GeV and mb=ms ¼
52.55ð55Þ [12]; and ms=ml ¼ 27.18ð10Þ [13].

Bq ηq1 ηq2 ηq3 ηq4 ηq5

Bs 2.667 −2.669ð62Þ 0.534 (12) 3.536 (74) 2.068 (25)
Bd 2.667 −2.678ð62Þ 0.536 (12) 3.547 (74) 2.071 (25)

TABLE II. Perturbative coefficients used in Eq. (5) to convert matrix elements of lattice NRQCD-HISQ 4-quark operators into MS
matrix elements. Results are given for the NRQCD valence b-quark masses (in lattice units) used with our different ensembles. The
continuum scheme used is the MSNDR scheme of [16] (BBGLN) with μ ¼ mb. The coefficients come from [14], with zij ≡ ρij − ζij
where ρij and ζij are listed in Tables III and IVof that papera. The perturbative coefficients zA0

for the temporal axial current [Eq. (A6)]
are also listed; these are from [2], which used results from [17].

amb z11 z12 z22 z21 z33 z31 z44 z45 z55 z54 zA0

3.297 −0.472ð2Þ −0.299ð2Þ 0.440 (2) 0.041 (2) 0.036 (2) 0.092 (2) 0.646 (2) −0.252ð2Þ −0.141ð2Þ 0.111(2) 0.024(2)
3.263 −0.469ð2Þ −0.296ð2Þ 0.438 (2) 0.041 (2) 0.038 (2) 0.091 (2) 0.640 (2) −0.251ð2Þ −0.140ð2Þ 0.108(2) 0.022(2)
3.25 −0.469ð2Þ −0.294ð2Þ 0.438 (2) 0.041 (2) 0.040 (2) 0.091 (2) 0.639 (2) −0.252ð2Þ −0.139ð2Þ 0.106(2) 0.022(2)
2.66 −0.429ð2Þ −0.235ð2Þ 0.394 (2) 0.044 (2) 0.101 (2) 0.080 (2) 0.514 (2) −0.254ð2Þ −0.127ð2Þ 0.037(2) 0.006(2)
2.62 −0.427ð2Þ −0.229ð2Þ 0.388 (2) 0.044 (2) 0.105 (2) 0.080 (2) 0.501 (2) −0.254ð2Þ −0.128ð2Þ 0.032(2) 0.001(2)
1.91 −0.296ð2Þ −0.108ð2Þ 0.340 (2) 0.045 (2) 0.259 (2) 0.053 (2) 0.299 (2) −0.243ð2Þ −0.063ð2Þ −0.084ð2Þ −0.007ð2Þ

aNote that we have corrected two typographical errors, for ρ21 for amb ¼ 2.66 and ζ22 for amb ¼ 2.62.
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TABLE VI. MS bag parameters (Eq. (2) with µ = mb) for
the five 4-quark operators. Results are given for both Bs and
Bd mesons, and for the ratios of bag parameters.

B
(1)
Bq

(mb) B
(2)
Bq

(mb) B
(3)
Bq

(mb) B
(4)
Bq

(mb) B
(5)
Bq

(mb)

Bs 0.813 (35) 0.817 (43) 0.816 (57) 1.033 (47) 0.941 (38)
Bd 0.806 (40) 0.769 (44) 0.747 (59) 1.077 (55) 0.973 (46)

Bs/Bd 1.008 (25) 1.063 (24) 1.092 (34) 0.959 (21) 0.967 (23)

TABLE VII. Percent errors coming from di↵erent sources
for the Bs meson’s bag parameters B

(n)
Bs

and B
(1)
Bs

/B
(1)
Bd

(Ta-
ble VI). The total error for each quantity is also shown. The
error budgets for the Bd meson’s bag parameters are very sim-
ilar. Systematic errors from finite-volume, QED and strong-
isospin breaking e↵ects are estimated to be below 0.1% and
hence negligible in Appendix B 5.

B
(1)
Bs

B
(2)
Bs

B
(3)
Bs

B
(4)
Bs

B
(5)
Bs

B
(1)
Bs

/B
(1)
Bd

lattice data 1.4 1.4 1.5 1.6 1.5 1.5
⌘

q
i 0.0 2.3 2.3 2.1 1.2 0.0

↵
2
s terms 2.1 2.9 5.2 1.9 1.5 0.1

↵s⇤QCD/mb terms 2.9 2.8 2.9 2.8 2.7 0.0
(a⇤QCD)2n terms 1.8 1.9 2.3 1.5 1.8 0.1
ml extrapolation 0.4 0.4 0.7 0.5 0.4 1.9
Total 4.3 5.3 7.0 4.6 4.1 2.5

Bd mesons is very similar.
Finally we convert our final results into bag parameters

using Eq. (2). The bag parameters are listed in Table VI.
Despite the wide variation in values for hOni/(fM)2, the
bag parameters are within 30% of 1. This shows that the
vacuum saturation approximation can be of some utility.

Figure 4 compares our final results for ratios of bag pa-

rameters B
(n)
Bs

/B
(n)
Bd

with results from the di↵erent con-
figuration sets. Results are plotted versus the value of
m

2
⇡ used in each simulations. Again there is very little

variation with quark mass, with all ratios within 5% of 1.
The error budgets for the Bs bag parameters are

shown in Table VII. The dominant source of error comes
from uncalculated terms in perturbation theory (↵2

s and
↵s⇤QCD/mb terms). The sensitivity to these terms de-
pends on the operator. For example, it is particularly
high for O3, because matrix elements for O3 are a lot
smaller than those of O1 (see Eq. 4) which are mixed
in by Eq. (5). The error budgets for Bd mesons are al-
most identical to those for Bs, but have twice as much
contribution from statistical uncertainties in the lattice
data. Almost all of the uncertainties, and some of the
statistical errors, cancel in ratios of Bs to Bd meson bag
parameters.

