B decays and mixing and consequences for the Standard Model

M Wingate, First LatticeNET workshop on challenges in lattice field theory, Benasque, 2022-09-12

Preliminary remarks Review + emphasis on B mixing

- Advertisement of other talks
 - 11:00 Monday: Alejandro Vaquero, $B \rightarrow D^* I v$ and related anomalies
 - 16:30 Monday: Enrico Lunghi, *B and K physics, role of lattice QCD*

 - 11:00 Tuesday: Simon Kuberski, Heavy flavor physics with O(a) improved Wilson quarks
- Survey of CKM status
- More in-depth summary of B meson mixing calculations

09:30 Tuesday: Chris Bouchard, $B \rightarrow K \mid I \text{ and } D \rightarrow K \mid v \text{ form factors and phenomenology}$

Introduction **Quark flavor in the Standard Model**

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- Are the 4 free parameters in the CKM matrix sufficient to describe all *quark* flavor-changing interactions?
- High intensity (& high energy) era: LOTS of experimental measurements of *hadronic* processes, many very precise
- Require similarly precise SM predictions
- Lattice QCD connects hadronic observables to quark parameters

CKM constraints $-(\rho, \eta)$ plane

CKMfitter, Moriond 2021

1.0

CKM constraints $-(\rho, \eta)$ plane

Sheldon Stone, TASI 1994

CKMfitter, Moriond 2021

Fig. 22. Constraints in the $\rho - \eta$ plane from $|V_{ub}/V_{cb}|$, $B_d^0 - \bar{B}_d^0$ mixing and CP violation in the K_L^0 system (ϵ). The bands are $\pm 1\sigma$.

1.0

dia W

Image source: Wikipedia Commons, public domain

Image source: Wikipedia Commons, public domain

Image source: <u>Wikipedia Commons</u>, public domain

Image source: <u>Wikipedia Commons</u>, public domain

CKM: 1st row

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Precision test of actions Kaon and pion decays

Semileptonic form factor (normalization)

Staggered

FLAG, <u>arXiv:2111.09849</u>

Leptonic decay constants

First row, unitarity, "Cabibbo anomaly"

- Note the precision on the axes! Lots of effort to shrink the constraints!
- Dotted line corresponds to $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- Two puzzles:
 - Are 2 parameters enough to explain the 3 classes of constraints?
 - Are the parameters consistent with CKM unitarity?
- Tension with unitarity due to new result from nuclear decays
- Precision of lattice matrix elements now means unequal *u/d* mass and QED effects are required

Including QED effects

- RM123 method to include isospin breaking effects in LQCD determinations of leptonic decays of mesons (must include soft photon in final state)
- Several technical issues to face: finite volume effects, cancellation of IR divergences
- First calculation found good agreement with chiral P.T. predictions
- Continuing progress to extend applicability to larger photon momentum, requires electromagnetic form factors

Giusti et al., PRL 120, 072001 (2018)

CKM: 2nd row

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \end{pmatrix}$ $\left(V_{td} \quad V_{ts} \quad V_{tb} \right)$

D leptonic and semileptonic decays

Much more on $D \rightarrow K \ell \nu$ from Chris Bouchard, Tues 09:30

FLAG, arXiv:2111.09849

Second row and unitarity

FLAG, arXiv:2111.09849

Fig. from MW, <u>Eur. Phys. J A 57, 239 (2021)</u>

Charm decays in B_c

HPQCD: Combined analysis of NRQCD and heavy-HISQ results on MILC 2+1+1 HISQ lattices Vector form factor f_+

Cooper et al., (HPQCD) Phys. Rev. D 102, 014513 (2020)

Charm decays in B_c

lation with a HSO spectator quark computed using the variations of correlator ation with a HSC spectator quark computed using the variations of correlator B_d^d form factors. The x coordinate is the same as that in Fig. 19. B_d^d form factors. The x coordinate is the same as that in Fig. 19.

$$\frac{\text{SM predictions:}}{\Gamma(B_c^+ \to B_s^0 \bar{\ell} \nu_\ell) = 26.2(1.2) \times 10^9 \,\text{s}^{-1}}$$
$$\Gamma(B_c^+ \to \bar{B}^0 \bar{\ell} \nu_\ell) = 1.65(10) \times 10^9 \,\text{s}^{-1}$$

Cooper et al., (HPQCD) Phys. Rev. D 102, 014513 (2020)

CKM: 3rd column & Vxb

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Semileptonic decays **High precision modes**

 $B \rightarrow \pi$ and $B \rightarrow D$ form factors awaiting updates

Talk by Alejandro Vaquero next, covering new results for $B \rightarrow D^*$ form factors

Third column

- Persistent tension between inclusive and exclusive determinations
- Much more about $B \to D^* \ell \nu$ in Alejandro Vaquero's talk on Monday at 11:00
- Details of form factor calculations also in Chris Bouchard's talk on Tuesday at 09:30
- More exclusive modes being measured, requiring corresponding form factors

