

ncRNAs in yeast introns

Sam Giffiths-Jones, Daniela Delneri

Katarzyna Hooks

University of Bordeaux Twitter: @KBHooks

Introns and evolution

24 July 2018

Reasons for intron retention

- Evolutionary remains
- Functional:
 - Splicing
 - Sequence of intron
 - Structure of intron
 - Non-coding RNA genes

Intron evolution in Saccharomycotina

• WGD

- 250 orthologous introns in 20 species
- Perfect intron losses

 (gene replaced with its mRNA by homologous recombination)
- Some evidence for micro-homology mediated loss

Hooks et al., Genome biology and evolution (2014)

Intronic ncRNA (*in trans*)

24 July 2018

Intron structure (in cis)

Hooks et al., Genome biology and evolution (2014)

Approach

Computational screen

- 14 intersecting predictions
- + 2 paralogs
- + 3 other high-scoring

• conserved RNA structures up to *Candida* sp.

 only two from 19 RNA structures predicted in introns have not been shown to have function or a phenotype when deleted

mRNA intron ncRNA spliced -++

snoRNAs putative ncRNA

Hooks et al., Genetics (2016)

Hooks et al., Genetics (2016)

RNA structure and introns

- 1. *HAC1 / XBP1*
- 2. GLC7
- 3. RPL28

HAC1

Filipiowicz, EMBO J (2014)

HAC1

Hooks & Griffiths-Jones, RNA Biol (2011)