Matrix elements of the 4-quark mixing operators can
be obtained from the ratios in Table V given values for
the decay constants and masses. Note that the corre-
sponding bag parameters for O2...5 have larger fractional
errors than the ratios, and so should not be used for this
purpose. The larger errors result from uncertainties due

0.8 0.9 1.0 1.1 1.2
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FIG. 5. A comparison of our results (red filled circles at nf =
4) to previous lattice QCD values for the Bs bag parameters
BBs

(mb) in the MS scheme for all five SM and BSM operators.
Previous results come from the Fermilab/MILC collaboration
on nf = 3 gluon field configurations (blue crosses) [8] and
the ETM collaboration on nf = 2 gluon field configurations
(purple filled diamonds) [7]. Note that the ETM results for
O4 and O5 have been converted to the definition of the bag
parameter given in Eq. (4). The filled green square at nf = 3
for the O1 operator comes from an earlier HPQCD calculation
using NRQCD b quarks [4]. The nf = 2 results are missing s

sea quarks, whose impact cannot be estimated perturbatively
(and no uncertainty is included for this in the error bars). It is
therefore unclear what level of agreement to expect between
these results and those for nf = 3 and 4. Since we do not
expect missing c in the sea to have a significant impact on
the bag parameters [8] we can meaningfully compare nf = 3
and nf = 4. The grey bands are the weighted average of our
new results with those of [8], and the average value of the bag

parameter B
(n)
Bs

(mb) for each operator On is indicated in that
panel. We include a vertical line at value 1.0 for comparison
to the vacuum saturation approximation.

to the factors eta
q
i in the bag-parameter definition (see

Table VII and Eq. (2)).

IV. DISCUSSION

A. Comparison to previous results

Our results for the bag parameters for all five SM and
BSM operators given in Table VI are more accurate than
previous lattice QCD results. This is for a number of

Legend
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B
(1)
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/B
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avg
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B
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/B
(2)
Bd
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avg

=1.06(2)

B
(3)
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/B
(3)
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avg

=1.08(3)

B
(4)
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/B
(4)
Bd
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avg

=0.96(2)

B
(5)
Bs

/B
(5)
Bd

��
avg

=0.97(2)

FIG. 6. A comparison of our results (red filled circles at
nf = 4) to previous lattice QCD values for the ratio of Bs

to Bd bag parameters for all five SM and BSM operators.
Previous results come from the Fermilab/MILC collaboration
on nf = 3 gluon field configurations (blue crosses) [8] using
their quoted correlations to reconstruct the ratio. Since we
do not expect missing c in the sea to have a significant impact
on the bag parameters [8] we can meaningfully compare nf =
3 and nf = 4. The grey bands are the weighted average
of these two sets of results and the average value for each
operator is indicated in that panel. For O1 at nf = 3 we
also show previous results from HPQCD (green filled square)
using NRQCD b quarks [4] and RBC/UKQCD (purple filled
diamond) using domain-wall quarks with masses of mc and
above and extrapolating results to the b quark mass [9]. We
include a vertical line at value 1.0 to make clear which ratios
are above, and which below, this value.

reasons:

• We work directly with the bag parameters rather
than the 4-quark operator matrix elements. The
bag parameters are expected from chiral perturba-
tion theory to have little dependence on valence and
sea quark masses (see Appendix B). This expecta-
tion is borne out in our results and means that we
are able easily to combine results at both unphysi-
cal and physical light quark masses.

• We have results for the physical light quark mass
at two values of the lattice spacing and hence we
can reach the physical point without chiral extrap-
olation.

• The gluon field configurations that we use include

the e↵ect of u, d, s and c quarks in the sea and
so we do not have an uncertainty associated with
missing flavours of sea quarks (the Fermilab/MILC
collaboration include a 2% uncertainty in their 4-
quark operator matrix elements from missing c in
the sea [8]).

Figure 5 shows a comparison of our bag parameters
for the Bs meson to those from [8] and [7] (and also, for
O1, to [4]). The results from [7] include only u and d

quarks in the sea and the uncertainty does not include
an estimate of the impact of missing s sea quarks. It is
therefore not clear whether we should expect agreement
between these nf = 2 results and our nf = 4 results. The
fact that the nf = 2 purple diamonds from the ETM col-
laboration are around 20% below our results for O4 and
O5 is reminiscent of what is seen in kaon mixing. ETM
use the RI-MOM renormalisation scheme for the purple
diamonds and it has been shown in kaon mixing [36] that
the use of the RI-MOM scheme (rather than RI-SMOM)
for the equivalent 4-quark operators has large systematic
errors that push down the value of the bag parameter.
This may then be the main reason (rather than a di↵er-
ence of nf ) for the discrepancy with our results for O4

and O5.
The nf = 3 and nf = 4 results should be comparable

because the impact of missing c quarks in the sea on the
bag parameters is expected to be very small [8]. Our new
results agree within 2� in each case with [8] but in every
case are more accurate. The largest discrepancy is for

B
(1)
Bs

at 1.9�.
The weighted average of our nf = 4 results and the

nf = 3 results from [8] is given by the grey band in
the Figure and the value of that average is given in each
panel. We assume no correlations, here and subsequently,
between our results and those of [8] because they use
di↵erent actions for both the b quark and the light quarks
and di↵erent gluon field configurations (with a di↵erent
sea quark action and generated with a di↵erent Monte
Carlo updating algorithm).

