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Notes 

• In this talk, I have no intension to insist that 

– our algorithms/tools are superior to any other tools 

 

– theoretically “better” means practically/biologically better 

 

• I am very happy if 

– you get a hint to combine/improve(?) your methods 

– and of course, compare our tools with your tools 
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Probability & free energy of 2D structures 

Probability that an RNA sequence      form a structure  
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The complete information of the 2D structure 

Is only represented by distribution, or Z(x). 

 

“hard” prediction of a single structure & 

“soft” marginal probabilities (e.g. BPPs) 

does not represent the complete information. 
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2D structure prediction of an RNA sequence 

Given               : an RNA sequence 

predict the secondary (2D) structure of  

     ⇒ predict a point in                  , 

              the set of all the possible 2D structures of  
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Each cell is not independent 

A 2D structure is a point 

in a subspace of a binary space 

whose dimension is  2|| x
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2D structure prediction of RNA 

Probability that an RNA sequence      form a structure  
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Problem of MFE/MLE for RNA 2D structure 

• The probability of MFE/MLE structure is very very small. 

– e.g.  tRNA 

 

 

• Probability sum of “Clusters” may give different picture 

– e.g.  Rnase P 

8,262,197,946,800,760 
patterns 

0.66% 

Carvalho & Lawrence PNAS 08 

Multidimensional scaled distribution (A) and histogram of distances to cluster 2 centroid (B) 

 derived from 1,000 representative samples from Sfold for the secondary structure of Dermocarpa sp. 

MFE 
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More on MFE/MLE 2D structures 
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MFE structure = ML estimator 

             maximizes the probability  that the estimator is 

             exactly same to “correct” structure 

 

Drawback of ML estimator: 

   the probability for the ML estimator is extremely small 

                                            （10-5～10-30） 

 General drawback in estimation problem 

                        in high-dimensional binary space  

M. Hamada et al. PLoS one 6:2 (2011) 
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No good solution?  But still we try point estimation 

MLE maximize the probability 

  that the estimator is exactly same as “correct” structure 

 
 

 

MEG（Maximum Expected Gain） estimator is defined as 
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 RYYyG :),( (          ,          ) 
Gain Function 

),(),( yyG  

Y Yy 





YYy

MEG DPyGy


 )|(),(maxargˆ )(





Y

ML xPxP


 )|(),(maxarg)|(maxargˆ

M. Hamada et al. PLoS one 6:2 (2011) 
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Generalized centroid estimator （ g-centroid ） 
g-centroid estimator is the MEG estimator for the  gain function: 

 

 

 

 

for                   , g-centroid estimator 

 

is equivalent to MEG for 
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M. Hamada et al. PLoS ONE 6:2 (2011) 

The g is a parameter to control the valance of sensitivity and PPV （ g = 1, centroid） 
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DP for g-centroid estimator of 2D structure 
 A posterior decoding 
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Hamada et al. Bioinformatics 25(4), 2009 

Base-pairing probability （BPP）, a posterior probability 

         We usually need DP for BPP (e.g. McCaskill) 
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http://www.ncrna.org/centroidfold
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DP for g-centroid estimator of 2D structure 
 A posterior decoding 
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g-centroid maximizes the expected accuracy of BASE-PAIR prediction 

 in terms of   

 

 Can be combined with BPP from any energy model. 
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http://www.ncrna.org/centroidfold
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g-centroid estimator for pairwise alignment 

 

 

 

 

g-centroid estimator of 2D structure prediction 
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Frith et al. BMC Bioinformatics 11:80, 2010 

DP for g-centroid estimator of sequence alignment 
 A posterior decoding 

Alignment probability is 

also a marignal probability 
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CentroidFold in evaluation by 3rd party 

 

13 
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Accuracy in terms of base-pairs prediction 

CONTRAfold 

Sfold RNAfold 
SimFold 

Dataset: S-151 [Do+ 2007] 

CentroidFold 

On average, g-centroid has a very strong position in this 

evalutation measure if the same energy model is used.  

Of course, this does 

not mean g-centroid is 

the “best” method for 

2D structure prediction. 