Strange spectator: $b \rightarrow c$

HPQCD: Heavy HISQ on MILC's $n_f = 2+1+1$ HISQ lattices

McLean, Davies, Koponen, Lytle (HPQCD), Phys. Rev. D 101, 074513 (2020)

Strange spectator: $b \rightarrow u$

FLAG2021: Fit to $B_s \rightarrow K$ form factor data has $\chi^2/d.o.f. = 1.54$

B_c semileptonic decays: $b \rightarrow c$

HPQCD: Heavy HISQ on MILC's $n_f = 2+1+1$ HISQ lattices

 $R(J/\psi)_{\rm SM} = 0.2601(36)$

Harrison, Davies, Lytle, (HPQCD), PRD 102, 094518 (2020), PRL 125, 222003 (2020)

B_c semileptonic decays: $b \rightarrow u$

HPQCD: Heavy HISQ on MILC's $n_f = 2+1+1$ HISQ lattices

b U С

 $\mathscr{B}(B_c \to D^{(*)}\ell\nu)/\mathscr{B}(B_c \to J/\psi\ell\nu)$

Cooper, Davies, MW, (HPQCD), Phys. Rev. D 105, 014503 (2022)

Inclusive decays

- Gambino and Hashimoto (PRL 125, 032001 (2020)) proposal to determine inclusive decay rates from lattice QCD
- $W^{\mu\nu}(p,q) = \sum_{X_a} (2\pi)^3 \delta^{(4)}(p-q-$ Want
- Can compute

- Can be related to integral over W
- Progress reported at Lattice 2022 by A. Smecca, A. Barone, R. Kellermann

$$r)\frac{1}{2E_{B_s}}\langle \bar{B}_s(\boldsymbol{p})|J^{\mu\dagger}|X_c(\boldsymbol{r})\rangle\langle X_c(\boldsymbol{r})|J^{\nu}|\bar{B}_s(\boldsymbol{p})\rangle$$

 $C_{\mu\nu}^{JJ}(t;\boldsymbol{q}) = \sum_{\boldsymbol{x}} \frac{e^{i\boldsymbol{q}\cdot\boldsymbol{x}}}{2m_{B_s}} \langle \bar{B}_s(\boldsymbol{0}) | J_{\mu}^{\dagger}(\boldsymbol{x},t) J_{\nu}(\boldsymbol{0},0) | \bar{B}_s(\boldsymbol{0}) \rangle$

$$M_{\mu\nu}(t;\boldsymbol{q}) = \int d^3x \, \frac{e^{i\boldsymbol{q}\cdot\boldsymbol{x}}}{2m_B} \langle \bar{B}(\boldsymbol{0}) | J^{\dagger}_{\mu}(\boldsymbol{0},0) e^{-t\hat{H}+i\hat{\boldsymbol{P}}\cdot\boldsymbol{x}} J_{\nu}(\boldsymbol{0},0) | \bar{B}(\boldsymbol{0}) \rangle$$
$$= \frac{(2\pi)^3}{2m_B} \langle \bar{B}(\boldsymbol{0}) | J^{\dagger}_{\mu}(\boldsymbol{0},0) e^{-t\hat{H}} \delta^3(\hat{\boldsymbol{P}}+\boldsymbol{q}) J_{\nu}(\boldsymbol{0},0) | \bar{B}(\boldsymbol{0}) \rangle$$
$$= \int_0^\infty d\omega \, W_{\mu\nu}(\omega,\boldsymbol{q}) \, e^{-\omega t} \, .$$

CKM: 3rd row & B mixing

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

B-mixing in the Standard Model

$$\Delta M_{s} = \frac{1}{2m_{B_{s}}} \langle \bar{B}_{s} | H_{\text{eff}}^{\Delta B=2} | B_{s} \rangle$$
$$H_{\text{eff}}^{\Delta B=2} = \frac{G_{F}^{2} m_{W}^{2}}{4\pi^{2}} (V_{ts}^{*} V_{tb})^{2} \sum_{i=1}^{5} C_{i} Q_{i}$$

$$Q_{1} = (\bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma^{5}) s^{\alpha}) (\bar{b}^{\beta} \gamma_{\mu} (1 - \gamma^{5}) s^{\beta})$$

$$Q_{2} = (\bar{b}^{\alpha} (1 - \gamma^{5}) s^{\alpha}) (\bar{b}^{\beta} (1 - \gamma^{5}) s^{\beta})$$

$$Q_{3} = (\bar{b}^{\alpha} (1 - \gamma^{5}) s^{\beta}) (\bar{b}^{\beta} (1 - \gamma^{5}) s^{\alpha})$$

$$Q_{4} = (\bar{b}^{\alpha} (1 - \gamma^{5}) s^{\alpha}) (\bar{b}^{\beta} (1 + \gamma^{5}) s^{\beta})$$

$$Q_{5} = (\bar{b}^{\alpha} (1 - \gamma^{5}) s^{\beta}) (\bar{b}^{\beta} (1 + \gamma^{5}) s^{\alpha})$$