Figure 6 shows a comparison of the ratio of bag param-
eters for Bs to Bd for each operator for our new results
and those of [8]. Our new results are a lot more accu-
rate, with 2–3% total uncertainty. All of the ratios are
very close to 1, but there is a sign of a systematic trend
for the ratio for O2 and O3 to be above 1 and for O4

and O5 below 1. This is not visible in the results of [8]
but does start to emerge with the improved accuracy of
our results. This is in general agreement with the results
from using sum rules in [37]. We also include in Figure 6
results for O1 from HPQCD [4] and RBC/UKQCD [9].
The RBC/UKQCD result has a 1% uncertainty.

B. Derived quantities

Our results for the bag parameters can be combined
with results for the B and Bs decay constants to give

Legend
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Figure 21: Lattice results for the BSM B-parameters defined in the MS scheme at a reference
scale of 3GeV, see Tab. 33.
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TABLE VI. MS bag parameters (Eq. (2) with µ = mb) for
the five 4-quark operators. Results are given for both Bs and
Bd mesons, and for the ratios of bag parameters.

B
(1)
Bq

(mb) B
(2)
Bq

(mb) B
(3)
Bq

(mb) B
(4)
Bq

(mb) B
(5)
Bq

(mb)

Bs 0.813 (35) 0.817 (43) 0.816 (57) 1.033 (47) 0.941 (38)
Bd 0.806 (40) 0.769 (44) 0.747 (59) 1.077 (55) 0.973 (46)

Bs/Bd 1.008 (25) 1.063 (24) 1.092 (34) 0.959 (21) 0.967 (23)

TABLE VII. Percent errors coming from di↵erent sources
for the Bs meson’s bag parameters B

(n)
Bs

and B
(1)
Bs

/B
(1)
Bd

(Ta-
ble VI). The total error for each quantity is also shown. The
error budgets for the Bd meson’s bag parameters are very sim-
ilar. Systematic errors from finite-volume, QED and strong-
isospin breaking e↵ects are estimated to be below 0.1% and
hence negligible in Appendix B 5.

B
(1)
Bs

B
(2)
Bs

B
(3)
Bs

B
(4)
Bs

B
(5)
Bs

B
(1)
Bs

/B
(1)
Bd

lattice data 1.4 1.4 1.5 1.6 1.5 1.5
⌘

q
i 0.0 2.3 2.3 2.1 1.2 0.0

↵
2
s terms 2.1 2.9 5.2 1.9 1.5 0.1

↵s⇤QCD/mb terms 2.9 2.8 2.9 2.8 2.7 0.0
(a⇤QCD)2n terms 1.8 1.9 2.3 1.5 1.8 0.1
ml extrapolation 0.4 0.4 0.7 0.5 0.4 1.9
Total 4.3 5.3 7.0 4.6 4.1 2.5

Bd mesons is very similar.
Finally we convert our final results into bag parameters

using Eq. (2). The bag parameters are listed in Table VI.
Despite the wide variation in values for hOni/(fM)2, the
bag parameters are within 30% of 1. This shows that the
vacuum saturation approximation can be of some utility.

Figure 4 compares our final results for ratios of bag pa-

rameters B
(n)
Bs

/B
(n)
Bd

with results from the di↵erent con-
figuration sets. Results are plotted versus the value of
m

2
⇡ used in each simulations. Again there is very little

variation with quark mass, with all ratios within 5% of 1.
The error budgets for the Bs bag parameters are

shown in Table VII. The dominant source of error comes
from uncalculated terms in perturbation theory (↵2

s and
↵s⇤QCD/mb terms). The sensitivity to these terms de-
pends on the operator. For example, it is particularly
high for O3, because matrix elements for O3 are a lot
smaller than those of O1 (see Eq. 4) which are mixed
in by Eq. (5). The error budgets for Bd mesons are al-
most identical to those for Bs, but have twice as much
contribution from statistical uncertainties in the lattice
data. Almost all of the uncertainties, and some of the
statistical errors, cancel in ratios of Bs to Bd meson bag
parameters.

Matrix elements of the 4-quark mixing operators can
be obtained from the ratios in Table V given values for
the decay constants and masses. Note that the corre-
sponding bag parameters for O2...5 have larger fractional
errors than the ratios, and so should not be used for this
purpose. The larger errors result from uncertainties due
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FIG. 5. A comparison of our results (red filled circles at nf =
4) to previous lattice QCD values for the Bs bag parameters
BBs

(mb) in the MS scheme for all five SM and BSM operators.
Previous results come from the Fermilab/MILC collaboration
on nf = 3 gluon field configurations (blue crosses) [8] and
the ETM collaboration on nf = 2 gluon field configurations
(purple filled diamonds) [7]. Note that the ETM results for
O4 and O5 have been converted to the definition of the bag
parameter given in Eq. (4). The filled green square at nf = 3
for the O1 operator comes from an earlier HPQCD calculation
using NRQCD b quarks [4]. The nf = 2 results are missing s

sea quarks, whose impact cannot be estimated perturbatively
(and no uncertainty is included for this in the error bars). It is
therefore unclear what level of agreement to expect between
these results and those for nf = 3 and 4. Since we do not
expect missing c in the sea to have a significant impact on
the bag parameters [8] we can meaningfully compare nf = 3
and nf = 4. The grey bands are the weighted average of our
new results with those of [8], and the average value of the bag

parameter B
(n)
Bs

(mb) for each operator On is indicated in that
panel. We include a vertical line at value 1.0 for comparison
to the vacuum saturation approximation.

to the factors eta
q
i in the bag-parameter definition (see

Table VII and Eq. (2)).