- 3' splice site

H3

7 bp Arthropoda

50

0.0

Conservation

1.0

60

HAC1 conservation

	10	20	30	40	50	60	70	80	90	100	110	120	130
B_floridae	G A U C	C A G G U C -	C U	C U G A A U G	C	C – A G – – – –	A C A A U - G	– – U G – C A C C U <mark>C</mark> U G (A G C A G G G G -	с <mark>а</mark> – – – – – – – – –	G A U C U	- G G A U C	
_rerio	– – – – – – – – G <mark>U</mark> G A C – –	C G G G U C -	U U	C U G A G U (<mark>C C G C A G C -</mark> A C U	C – A G – – – –	G C U A C - G	– – U G – U G C C U <mark>C</mark> C <mark>G (</mark>	A G C A G G U G -	с <mark>а</mark> – – – – – – – – –	<mark>G G</mark> C C C	A G C A G U C C C -	
A carolinensis	U C C C C G G - C		G G	C U G A G U G	C	U – G G – – – –	C C U A A - G	-	AGAAGGGA-	C A	GGCCC	AGCACCGGGG	G – – – – –
H sapiens	– – – – – – – – G <mark>U</mark> G G C – –	C G G G U C -	U G	C U G A G U G	C	C – A G – – – –	A C U A C - G	– – U G – C A C C U <mark>C</mark> U G (A G C A G G U G -	C A	GGCCC	A G U U G U C A C -	
C_teleta	– – – – – – G A G <mark>U</mark> G U – – –	G U G U C -		– – – A <mark>G A</mark> G <mark>U (</mark>	<mark>C U G C A G</mark> U – A C U	C - U	C A A G U A	-	C		A A G G C A C	ACACU'	C
H_robusta	G C A C C G - C A	ACGCACA-	C C	C – A C <mark>G</mark> G G U (<mark>C U G C A G C</mark> – – C C	C – G U G – – –	U U G	– – A A – C A <mark>C C C C C G (</mark>	C A G G G G G G A G - 1	u u	– – – G G U <mark>G</mark> U G U	U G G U G	C
L_gigantea	U G G A G	A C G A A A -	U C C C A	C A G A U (<mark>C U G C A G C</mark> – A U C	U - G	C	-	C	с <mark>а</mark> – – – – – – – – –	G A U U U C G	A C U C C	A
A_californica	– – – – – – – G U <mark>U</mark> U – – – –	G U G U G U -	U U G U U C	– – – C A G G <mark>U (</mark>	<mark>C C G C A G C</mark> – A C C	U - G	C	-	AGAAGGAG-	с <mark>а</mark> – – – – – – – – –	G G U U C A	G A A U C	
C_elegans	G A U C G C	C G U G C C -	U U	– – – U G A A U (C A G C A G C – A U U	C – A – – – – –	U U A A	– – <mark>U G</mark> A G C <mark>C U – C</mark> A <mark>G (</mark>	AGU-GGGAA	C A	– – – – – <mark>G G</mark> C – C	CGAU	C
P_pacificus	U U G U C A	CACCC-	C U	– – – <mark>UG</mark> GAU	C A G C C G C – A U C	C – A – – – – –	U U U G	– – <mark>U G</mark> A A C U C – <mark>C</mark> A <mark>G (</mark>	AGA-GAGCU	C A	– – – – – <mark>G G</mark> G U G	U G G C	U - A
B_malayi	C A U C A		C C U	U G G A U G	C U G C C G A – A U C	C – A – – – – –	U U C G	– – C G G U C C C – <mark>C</mark> A G (C A G A – G G G A A	с <mark>а</mark> – – – – – – – – –	– – – – – <mark>G G</mark> C G G	UGAU	G
C briggsae	– – – – – – G G A <mark>U</mark> C – – – A	ACGAGCC-	U	U G A A U (C A G C A G A – A U U	C – A – – – – –	U U A A	– – U G C A C C C – <mark>C</mark> A G (AGA-GGG-A	с <mark>а</mark> – – – – – – – – –	– – – – A <mark>G G</mark> C – C	AACGGAUU	C
D_melanogaster	– – – – G G C U G <mark>U</mark> G – – – –	C G U C C A -	C C A A C	– C U <mark>U G</mark> G A U G	<mark>C U G C A G C</mark> – A U C	C – A A A G – –	C	– – U G – A C C C U <mark>C</mark> U <mark>G</mark> (C	u <mark>a</mark> – – – – – – C a	A C A G G U <mark>G</mark> G A C	A C A C A	G - U C
C_pipens	– – – – G G U U G <mark>U</mark> G – – – –	U U U C C A -	- C C C U A C U A	– – – <mark>– G</mark> G A <mark>U</mark> (<mark>C A G C A G C – A</mark> U C	C – – – – – – – –	G C C C A	– – A A – C C <mark>C C U C U G (</mark>	C	U U – – – – A C U U	UCAA – U <mark>G</mark> GAA	G C A C A	A – A C – –
I_castaneum	– – – – G A A U G <mark>U</mark> G – – – –	A – – – – G A G U G –	C A A	– – G <mark>U G</mark> G A C <mark>(</mark>	C A G C A G U – G U C	<mark>C</mark> – – C – – – –		– – <u>– –</u> – U U <mark>C U U C</mark> G <mark>G (</mark>	C		– – – – G C <mark>G</mark> C U C	A C A C A	U – U C – –
D_pulex	– – – – G G A U G <mark>U</mark> – – – – –	A U C C	U	G – U <mark>U</mark> A A G <mark>U (</mark>	C A G C C G C – A C U	U – A U U A – –	A	– – U G – G A C C U <mark>C</mark> U <mark>G</mark> (C	C A	– – – – – – <mark>G</mark> GGU	U A C A	U - C C
B_cinerea	– – – – – – – G U <mark>U</mark> C U U – –	– – – – U C G <mark>G</mark> U – –	- A U G A C A	C – A A C A U <mark>U</mark> (<mark>C U G C U G C – A</mark> A U	G – U U G U G –	C	– – – – – – – G A C <mark>C U G (</mark>	A G U G U C – – –	A	<u>A</u> U C G	– A – – A A G U A C	
A_nidulans	U G A G U C C	C C C G A U U -	U G A C A	C – A A C A U C 🤇	<mark>C U G C A G C</mark> – G A U	G – U U G U G –	C	– – – – – – – G A C <mark>C U G (</mark>	A G U G U C – – –		– – – – – A <mark>G</mark> U C G	- G - C G G G C U C	G
C_albicans	- U C C A A C U A A U	C A U U C U -	A U A G	– – C <mark>U G</mark> A U <mark>U</mark> U	J A <mark>G C A G C</mark> – A A U	C – A G U C U –	- A	– – <u>– –</u> – – – – G C <mark>C</mark> A <mark>G (</mark>	A G A G C	C A A U -	– – – – – A <mark>G</mark> A A U	C A U U U C A ·	G – U U G G
5_cerevisiae	C A A U U C A A U U G - A	U C – – – U U G A – –	C A A U U G G	C – G <mark>U</mark> A A U C <mark>(</mark>	C A <mark>G C</mark> C <mark>G</mark> U – G A U	U – A C G – – –	A U U G G	C U <mark>U G</mark> U A C U G <mark>U C</mark> C <mark>G</mark> 2	A <mark>A G</mark> C G C A G U –	C A G G U – – – – –	U U G A	A – UUCAUUUG	A – A U U G
						•							•