Hamada et al. Bioinformatics 25(4), 2009 
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MEA estimator of 2D structure [Do+2006] 
 Maximum expected accuracy estimator 

Implimented in CONTRAfold [Do+2006] 

“correct” base-pair in base i “correct” loop in base i Sum for every position i 

in the sequence 

DP for MEA estimator of 2D structure 

θor yの対称拡張行列 
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What’s wrong with MEA estimator of 2D structure? 
Relation between MEA estimator and γ-centroid estimator 
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Unfavorable bias for 

estimating base-pairs 
Gain function of MEA 
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of g-centroid 

Implying g-centroid is 

a “better” estimator 

j1 

j2 

j1 j1 

j1 

j2 j2 j2 





YYy

MEG DPyGy


 )|(),(maxargˆ )(



Benasque RNA 2015 

When DP is out （more difficult problems） 

17 

RNA secondary 
structure prediction 

RNA−RNA interaction 
prediction 

Integer programming 

Model & solve 

Kengo SATO 

Yuki KATO 
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Algorithms/software related to  g-centroid  

CentroidFold           2D pred.                                     Hamada+ Bioinformatics 25(4) 2009 
CentroidHomfold   2D pred. using similar RNAs   Hamada+ Bioinformatics 25(12) 2009 

CentroidAlign          RNA alignment                          Hamada+ Bioinformatics 25(24) 2009 

 

RactIP                   RNA2 interaction, integer prog.   Hamada+ Bioinformatics 26(18) 2009 

IPknot                   2D pred. w. PK integer prog.        Sato+ Bioinformatics 27(13)  2011 

 

McCaskill-MEA      Common 2D pred.   MEA            Kiryu+ Bioinformatics 23(4) 2007 

CentroidAlifold     Common 2D pred.   g-centroid   Hamada+ Nucleic Acids Res.39(2) 2011 

Pseudo-expected Accuracy  2D pred.                Hamada et al. BMC Bioinformatics 2010 
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For those who want to see more theory 

Michiaki Hamada*, Hisanori Kiryu, Wataru Iwasaki, 
Kiyoshi Asai, Generalized Centroid Estimators in 
Bioinformatics, PLoS ONE 6(2):e16450, 2011. A 
corrected version is available from arXiv  

 

Michiaki Hamada and Kiyoshi Asai. A Classification of 
Bioinformatics Algorithms from the Viewpoint of 
Maximizing Expected Accuracy (MEA) 
 Journal of Computational Biology. May 2012, 19(5): 
532-549.  

 

 

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0016450
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0016450
http://arxiv.org/abs/1305.4339
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SUMMARY OF MEA ESTIMATIONS IN BIOINFORMATICS 

 

Hamada+ J. Comp. Biol. 19(5) 2012 



Algorithms & tools 
for 2D structure analysis 

Risa Kawaguchi 

Hisanori Kiryu 

 

Ryota Mori 

Kiyoshi Asai 
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Importance of detailed analysis of 2D structures 

 Fig. 6 Base-pairing probabilities. (A) The estimated probabilities indicated by dot 

plot for base-pairs in the AptAF42dope1 sequence. The dots in the (i, j)-cell, with i < j, 

indicates the base-pairing probability of the base-pair between i-th and j-th 

nucleotides in the sequence, where larger dots represent higher probabilities. In the 

calculation, the McCaskill model with Boltzmann Likelihood (BL) parameters were 

adopted as the probability distribution of the secondary structures. (B) Base-pairing 

probabilities of each position of the AptAF42dope1 sequence. The horizontal axis 

indicates positions of AptAF42dope1 and the vertical axis indicates the sum of base-

pairing probabilities for the position. Cleavage sites obtained from ribonuclease 

digestion assay are also shown in the figure. Blue diamonds represent RNase T1 

cleavage sites; red squares represent RNase V1 cleavage sites; green triangles 

represent S1 nuclease cleavage sites, respectively. 

Hironori  Adachi , Akira  Ishiguro , Michiaki  Hamada , Eri  Sakota , Kiyoshi  Asai , Yoshikazu  Nakamura 

 Antagonistic RNA aptamer specific to a heterodimeric form of human interleukin-17A/F 

Biochimie, Volume 93, Issue 7, 2011, 1081 - 1088 

 Fig. 5 RNase protection analysis of AptAF42dope1. (A and B) RNase footprinting of 5′- (A) 

and 3′- (B) FAM labeled AptAF42dope1 (5 pmol) in the presence of IL-17 proteins (IL-

17A/F, 16.6, 33.3, 66.5 pmol; IL-17A/A and IL-17F/F, 66.5 pmol). Experimental conditions 

and procedures are as described in Materials and methods. (C) Mapping of nucleotides in 

AptAF42dope1 protected from RNase cleavage in the presence of IL-17A/F. Symbols: blue 

diamonds represent protection from RNase T1 cleavage; red diamonds represent 

protection from RNase V1 cleavage; and green diamonds represent protection from S1 

nuclease cleavage, respectively. 

http://www.sciencedirect.com/science/article/pii/S0300908411001064?via=ihub#sec2
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Nothing has been solved on those problems 
weakness of point estimation 

• The probability of MFE/MLE structure is very very small. 