IV. DISCUSSION

A. Comparison to previous results

Our results for the bag parameters for all five SM and
BSM operators given in Table VI are more accurate than
previous lattice QCD results. This is for a number of

K mixingB mixing
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Rest: 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Purple:
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Operator matching
RI-MOM schemes

(i) symmetric or nonexceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ q2 ¼ "!2; !2 > 0;

q ¼ p1 " p2;

(ii) asymmetric or exceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ "!2; !2 > 0;

p1 ¼ p2; q ¼ 0;

where the momentum flow is shown diagrammatically in
Fig. 1.

In Ref. [14] quark masses were determined through
lattice simulations using nonperturbative renormalization
[1] in the RI/MOM scheme and subsequently converted to
the MS scheme. In order to renormalize the bare quark
masses in the lattice simulation, the renormalization con-
stants need to be computed on the lattice. In regularization
and renormalization schemes which preserve flavor and
chiral symmetries in the limit of vanishing quark masses,
the perturbative renormalization constants of the axial-
vector and vector operators as well as the ones for the
pseudoscalar and scalar operators need to be equal. In the
standard RI/MOM and RI0=MOM schemes the normaliza-
tion conditions for quark bilinear operators are imposed on
Green’s functions with the operator inserted between equal
incoming and outgoing momenta, say, p, and"p2 # !2 is
the renormalization scale. The momentum q inserted at the
operator is therefore 0 so that there is an exceptional
channel, i.e. one in which the square of the momentum is
much smaller than the typical large scale (!2). For the
asymmetric subtraction point effects of chiral symmetry
breaking vanish only slowly like 1=p2 for large external
momenta p2. In Ref. [15] it was proposed instead to use a
similar renormalization procedure but with the incoming
and outgoing quarks having different momenta, p1 and p2,
respectively, with p2

1 ¼ p2
2 ¼ ðp1 " p2Þ2 # p2. There are

now no exceptional channels and we explain below that
this decreases chiral symmetry breaking and other un-
wanted infrared effects. The choice of such a symmetric
subtraction point is very convenient; the renormalized
quantities depend also only on a single scale p2. When
the renormalization constants of quark bilinear operators
are fixed at a symmetric subtraction point (chosen to have
nonexceptional kinematics) chiral symmetry breaking and
other unwanted infrared effects are better behaved and
vanish with larger asymptotic powers of the order 1=p6.
This behavior has been derived in Ref. [15] as a conse-
quence of Weinberg’s theorem [16] and demonstrated by
explicitly computing the renormalization constants on the
lattice. Hence these RI/SMOM kinematics suppress infra-
red effects much more strongly than the usual exceptional
configuration for large external momenta. The symmetric
momentum configuration is thus much more favorable.
However, in order to be able to use it to evaluate the matrix
elements of quark bilinear operators and the quark mass,
the matching factors need to be determined perturbatively
for this new, symmetric choice of momenta. A nonpertur-
bative test of the RI/SMOM scheme for the quark mass
renormalization can be found in Ref. [17].
Another drawback in the case of the exceptional mo-

menta is that the perturbative expansion of the usual con-

version factor CRI=MOM
m shows poor convergence and

makes a significant contribution to the systematic uncer-
tainty in the quark masses obtained from the lattice studies.
In fact, in Ref. [14] the error ( & 11%) in the quark masses
arising from the truncation of the perturbative series in the
matching factor amounts to around 60% of the total error.
Therefore determining the conversion factor for a symmet-
ric momentum configuration will also allow us to see if the
convergence will be better behaved. If it is better behaved,
then the symmetric configuration would be preferred for
both of these reasons. Motivated by these considerations
we study in this work the renormalization of quark bilinear

nonsinglet operators of the form Ô ¼ !u"d for a symmetric
subtraction point, where " represents a Dirac matrix and !u
and d are fermion quark fields.
Even with the use of the symmetric, nonexceptional

kinematics, the renormalization prescription is not unique
and the chiral Ward-Takahashi identities can be satisfied
using a variety of procedures. In the following sections we
study a specific scheme which we consider to be conve-
nient and practicable for the nonperturbative renormaliza-
tion of lattice quark bilinear operators. In order to preserve
the Ward-Takahashi identity, the definitions of the vertex
and wave function renormalizations are related as we ex-
plain in the following section.
The outline of this paper is as follows: In Sec. II we

define our notation and conventions and introduce the
framework required for performing renormalization of
the quark bilinear operators with a symmetric subtraction
point. Subsequently we present in Sec. III two methods for

q = p1−p2

p1 p2

FIG. 1. Momentum flow of a generic diagram required for the
renormalization procedure with nonexceptional momenta. The
gray bubble stands for an operator insertion and higher order
corrections.
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Calculate (gauge-fixed) quark matrix elements nonperturbatively

Define renormalization constants by imposing conditions at large 
momentum. The same conditions can be applied in continuum 
perturbation theory.

Martinelli et al., NPB 445, 81 (1995) 
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2. Non-perturbative renormalization conditions 

In this section, the non-perturbative renormalization scheme is presented in detail. We 
also discuss the conditions which must be satisfied for our method to be applicable. 