	10		20	30		40	50		60	70		80	9	0	100	1	110	1	120	130
B_floridae	G A U C		CAGGUC	C U	0	CUGAAU	CCGCAGC-	AUUC	– A G – – –	– A C A A U – G –	U G	- C A C C U	CUGCAGC	AGGGG	- C A		G A U C U	I - G -	- G A U C	
D_rerio	G U G A C		CGGGUC	U U	0	CUGAGU	CCGCAGC-	ACUC	– A G – – –	– G C U A C – G –	U G	– U G C C U	CCGCAGC	AGGUG	- C A		– – – <mark>G G C C C</mark>	AGC	A G U C C C	
A carolinensis	U C C C G G	– C – – – –	UGGGCC	– – – G G – – – –	0	CUGAGU	CCGCAGC-	ACUU	– G G – – –	– C C U A A – G –	U G	- u u c c u	CUGCAGA	AGGGA	- C A		– – – <mark>G G C C C</mark>	AGC	ACCGGGGG	
H_sapiens	G U G G C		C G G G U C	– – – U G – – – –	0	CUGAGU	CCGCAGC-	ACUC	– A G – – –	– A C U A C – G –	U G	- C A C C U	CUGCAGC	AGGUG	- C A		– – – <mark>GGCCC</mark>	AGU	U G U C A C	
C_teleta	G A G U G U -		– G U G U C			- AGAGU	CUGCAGU-	ACUC	- U	– C A A G U A – –		- c u c c u	CUGCCGA	AGGAG			– A A <mark>G G C A C</mark>	: - ·	A C A C U C	
H_robusta	G C A C C G -	C A A C	- G C A C A	– C C – – – – – –	C - I	ACGGGU	CUGCAGC-	- C C C -	- G U G	- U U G	A A	- C A C C C	CCGCAGG	GGGAG	- U U		– G G <mark>U G U G U</mark>	/ - ·	– – U G G U G C	
L_gigantea	U G G A G	– – A – – –	– CGAAA	– U C C C A – – –		- C A G A U	CUGCAGC-	AUCU	- G	- C	U G	- u u c c u	CUGCCGA	AGGAG	- C A		– G A <mark>U U U C G</mark>	A – – •	C U C C A	
A_californica	G U U U	– – G – – –	– U G U G U	– U U G U U C – –		- C A G G U	CCGCAGC-	ACCU	- G	– C – – – – – – –	U G	- บ บ С С บ	CUGCAGA	AGGAG	- C A		G G U U C A	G	A A U C -	
C_elegans	G A U C G	– C C – – –	– G U G C C	– U U – – – – – –		- U G A A U	CAGCAGC -	AUUC	– A – – – –	– U U A A – – – –	U G	AGCCU-	CAGCAGU	- G G G A	A C A		– – – <mark>G G C – C</mark>	:	C G A U C	
P_pacificus	U U G U C A		- C A C C C	- C U		- U G G A U	CAGCCGC-	AUCC	– A – – – –	– U U U G – – – –	U G	AACUC -	CAGCAGA	– GAGC	U C A – – –		– – – <mark>G G G U G</mark>	; .	– – – U G G C U	- A
B malayi	C A U C A		– U C G U C	– C C U – – – – –		- U G G A U	CUGCCGA-	AUCC	– A – – – –	– U U C G – – – –	– – – – C G	G U C C C –	CAGCAGA	- G G G A	A C A		– – – <mark>G G C G G</mark>	; .	U G A U G	
C_briggsae	G G A U C	– A A C – –	- GAGCC	– U – – – – – – –		- U G A A U	CAGCAGA -	AUUC	– A – – – –	– U U A A – – – –	U G	CACCC-	CAGCAGA	– G G G – 2	A C A		A G G C - C	AAC	G – – G A U U C	
D_melanogaster	– – – – G G C U G U G – –	– – C – – –	– GUCCA	– C C A A – – – –	– C – C t	JUGGAU	CUGCAGC-	AUCC	– A A A G –		C – – – U G	– A C C C U	СИGССGС	AGGGU	A U A – – –	– – – C A A C	AGG <mark>UGGAC</mark>	A	C A C A G	- U C
C_pipens	– – – – G G U U G U G – –	U	- U U C C A	– C C C U A C U A		G G A U	CAGCAGC -	AUCC		– G C C C A – – –	A A	- c c c c u	СИGССGС	A G G G - 2	A U U	– A C U U U C	AA - UGGAA	G	C A C A A	- A C
T_castaneum	G A A U G U G	– – A – – –	– GAGUG	- C A A	0	GUGGAC	CAGCAGU -	GUCC	– – C – – –			-	СGGCCGC	AAGGA			– – G <mark>C G C U C</mark>	A	C A C A U	- U C
D_pulex	G G A U G U		- A U C C -		– U G – U	JUAAGU	CAGCCGC-	ACUU	– A U U A –	A	U G	- G A C C U	СИGССGС	AGGGA	- C A		<mark>- G G G U</mark>	U U	A C A U	- C C
B_cinerea	G U U C U U		UCGGU-	– – A U G A – – –	C A C - 1	AACAUU	C U G C U G C -	AAUG	– U U G U G	C		– – – G A C	CUGCAGU	G U C – –		– A – – – – –	A U C G	- A -	– AAGUAC –	
A_nidulans	U G A G U C C	– – C – – –	CCGAUU	– – – U G A – – –	C A C - 1	AACAUC	CUGCAGC-	GAUG	– U U G U G	C		– – – G A C	CUGCAGU	G U C – –			A G U C G	; – G – <i>i</i>	C	
C_albicans	- U C C A A C U A A U		CAUUCU	– – – A U – – – –	AG 0	CUGAUU	UAGCAGC -	AAUC	– A G U C U	A		– – – G C	CAGCAGA	G C – – –		C A A U	A G A A U	1 C	– AUUUCAG	– U U G G <i>I</i>
S_cerevisiae	– – C A A U U C A A U U G	– A U C – –	- U U G A -	– C A A U U G G –	C - C	GUAAUC	CAGCCGU-	GAUU	– A C G – –	– A U U – – – – –	- G C U U G	UACUGU	CCGAAGC	GCAGU	CAGGU			י ט – א	UCAUUUGA	- A U U G -