In the SM, only Q_1 enters ΔM_s

B mixing: recent LQCD results

- ETMC (Carrasco et al., JHEP 03 (2014) 016) ratio method (incl. static limit), twisted mass valance and sea (nf = 2), RI-MOM
- Fermilab/MILC (Bazavov et al., PRD 93, 113016 (2016)) Fermilab b, AsqTad valance and sea (nf = 2+1), mostly non-perturbative
- RBC/UKQCD (Boyle et al., <u>arXiv:1812.08791</u>) domain wall valance (extrapolating to the b) and sea (n_f = 2+1), ratios only
- HPQCD (Dowdall et al., PRD 100, 094508 (2019)) NRQCD b, HISQ valance and sea (nf = 2+1+1, MILC), perturbative
- Results presented for "bag factors"

$$B_{B_q}^{(i)}(\mu) \equiv$$

$$\equiv \frac{\langle B_q | O_i^q | \bar{B}_q \rangle_{\overline{\mathrm{MS}}}^{(\mu)}}{\eta_i^q(\mu) f_{B_q}^2 M_{B_q}^2},$$

Comparisons – bag factors

- Red circle: HPQCD
- Green square: HPQCD
- Purple diamond: ETMC

Dowdall et al. (HPQCD), <u>Phys. Rev. D 100, 094508 (2019)</u>

Similarities between K and B mixing

Role of exceptional momenta in discrepancies in B_4 and B_5 ...

FLAG, arXiv:2111.09849

Operator matching RI-MOM schemes

Calculate (gauge-fixed) quark matrix elements nonperturbatively

Define renormalization constants by imposing conditions at large momentum. The same conditions can be applied in continuum perturbation theory.

$$O(\mu) = Z_O(\mu a, g(a))O(a).$$

 Z_0 is found, by imposing the renormalization condition

$$Z_O(\mu a, g(a)) Z_{\psi}^{-1}(\mu a, g(a)) \Gamma_O(pa)|_{p^2 = \mu^2} = 1,$$

$$\Gamma_O(pa) = \frac{1}{12} \operatorname{tr} \left(\Lambda_O(pa) \hat{P}_O \right),$$

where

$$\Lambda_{O}(pa) = S(pa)^{-1}G_{O}(pa)S(pa)^{-1}$$

Martinelli et al., <u>NPB 445, 81 (1995)</u>

Must take care not to allow large contributions from low energy

(i) symmetric or nonexceptional momentum configuration:

$$p_1^2 = p_2^2 = q^2 = -\mu^2, \qquad \mu^2 > 0$$

 $q = p_1 - p_2;$

(ii) asymmetric or exceptional momentum configuration:

$$p_1^2 = p_2^2 = -\mu^2$$
, $\mu^2 > 0$,
 $p_1 = p_2$, $q = 0$,

STURM, AOKI, CHRIST, IZUBUCHI, SACHRAJDA, AND SONI

FIG. 1. Momentum flow of a generic diagram required for the renormalization procedure with nonexceptional momenta. The gray bubble stands for an operator insertion and higher order corrections.

Sturm et al., PRD 80, 014501 (2009)

Avoiding exceptional momenta

Figs. 3 & 4 from Boyle, Garron, Hudspith, Lehner, Lytle, JHEP 10 (2017) 054

Bertone et al. (ETM), <u>JHEP 03 (2013) 089</u>

Third row constraints from B mixing

 1σ hexagons

- General agreement of LQCD results, along with sum rules
- Tension with exclusive $|V_{ub}/V_{cb}|$, angle γ , and unitarity

MW, Eur. Phys. J A 57, 239 (2021)

B Mixing, unitarity, and V_{cb}

Buras and Venturini, Eur. Phys. J. C 82, 615 (2022)

Conclusions

- LQCD: lots of progress in precision, general agreement between methods

- Advertisement of other talks
 - 11:00 Monday: Alejandro Vaquero, $B \rightarrow D^* I v$ and related anomalies
 - 16:30 Monday: Enrico Lunghi, *B and K physics, role of lattice QCD*
 - 09:30 Tuesday: Chris Bouchard, $B \rightarrow K \mid I \text{ and } D \rightarrow K \mid v \text{ form factors and phenomenology}$
 - 11:00 Tuesday: Simon Kuberski, Heavy flavor physics with O(a) improved Wilson quarks

CKM: persistent inclusive/exclusive tension. Growing tension between exclusive $b \rightarrow c$ and B-mixing (+unitarity)

Future: lots of "next generation calculations" in progress, errors being reduced with a range of formulations New ideas for including QED effects, contributing to inclusive decays, improving dispersive constraints on ff shapes