To facilitate the discussion, it is convenient to classify composite operators into three 
main classes, according to their ultra-violet behaviour, as a ~ 0: 

(i) Finite operators: these include the vector and axial vector currents. Another ex- 
ample is the ratio of the scalar and pseudoscalar renormalization constants, Zs/Zj,. For 
these cases, the Ward identity method is also applicable. 

(ii) Logarithmically divergent operators: this is a large family of operators, relevant 
to hadron phenomenology. It includes scalar and pseudoscalar densities, four-fermion 
AF = 2 operators, some components of the energy-momentum tensor, etc. 

(iii) Power divergent operators: these operators are present when mixing with lower 
dimensional operators is possible. This happens in regularizations which have an in- 
trinsic mass scale, such as the lattice regularization. Examples are often encountered in 
phenomenological applications of lattice QCD, such as four-fermion operators relevant 
to AI = 1/2 transitions or operators of order 1/m in the heavy quark effective theory 
(HQET) [11] - [15] .  

For simplicity, we first consider the two-fermion operators of class 2., and extend 
the discussion to other operators in this class, and also to those in classes 1. and 3., 
in the next section. Thus, the formulae given below apply directly to the pseudoscalar 
and scalar densities. Throughout our discussion, we assume that discretization errors 
are negligible: in field theory language, this is equivalent to the statement that the 
renormalized Green functions do not differ appreciably from their values in the limit of 
an infinite ultra-violet cut-off. The discussion is presented in the limit of small quark 
masses and in Euclidean space-time. The discretisation of the quark action is assumed 
to be performed ~ la Wilson, characterized by explicit chiral symmetry breaking of the 
Lagrangian 3. The extension to staggered fermions is straightforward. 

Let us consider the forward amputated Green function Fo(pa), of a two-fermion bare 
lattice operator O(a), computed between off-shell quark states with four-momentum p, 
with p2 =/z2, and in a fixed gauge, for example the Landau gauge. Without gauge-fixing 
all Green functions computed between quark and gluon external states are zero. This is 
also true when the gauge is not completely fixed, e.g. in the Coulomb gauge. We define 
the renormalized operator O(/x), by introducing the renormalization constant Zo 

O(tz) = Zo(lxa, g( a) )O( a) . (2) 

Zo is found, by imposing the renormalization condition 

Zo(txa, g(a))Z¢l( iza,  g(a))Fo(pa)lp2=jz 2 =1 , (3) 

3 This includes the SW-Clover action [ 16]. 
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where Z~, is the field renormalization constant, to be defined below. This procedure 
defines a renormalized operator O(/z) which is independent of the regularization scheme 
[17] - [  19]. It depends, however, on the external states and on the gauge. This does 
not affect the final results, which, combined with the continuum calculation of the 
renormalization conditions, at any given order of perturbation theory, will be gauge 
invariant and independent of the external states. Let us specify the different quantities 
entering Eq. (3).  Fo is defined in terms of the expectation value 4 of the non-amputated 
Green function Go(pa), and of the quark propagator S(pa) 

Fo (pa) = ~ t r  (ao (pa) Po) , (4) 

where 

Ao(pa) = S(pa)-lGo(pa)S(pa)-1.  (5) 

t3o is a suitable projector on the tree-level operator: /30 = i (t3o = Ys) for the scalar 
(pseudoscalar) density. The factor 1/12 ensures the correct overall normalization of 
the trace (colourxspin= 12). Projectors are very convenient when defining Green func- 
tions, particularly in the non-perturbative case. They have been extensively used in 
Refs. [ 18,19]. Of course one can also use other definitions of Zo. 

Z~/2 constant field. It can be defined in different is the renormalization of the fermion 
ways, some of which are equivalent perturbatively. Beyond perturbation theory, the most 
natural definition of Z¢ is obtained from the amputated Green function of the conserved 
vector current V c. Indeed, one knows that for V c the renormalization constant is equal 
to one: 

Z ~  1 =  Fvc x Z ;  1 =  ~8tr(Avc(pa)yu)[p~=~,2 x Z ; I =  1, (6 )  

which implies 

Z¢ = ~8tr(Avc(pa)y~)1p2=~2 . (7) 

Equations ( 3 ) - ( 7 )  completely define our method. In the remainder of this section, 
we discuss some important aspects concerning its applicability. 

In the above formulae, for simplicity, we have always considered only forward matrix 
elements. In general, one has the freedom to define the renormalization conditions at 
different external momenta p and pt (p 4= pt). The virtualities of the quark states must 
be much larger than AQCD. The reason is that, in order to obtain the physical result, 
we have to combine the matrix element of the renormalized operator O(/z), with a 
Wilson coefficient function. The latter is computed in continuum perturbation theory, 
by expanding in c~ s at a scale of order /z. Thus, for the validity of this perturbative 
calculation, /z must be large. An important question in our program is whether it is 
possible to find, on the lattice, a scale/~ which is sufficiently low, in order to have small 

4 "Expectation value" means, as usual, that one averages the Green functions over the gauge field configura- 
tions, generated by Monte Carlo simulation, see Section 4. 
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Must take care not to allow large 
contributions from low energy

(i) symmetric or nonexceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ q2 ¼ "!2; !2 > 0;

q ¼ p1 " p2;

(ii) asymmetric or exceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ "!2; !2 > 0;

p1 ¼ p2; q ¼ 0;

where the momentum flow is shown diagrammatically in
Fig. 1.

