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Thermodynamic vs. Kinetic Folding

Equilibrium properties for RNA secondary strutcures can be
calculated efficiently
But what about dynamics?

• On what time scale is equilibrium reached?

• How fast/slow is re-folding between dissimilar structures?

• What structures are populated initially?
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Folding during Transcription

Almost all RNA structures may be affected by co-transcriptional
folding:

• RNA is transcribed at a rate of 25–50 nucleotides per second

• Nascent chain starts folding as soon as its leaves the ribosome

• Helices once formed may be too stable to refold later on

• Co-transcriptional folding may drive the folding process to a
well-defined folded state (possibly different from the MFE)

• An energy barrier of 5kcal/mol can prevent refolding during
extension



Folding Dynamics as Markov Process

Let’s compute prob. Px(t) of observing structure x at time t.
Given transition rates kxy , this gives rise to a Markov process with
master equation

dPx(t)

dt
=

∑
y ̸=x

[Py (t)kxy − Px(t)kyx ].

or in matrix form, with kxx = −
∑

x ̸=y kyx :

d

dt
P(t) = KP(t).

A formal solution can be written simply

P(t) = et·KP(0)

Way too many states to solve directly (1017 for a tRNA)



Three Strategies for Predicting Folding Kinetics

• Folding trajectories via Monte-Carlo simulation
• Time-consuming
• Need statistics over many trajectories
• Non-trivial to analyze and interpret
• kinfold, KineFold

• Coarse grained dynamics via Barriers / Treekin / Barmap
• Identify local minima, assign macro-states
• Energy barriers and transition rates (barriers)
• Solve Px(t) on coarse grained landscape (treeekin)
• Extend sequence and transfer population to next landscape

(barmap)

• Heuristic landscape construction
• Model landscape by small set of representative structures
• Estimate energy barriers and rates
• Can be nicely combined with co-transcriptional folding
DrTransformer



Stochastic Simulations

Simulate folding kinetics by Gillespie
(rejectionless Monte Carlo) algorithm :

Generate all neighbors using a move-set
Close base pair – Open base pair

Assign rates to each move, e.g.:

ki = Γ ·min

{
1, exp

(
−∆E

kT

)}
Select a move i with probability ∝ ki

Advance clock by 1/
∑

i ki (on average).
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computationally somewhat expensive

need to analyze many trajectories

easy to include co-transcriptional folding



RNA Landscape Analysis

Barrier trees

• Contains all local minima as leafs

• Barrier heights and saddles between
minima

• Groups structures into macro states

• Transition rates between macro states
→ coarse grained dynamics

• Time and space proportional to the
size of the landscape
Limited to RNA < 100nt

• Sampling based heuristics for longer
RNAs

Flamm et al, Z. Phys. Chem. (2002)



Calculating barrier trees

The flooding algorithm:

Read conformations in energy sorted order.

For each confirmation x we have three
cases:

(a) x is a local minimum if it has no
neighbors we’ve already seen

(b) x belongs to basin B(s), if all known
neighbors belong to B(s)

(c) if x has neighbors in several basins
B(s1) . . .B(sk ) then it’s a saddle
point that merges these basins.

M1

M2

M3

S12

S23

M3

M3

M1

M1

M2

M2

S12

S12

S23

S23

M3

M1

M2

M3

M1

M2

S23

M3

M1

M2

S12

S23



Coarse Graining the Landscape



Coarse Graining the folding dynamics

For a reduced description we need

• macro-states that form a partition of
full configuration space

• transition rates between macro states

• macro-states defined via gradient
walks

Transition rates could follow an Arrhenius rule
rβα = exp

(
−(E∗

βα − Gα)/RT
)
.

Better: include all transition states

rβα =
∑
y∈β

∑
x∈α

ryxProb[x |α] ≈
1

Zα

∑
y∈β

∑
x∈α

ryxe
−E(x)/RT

assuming local equilibrium.



How to include Ligand Binding ?

• Need to know binding motif and binding rates from
experiment

• Simple strategy:

• Add binding energy θ = RT ln Kd

c⊖ to every binding competent
structure

• Assumes infinite ligand concentration and infinitely fast binding

• Treat binding / unbinding events explicitly
• Barrier trees for bound and unbound states
• Usual rates within bound / unbound structures
• Concentration dependent rate of complex formation

koff = kone
−θ/RT , r = kon · C



How to include Ligand Binding ?
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Kühnl et al, BMC Bioinf. (2017), Wolfinger et al. Methods (2018)



Co-transcriptional folding with BarMap

Each extension of the RNA structure modifies the landscape:

E
Bk−1 Bk

βk

• Compute barrier trees for each sequence length 1 . . . n

• Compute a mapping between the minima of subsequent
landscapes

• Compute dynamics piece-wise:
• Compute dynamics on landscape for length k
• Transfer population to landscape of length k + 1

Hofacker et al., RNA (2010)



DrTransformer: Fast co-transcriptional Folding

• Simulate a small network consisting only of the most relevant
structural states

• Evolve network as RNA grows



DrTransformer: “Breathing” neighbors

Which new structures should be added after an elongation step?