– e.g.  tRNA 

 

 

• Probability sum of “Clusters” may give different picture 

– e.g.  Rnase P 

8,262,197,946,800,760 
patterns 

0.66% 

Carvalho & Lawrence PNAS 08 

Multidimensional scaled distribution (A) and histogram of distances to cluster 2 centroid (B) 

 derived from 1,000 representative samples from Sfold for the secondary structure of Dermocarpa sp. 

MFE 

g-centroid? 

g-centroid? 



Efficient calculation of exact probability distributions of integer 
features on RNA secondary structures 

 

Calculating the complete distributions of integer score S which is assigned to each 

RNA structure considering the whole RNA structure ensemble. 

For example, S can be the hamming distance from the specific reference structure. 

 

Similar Dissimilar 

reference 
structure 

P
ro

ba
bi

lit
y 

hamming distance 

 R. Mori et al. BMC Genomics 2014, 15(Suppl 10):S6 
Benasque RNA 2015 



References on this topic 

Newberg LA, Lawrence CE: Exact calculation of distributions on integers, with 
application to sequence alignment. 

J Comput Biol 2009, 16(1):1-18. 

 

Freyhult E, Moulton V, Clote P: RNAbor: a web server for RNA structural neighbors. 

Nucleic Acids Res 2007, 35(Web Server):305-309.  

 

Senter E, Sheikh S, Dotu I, Ponty Y, Clote P: Using the fast fourier transform to 
accelerate the computational search for RNA conformational switches. 

PLoS ONE 2012, 7(12):50506 

 

Lorenz R, Flamm C, Hofacker IL: 2D Projections of RNA Folding Landscapes. 

 

Senter E, Dotu I, Clote P: Efficiently computing the 2D energy landscape of RNA. 

Math Biol 2014. OpenURL 
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How to calculate the sum of the probabilities 



Efficient calculation of exact probability distributions of integer 
features on RNA secondary structures 

・Algorithm construction 

 We modify the McCaskill model, which is the standard DP procedure for the 

partition function of RNA secondary structure ensemble. 

 

 

 

 

 Discrete Fourier Transform reduces time complexity of computations in order-

level, and decentralizes the procedure. 
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 R. Mori et al. BMC Genomics 2014, 15(Suppl 10):S6 
Benasque RNA 2015 
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Efficient calculation of exact probability distributions of integer 
features on RNA secondary structures 

・Analyses by the proposed method 

  

Benasque RNA 2015 



Benasque RNA 2015 

The six structural contexts are represented by six colors: stems (red), exterior 

loops (light green), hairpin loops (purple), bulge loops (pink), internal loops (blue) 

and multibranch loops (green). The unstructured context is the union of the 

exterior and multibranch loops. These colors are used throughout the paper. 

CapR 

The six structural contexts.  

computes marginal probability for each structural context 

Fukunaga et al. Genome Biology 2014 15:R16 
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Probabilistic structural profile of RNA 

Performance of CapR. (C) The structural profiles of tRNAs. The x-axis represents the nucleotide positions 

from 5′ to 3′. The y-axis represents averaged probabilities that each base belongs to each structural context 

across all tRNA genes in the Rfam dataset [22]. The black boxes represent the nucleotides annotated as stem 

in Rfam. (D) tRNA cloverleaf structure annotated in Rfam. B, bulge loop; E, exterior loop; H, hairpin loop; I, 

internal loop; M, multibranch loop; S, stem. 

CapR 

Fukunaga et al. Genome Biology 2014 15:R16 

http://genomebiology.com/2014/15/1/R16#B22
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Specific patterns of probabilistic structural profile 
near the binding site of RNA-biding proteins 

 

The distribution of theP scores for each RNA-binding protein. The x-axis represents the nucleotide positions and the y-

axis represents the P score of ±20 bases around the sequential motif site. The position 0 denotes the start position of the 

sequential motif. Positive P scores for each structural context indicate that the positions tend to prefer the structural context. 

The black box represents the sequential motif site. The dotted lines show the corrected significance levels of the Bonferroni 

correction (α=0.05). The panels represent the distribution of P scores 

for (A)QKI, (B) Pum2, (C) Lin28A, (D) FXR2(WGGA), (E) FMR1_7(ACUK), (F) FXR2(ACUK), (G) Nova and(H) SRSF1. B, 

bulge loop; H, hairpin loop; I, internal loop; S, stem; U, unstructured. 

 

CapR 

Fukunaga et al. Genome Biology 2014 15:R16 
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Density plot of siRNA efficacy–accessibility correlations.  

Kiryu H et al. Bioinformatics 2011;27:1788-1797 

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, 

please email: journals.permissions@oup.com 

Raccess 
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Kiryu H , Asai K Bioinformatics 2012;28:1093-1101 

Rchange 
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