In Ref. [14] quark masses were determined through
lattice simulations using nonperturbative renormalization
[1] in the RI/MOM scheme and subsequently converted to
the MS scheme. In order to renormalize the bare quark
masses in the lattice simulation, the renormalization con-
stants need to be computed on the lattice. In regularization
and renormalization schemes which preserve flavor and
chiral symmetries in the limit of vanishing quark masses,
the perturbative renormalization constants of the axial-
vector and vector operators as well as the ones for the
pseudoscalar and scalar operators need to be equal. In the
standard RI/MOM and RI0=MOM schemes the normaliza-
tion conditions for quark bilinear operators are imposed on
Green’s functions with the operator inserted between equal
incoming and outgoing momenta, say, p, and"p2 # !2 is
the renormalization scale. The momentum q inserted at the
operator is therefore 0 so that there is an exceptional
channel, i.e. one in which the square of the momentum is
much smaller than the typical large scale (!2). For the
asymmetric subtraction point effects of chiral symmetry
breaking vanish only slowly like 1=p2 for large external
momenta p2. In Ref. [15] it was proposed instead to use a
similar renormalization procedure but with the incoming
and outgoing quarks having different momenta, p1 and p2,
respectively, with p2

1 ¼ p2
2 ¼ ðp1 " p2Þ2 # p2. There are

now no exceptional channels and we explain below that
this decreases chiral symmetry breaking and other un-
wanted infrared effects. The choice of such a symmetric
subtraction point is very convenient; the renormalized
quantities depend also only on a single scale p2. When
the renormalization constants of quark bilinear operators
are fixed at a symmetric subtraction point (chosen to have
nonexceptional kinematics) chiral symmetry breaking and
other unwanted infrared effects are better behaved and
vanish with larger asymptotic powers of the order 1=p6.
This behavior has been derived in Ref. [15] as a conse-
quence of Weinberg’s theorem [16] and demonstrated by
explicitly computing the renormalization constants on the
lattice. Hence these RI/SMOM kinematics suppress infra-
red effects much more strongly than the usual exceptional
configuration for large external momenta. The symmetric
momentum configuration is thus much more favorable.
However, in order to be able to use it to evaluate the matrix
elements of quark bilinear operators and the quark mass,
the matching factors need to be determined perturbatively
for this new, symmetric choice of momenta. A nonpertur-
bative test of the RI/SMOM scheme for the quark mass
renormalization can be found in Ref. [17].
Another drawback in the case of the exceptional mo-

menta is that the perturbative expansion of the usual con-

version factor CRI=MOM
m shows poor convergence and

makes a significant contribution to the systematic uncer-
tainty in the quark masses obtained from the lattice studies.
In fact, in Ref. [14] the error ( & 11%) in the quark masses
arising from the truncation of the perturbative series in the
matching factor amounts to around 60% of the total error.
Therefore determining the conversion factor for a symmet-
ric momentum configuration will also allow us to see if the
convergence will be better behaved. If it is better behaved,
then the symmetric configuration would be preferred for
both of these reasons. Motivated by these considerations
we study in this work the renormalization of quark bilinear

nonsinglet operators of the form Ô ¼ !u"d for a symmetric
subtraction point, where " represents a Dirac matrix and !u
and d are fermion quark fields.
Even with the use of the symmetric, nonexceptional

kinematics, the renormalization prescription is not unique
and the chiral Ward-Takahashi identities can be satisfied
using a variety of procedures. In the following sections we
study a specific scheme which we consider to be conve-
nient and practicable for the nonperturbative renormaliza-
tion of lattice quark bilinear operators. In order to preserve
the Ward-Takahashi identity, the definitions of the vertex
and wave function renormalizations are related as we ex-
plain in the following section.
The outline of this paper is as follows: In Sec. II we

define our notation and conventions and introduce the
framework required for performing renormalization of
the quark bilinear operators with a symmetric subtraction
point. Subsequently we present in Sec. III two methods for

q = p1−p2

p1 p2

FIG. 1. Momentum flow of a generic diagram required for the
renormalization procedure with nonexceptional momenta. The
gray bubble stands for an operator insertion and higher order
corrections.

STURM, AOKI, CHRIST, IZUBUCHI, SACHRAJDA, AND SONI PHYSICAL REVIEW D 80, 014501 (2009)

014501-2

(i) symmetric or nonexceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ q2 ¼ "!2; !2 > 0;

q ¼ p1 " p2;

(ii) asymmetric or exceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ "!2; !2 > 0;

p1 ¼ p2; q ¼ 0;

where the momentum flow is shown diagrammatically in
Fig. 1.

In Ref. [14] quark masses were determined through
lattice simulations using nonperturbative renormalization
[1] in the RI/MOM scheme and subsequently converted to
the MS scheme. In order to renormalize the bare quark
masses in the lattice simulation, the renormalization con-
stants need to be computed on the lattice. In regularization
and renormalization schemes which preserve flavor and
chiral symmetries in the limit of vanishing quark masses,
the perturbative renormalization constants of the axial-
vector and vector operators as well as the ones for the
pseudoscalar and scalar operators need to be equal. In the
standard RI/MOM and RI0=MOM schemes the normaliza-
tion conditions for quark bilinear operators are imposed on
Green’s functions with the operator inserted between equal
incoming and outgoing momenta, say, p, and"p2 # !2 is
the renormalization scale. The momentum q inserted at the
operator is therefore 0 so that there is an exceptional
channel, i.e. one in which the square of the momentum is
much smaller than the typical large scale (!2). For the
asymmetric subtraction point effects of chiral symmetry
breaking vanish only slowly like 1=p2 for large external
momenta p2. In Ref. [15] it was proposed instead to use a
similar renormalization procedure but with the incoming
and outgoing quarks having different momenta, p1 and p2,
respectively, with p2