secondary struct

secondary struct

RNA structure and introns

- 2. GLC7
- 3. RPL28

GLC7

GLC7 ncRNA indicated by RT-PCR and the Northern

GLC7 codes for a crucial protein phosphatase catalytic subunit

GLC7 phenotype

ncRNA deletion mutant is sensitive to salt stress

ncRNA deletion decreases the *GLC7* expression

no rescued by ncRNA expression

Hooks et al., Genetics (2016)

RNA structure and introns

3. *RPL28*

RPL28 structure

• Similar hairpin structures in premRNAs of *RPS14B*, *RPL30* and *RPL28*

RPL28 structure

• Similar hairpin structures in premRNAs of *RPS14B*, *RPL30* and *RPL28*

 pre-mRNA structure is recognized by ribosomal proteins with lower affinity than their rRNA targets

Negative autoregulatory loop

RPL28 expression

100

 10^{1}

 10^{-1}

 10^{3}

 10^{2} S. cerevisiae intron reads [RPKM] 10^{4}

RPL28 intron function

Mol Gen Genet (1986) 203:300-304

Intron mutations that affect the splicing efficiency of the CYH2 gene of Saccharomyces cerevisiae

Ulrike Swida, Eduardo Thüroff, and Norbert F. Käufer*

*aq*667.

RPL28 intron function

Mol Gen Genet (1986) 203:300-304

Intron mutations that affect the splicing efficiency of the CYH2 gene of Saccharomyces cerevisiae

d9 661

RNA structure and introns

Conclusions

Photo by: Rainis Venta, BY-SA 3.0

- Intron positions are perfectly conserved, sequences are frequently conserved
- Introns are expressed and have a life after splicing
- Introns can perform their function by RNA structures
- Intronic RNAs regulate the transcription of their host genes

Acknowlegments

Sam Giffiths-Jones

Antonio Marco

Daniela Delneri

Samina Naseeb

Steven Parker

The University of Manchester

Maureen O'Malley

Macha Nikolski

Elena Rivas Eric Westhof