• Elongation can only effect the surroundings of the exterior loop

• Partially unfold all helices that protrude from exterior loop

• Use constrained folding to re-fold exterior loop surroundings
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DrTransformer Visualization

• Simple webinterface

• Interactive visualization
Javascript and SVG

• Structure ensemble as
function of time



Example: The dG-Riboswitch

• Aptamer for 2’deoxyguanosin

• Binding leads to transcription
termination

• NMR analysis (Schwalbe lab):
Ground state structure contains
terminator even without ligand

Helmling et al, JACS (2017)



Kinfold simulation of the dG Riboswitch

• 10000 Kinfold trajectories (186 cpu hours)
• Classify each structure as aptamer and/or terminator
• Simulation with ligand: Add a bonus of 8kcal/mol for each binding

competent structure
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Kinfold simulation of the dG Riboswitch
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DrTrafo simulation of the dG Riboswitch

• Only 1 run needed (3 cpu sec)
• Classify each structure as aptamer and/or terminator
• Final state 1% population in terminator
• Simulation with ligand not yet possible
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BarMap simulation of the dG Riboswitch

0

0.2

0.4

0.6

0.8

1

60 70 80 90 100 110 120 130 140

p
o
p
u
la

ti
o
n
 d

e
n
s
it

y

time / number of nucleotides transcribed

A U A U A A A A G A A A

C

U

U

A

U

AC
A

G
GGUAGC

AU
A

A

U
G G

G C U A C U

G
A

C C C
C

G

C

C U U C A A A C
C

U
A

UUUGGAG
A

C
U

A

U

A

A

G

U G A A A A

1 10

20

30

40
50

6070

80

A U A U A A A A G A A A

C

U

U

A

U

AC
A

G
GGUAGC

AU
A

A

U
G G

G C U A C U

G
A

C C C
C

G

C

C U U C A A A C
C

U
A

UUUGGAG
A

C
U

A

U

A

A

G

U G A A A A A C C A C U C

U

U

U

A

A

U
U

A

U

U

A

A

A

G U U U C

1 10

20

30

40
50

6070

80

90

100

105

A U A U A

A

A

A

G

A

A

A

C

U

UAU
A

C
A

G

GGUAGC
AUA

A

U
G G G C U A C U

G

A

C

C

C
C

G
C

C

U

U

C

A

A

A

C

C U
A

U

U

U

G

G

A

G A C U A
U

A
A

G
U

G

A
A A

A

A
CC

A
C

U

C

U

U

U

A

A

U
U

A
U

UAA

A

G

U

U

U

C

U

U

U

U U A U

G

U

C

C

A
A

A

A

G

A

C

A A G A A G A

1

10

20

30

40

50

60

70

80

90

100

110

120

130

A U A U A A

A

A

G

A
A

ACUUAUA
C

A
GG

G

U

A

G

C
A

U
AAU

G

G
G

C

U

A

C

U
G

A

C

C

C

C
G

C C

U

U

C

A

A

A

C
C U

A

U

U

U

G

G

A

G
A

C

U A U A A G U
G

A A A
A

A

C

C

A
C

U

C

U

U

U A A U U

A
U

U
A

A

A

G

U

U

U

C

U

U

U

U

U

A
U

G
U

C

C
A

A

A

A
G

A
C

A

A

G

A

A

G

A

A

A

C

U

U

U
U

U
U

A

1

10
20

30

40

50

60

70

80

90

100

110

120

130

140

Simulation at 25C, transcription speed 25 nt/sec, ligand
concentration of 1mM



Take home messages

• RNAs don’t always reach their MFE or equilibrium state in
reasonable time.

• Co-transcriptional folding essential to regulatory elements
such as riboswitches

• Predicting kinetics is much harder than predicting equilibrium

• Previous methods too slow too cumbersome

• Faster, easy to interpret methods, now available
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Coarse grained dynamics vs. full dynamics
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The findpath re-folding path heuristic

Perform a bounded breadth first search of direct paths.

• Only consider direct paths, i.e. where distance decreases with each step.
• Up to D(x , y)! direct paths.
• Bound the search by keeping only m best candidates from each distance class.