1 ¼ p2
2 ¼ ðp1 " p2Þ2 # p2. There are

now no exceptional channels and we explain below that
this decreases chiral symmetry breaking and other un-
wanted infrared effects. The choice of such a symmetric
subtraction point is very convenient; the renormalized
quantities depend also only on a single scale p2. When
the renormalization constants of quark bilinear operators
are fixed at a symmetric subtraction point (chosen to have
nonexceptional kinematics) chiral symmetry breaking and
other unwanted infrared effects are better behaved and
vanish with larger asymptotic powers of the order 1=p6.
This behavior has been derived in Ref. [15] as a conse-
quence of Weinberg’s theorem [16] and demonstrated by
explicitly computing the renormalization constants on the
lattice. Hence these RI/SMOM kinematics suppress infra-
red effects much more strongly than the usual exceptional
configuration for large external momenta. The symmetric
momentum configuration is thus much more favorable.
However, in order to be able to use it to evaluate the matrix
elements of quark bilinear operators and the quark mass,
the matching factors need to be determined perturbatively
for this new, symmetric choice of momenta. A nonpertur-
bative test of the RI/SMOM scheme for the quark mass
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In fact, in Ref. [14] the error ( & 11%) in the quark masses
arising from the truncation of the perturbative series in the
matching factor amounts to around 60% of the total error.
Therefore determining the conversion factor for a symmet-
ric momentum configuration will also allow us to see if the
convergence will be better behaved. If it is better behaved,
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both of these reasons. Motivated by these considerations
we study in this work the renormalization of quark bilinear
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Avoiding exceptional momenta
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the central values in the single pole case.
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FIG. 3. Chirally-allowed RI-MOM vertex functions with singular behaviour from the 243 ensemble. The

result of fitting the raw data (circles) to fit-1 (dotted line) and a fit to the lightest three points with the

form a+ b/m (solid line), along with the result of subtracting the single pole contribution from each of the

fits (same line type as respective fits through data). Quantities shown from left to right are ⇤23,⇤33 (first

row) and ⇤44,⇤54 (second row) at fixed momentum close to 3 GeV.

As another consistency check of the method, we should also find an approximate recovery of

the block diagonal structure expected from chiral symmetry after removing the singular parts of

the data. Although to a decent approximation the terms that are chirally-forbidden are suppressed

after the pole subtraction, we find that the values are statistically non-zero and the magnitude of

chirally-forbidden elements tend to be larger for the pole-subtracted (⇤i,3/4) compared to elements

that do not require pole subtraction (⇤i,1/2/4). Fig. 5 shows the mass and µ dependence of chirally-

forbidden RI-MOM vertex functions for a case without discernible singular structure (⇤12, left),

23
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FIG. 4. Same as Fig. 3, from left to right: ⇤23,⇤33 (first row) and ⇤44,⇤54 (second row), for the non-

exceptional (�µ, �µ) scheme. Here we fix the momentum µ close to 3 GeV.. In that case we observed a very

mild, linear, quark mass dependence. In contrast to the RI-MOM case, no pole subtraction is required (we

show the vertex function without applying any pole strubaction procedure).

and where the pole behavior is clearly visible (⇤24, right). These results should be contrasted with

the RI-SMOM results shown in Fig. 6, where in all cases the chirally-forbidden elements extrapolate

very nearly to zero.

On the 323 ensemble we also compare results of including the single pole or both poles using a

Bayesian fit, and results from the linear fit method, shown in Table XV. The results again agree

with the linear fit results but have larger associated uncertainties. Note here the chirally-forbidden

elements obtained from the linear fit method are much smaller than in the 243 case and are in fact

zero within errors. We also tried including the 1/m terms in ‘global’ fits by constraining the 1/m

coe�cient coe�cient in ⇤i3 to be the negative of the coe�cient in ⇤i4, which we observed to be

the case. Althought this strategy seems to improve somewhat the fit quality, the numerical resuls

Figs. 3 & 4 from Boyle, Garron, Hudspith, Lehner, Lytle, JHEP 10 (2017) 054 Bertone et al. (ETM), JHEP 03 (2013) 089
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Figure 6: GB-pole subtraction and valence chiral limit of D23, D33, D44 and D55 plotted
versus aµval, for β = 3.9, aµsea = 0.0040 and (ap̃)2 ≈ 1.565 (left column) and β =

4.05, aµsea = 0.0030 and (ap̃)2 ≈ 1.568 (right column).
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Third row constraints from B mixing
jVtsjCKMfitter; tree ¼ ð41.69þ0.39

−1.45Þ × 10−3;

jVtdjCKMfitter; tree ¼ ð9.08þ0.23
−0.45Þ × 10−3;

jVtd=VtsjCKMfitter; tree ¼ 0.2186þ0.0049
−0.0059 ;

jVtbjCKMfitter; tree ¼ 0.999093þ0.000064
−0.000018 : ð16Þ

The ratio jVtd=VtsjCKMfitter; tree is derived from the
CKMfitter results for A, λ, ρ̄, and η̄ using the formulas
in [59]. The central value differs slightly from the ratio of
the two numbers above.
The final terms in Eq. (15) parametrize the hadronic

contribution to ΔM through the matrix element of the
appropriate 4-quark operator, O1. Our results for f2Bq

B̂ð1Þ
Bq

are given in Eq. (13).
Putting all these pieces together we obtain predictions for

the mass differences for neutral Bs and Bd eigenstates of

ΔMs;SM ¼ 17.59ðþ0.33
−1.22Þð0.78Þ ps−1;

ΔMd;SM ¼ 0.555ðþ28
−55Þð29Þ ps−1;!

