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Most of nascent RNA is going to waste

Splicing, editing, cleavage and
polyadenylation are co-transcriptional and
intricately coupled with each other

RNA is densely coated by proteins (RBP)

RNA forms secondary and tertiary
structure that affect all processing steps




Crosslinking and immunoprecipitation family (CLIP)
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Enhanced crosslinking and immunoprecipitation (eCLIP)
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Large Panel of Expression and Binding Assays

e ENCODE: shRNA-KD+RNA-seq, eCLIP in HepG2 and K562

CRISPR eCLIP shRNA CRISPR eCLIP shRNA
AUH v’ v’ NCBP2 v’ v’
BUD13 v’ N PRPF8 v v’
CSTF2T v’ v’ PTBP1 v’ v’ v’
DDX21 v v’ QKI v’ v
DDX3X v’ v’ RBFOX2 v v’
DDX55 v’ v RBM15 v’ v’
DDX6 v’ M RBM22 v’ v’
DHX30 v v’ SF3B4 v’ v’
EFTUD2 v’ v’ SLTM v’ v
FAM120A v v SMNDC1 v v
FASTKD2 v’ v SND1 v v’
GTF2F1 v’ v’ SRSF1 v’ v
HNRNPA1 v’ v’ SRSF7 v v’ v’
HNRNPF v 7 TAF15 v’ v’
HNRNPK v v’ TBRG4 v’ v’
HNRNPM v v’ TIA1 v’ v’
HNRNPU v’ v TRA2A v’ v’
HNRNPUL1 v v’ TROVE2 v’ v’
IGF2BP1 v’ v’ v U2AF1 v’ v’
ILF3 v’ v’ U2AF2 v’ v’
LARP4 v’ v’ UCHLS5 v’ v’
LARP7 v v’ XRCC6 v’ v
LIN28B v’ v’ XRN2 v’ v’
LSM11 v’ v’

e ENCODE: RNA-seq (nuclear/cytosolic compartments) in HepG2 and K562



Prediction of Exon Inclusion from RBP binding

e Input: n exons and kK RNA-binding proteins (RBP)

e n = 125,000, RNA-seq K562 and HepG2 (Gingeras, ENCODE)
e k =90 eCLIPs, enhanced crosslinking and IP (Yeo, ENCODE)
e U = PS| = Percent-Spliced-In € [0, 1]

e RBP;, = eCLIP enrichment over control, i = 1.. .k,x =1...n

e \We want a classifier to predict exon inclusion WV, from RBP;,

( V) = f(RBP11,RBP»1, ..., RBPy1)

& W, =1f(RBPy,,RBP>,,...,RBP;.]

= A(RER, KRB REB P



Random Forest Classifier Predicts W with high accuracy

% b ROC for HepG2

eCLIP is a compound signal
REBP: =2, 2Zu)

=== 0.7 (area = 0.9028)
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WV, is discretized based on a threshold
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n; = 125,000 annotated exons
ny = 24,000 cassette exons ° Up to 90-95% accuracy

e Better than SVM and LR



Convolution of eCLIP data with long-range RNA structure

e Without secondary structure: RBP;(x) = eCLIP / near site x
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Long-range RNA structure improves RF models

control by count, random shift
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Now a warning

e Exonic features are much more important
than intronic features

e Factors with the highest importance are
non-specific

e Reactivity to splicing factor KD is inconsistent i
with feature importance NOW a warning?!

e Feature importance strongly correlates with
the number of eCLIP peaks
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_IP peaks are strongly depleted in introns
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Co-transcriptional and post-transcriptional splicing
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CoSl index = completeness of splicing

CoSlI > threshold => spliced

CoSI < threshold => unspliced

0.00

0.50
nuclear

0.75

nucleus
unspliced | spliced
spliced POST co
cytosol
unspliced | UNSPL artifact




% nucleotide overlap

eCLIP peaks are most strongly depleted in CO introns
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Conclusions (points to keep in mind)

1.
2.

eCLIP signal is strongly confounded by co-transcriptional splicing
Co-transcriptionally-spliced introns have less chance to be sampled in eCLIP

The imbalance between co- and post-transcriptional introns is different for
different factors, and also varies between cell lines

Peak calling has to be done differently in exons and in introns
Different significance and logFC thresholds are needed for different factors

Other data flavours (such as RNA duplex maps) may help interpret eCLIPs
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