ΔMd

ΔMs

"

SM
¼ 0.0318ðþ14

−17Þð8Þ; ð17Þ

where the first error in each case is from the CKM matrix
elements and the second error is primarily from the lattice
analyses. These results agree well with the experimental
values from Eq. (14)—the largest discrepancy is 1.7σ
for the ratio of ΔM values—but they have much larger
uncertainty.

D. Vts and Vtd

Because the experimental values for ΔMq are so accu-
rate, a better approach to understanding the implications of
our improved lattice QCD results for the relevant hadronic
matrix elements is to turn the analysis of the previous
subsection on its head. That is, to use our results and the
experimental values for ΔMq to determine values for jVtsj
and jVtdj from Eq. (15) [taking a value for Vtb from
Eq. (16) [61] ]. jVtsj and jVtdj obtained this way can then be
compared to other determinations that make use of CKM
unitarity as a test of that unitarity.
The ratio of jVtsj to jVtdj can be obtained more

accurately than the separate CKM elements because this
makes use of the hadronic parameter ξ [Eq. (13)] in which a
lot of the lattice QCD uncertainties cancel (see Sec. IVA).
Our results are

jVtdj ¼ 0.00867ð23Þ;
jVtsj ¼ 0.04189ð93Þ;

jVtdj=jVtsj ¼ 0.2071ð27Þ: ð18Þ

Figure 9 plots the %1σ constraints on jVtdj, jVtsj and
their ratio from our results as the dark grey lozenge. Results

determined by other lattice QCD calculations [8,9] are also
shown along with a recent determination using sum rules
[39]. Also shown as light pink and orange lozenges are
results from fits to the CKM unitarity triangle using results
frommany different processes [61,62]. Particularly relevant
here is the green lozenge which results from a unitarity
triangle fit that includes tree-level processes only [61], and
therefore not Bs=Bd oscillations. Tension between results
derived from ΔMq (as here) and the results derived from
tree-level processes and unitarity would imply the existence
of new physics in loop processes.
The Fermilab/MILC results (red lozenge in Fig. 9)

highlighted an approximately 2.0σ tension between their
values for Vts and Vtd and those from unitarity fits. See
[63,64] for examples of the possible implications of this.
Our results show no such tension. Our values for Vts and

Vtd separately agree with the {CKMfitter, tree} results in
Eq. (16) within 1σ and the difference in the ratio amounts to
1.8σ. This limits the scope for new physics in loop-induced
processes. However, our ratio for jVtdj=jVtsj joins the
systematic trend of the previous results shown in Fig. 9
in being below that of {CKMFitter, tree}.

E. Bq → μ+ μ− decay

The rare decays Bq → μþμ− have very small branching
fractions in the SM since they proceed through W box
diagrams and Z penguins and are helicity suppressed. New
physics might then be seen if the experimental and SM
branching fractions can be determined to be different to
sufficient accuracy.

FIG. 9. A comparison of %1σ constraints on Vts and Vtd from
experimental results on Bs and Bd oscillation frequencies
compared to SM calculations. This is an update of Fig. 7 in
[39] to include the results presented here. The lattice QCD
constraints shown come from the following: this paper, dark grey;
[8], red; [9], light blue, jVtsj=jVtdj ratio only. The light blue
lozenge is from sum rules [39]. The lozenges with dashed
boundaries include a full unitarity triangle fit: light pink is from
CKMfitter [59,61] and orange from UTFit [60,62]. The green
lozenge with dotted boundary is the result of a unitarity triangle
fit for tree-level processes only from CKMfitter.

NEUTRAL B-MESON MIXING FROM FULL LATTICE QCD AT … PHYS. REV. D 100, 094508 (2019)

094508-11

Dowdall et al. (HPQCD), Phys. Rev. D 100, 094508 (2019)  MW, Eur. Phys. J A 57, 239 (2021) 

1σ hexagons

• General agreement of LQCD 
results, along with sum rules


• Tension with exclusive 
, angle , and 

unitarity
|Vub/Vcb | γ
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B Mixing, unitarity, and Vcb

Buras and Venturini, Eur. Phys. J. C 82, 615 (2022)

From inclusive semileptonic B decays
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Fig. 8 The values of |Vcb|
extracted from εK , "Md and
"Ms as functions of γ .
2 + 1 + 1 flavours (top), 2 + 1
flavours (middle), average of
2 + 1 + 1 and 2 + 1 cases
(bottom). The green band
represents experimental SψKS

constraint on β
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Conclusions

• LQCD: lots of progress in precision, general agreement between methods


• CKM: persistent inclusive/exclusive tension.  Growing tension between exclusive b ➙ c and B-mixing (+unitarity)


• Future: lots of “next generation calculations” in progress, errors being reduced with a range of formulations 
New ideas for including QED effects, contributing to inclusive decays, improving dispersive constraints on ff shapes


• Advertisement of other talks


• 11:00 Monday: Alejandro Vaquero, B → D* l ν and related anomalies

• 16:30 Monday: Enrico Lunghi, B and K physics, role of lattice QCD

• 09:30 Τuesday: Chris Bouchard, B → K l l and D → K l ν form factors and phenomenology

• 11:00 Tuesday: Simon Kuberski, Heavy flavor physics with O(a) improved Wilson quarks


