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A non convex problem
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Let Q be a bounded domain of R?. We consider the problem

s = ik v+ glm)de+ [t |

u=ug ON ro 5]

where:

o f:RY — R convex continuous with p-growth (1 < p < +0)

@ g,~ are possibly non convex functions with suitable growth
conditions

o (o, 1) is a partition of 0N.

If p > 1, existence of a global minimizer
If p =1, relaxed minimizer in BV (Q).



Typical examples

o Cahn Hilliard fluid
f(Z) =¢e ’Z|2 ) g(X7 t) = W(t)—p(X) t,v€ LIP(R) ) M= o2
(W two wells potential , p(x) pressure , v wetting potential)

o Free boundary Pb
f(z) = V1+1217, g(t) = L(0,400) » T0 =02, up=1
(The free boundary coincides with 9{u > 0})
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Free boundary Pb

The case f(z) = |z|? and g(x, t) = w(x) 1{;0} has been studied
by Alt-Cafarelli (viscosity solutions of Euler equation)

AQ) = inf {/Q

~+ Free boundary Pb in term of D = {u > 0},

2
qu‘ +A|lu>0] :u=1on OQ}.

u solves
t,
—Aup=0in D u=1
up = 1 on 09. 11
~» Shape functional _-u=20
1 g o
2
J:D—>)\\D|+2/]VUD\. D
Q



Questions

@ How to characterize global minimizers ?

@ Approximation scheme ruling out local minimizers and
compatible with multiple solutions.

e Derivability of J(2) as a shape functional ?
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Outline

Dual problem and inf = sup result.
Case d = 1. Construction of explicit calibrations.

Min-Max scheme and identification of global minimizers

A

Case d > 1. Existence of calibrations for linear growth
functionals
5. An open issue related to Munford-Shah functional.
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1. Dual Problem

Assume up = 0 and y(0) = 0. Recall:

s = ok w0 g der [t |

u=0 on [g r

The dual problem reads as a linear program on Q x R:
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1. Dual Problem
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Assume up = 0 and y(0) = 0. Recall:

s = ok A w0+ ey der [ dntt |

u=0 on [g r

The dual problem reads as a linear program on Q x R:

J*(Q2) == sup {

_fQ of(x,0)dx , diva =0 on Q xR
ceEK(Q)

X

o -vg=—(t) ae onl; xR

where v unit exterior normal on 9Q and competitors
o = (0%, 0t) € L°(Q x R; RY*"1) belong to convex set

K(Q) = {a e COQXR;RIY) : F(0¥) < g + ot in Q x R}



Maximisation of downflow under constraint

Gu

Dy

dive =0 )Y

(o*)<g+o' onQxR
X vg=7(t) ae onX:=T;xR
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Inequality J(2) > J*(Q)

9/30

Let u a competitor and divergence free o such that
ot > —f*(0*) + g(t). By Fenchel:

/(f(Vu) +g(x,u))dx > /(O'X(X, u(x)) - Vu — o(x, u(x))) dx
Q Q

/rl’y(u)del - /r ( /0 umfy’(t)dt) dHe1

Thus, the total energy E(u) satisfies

E(u) > / J'Vude+/ o - vodHYdt > /—Ut(X,O)dX
u M xR Q

1

where v, = WiEn
apply Stokes formula on A = {(x,su(x)) : x € Q,s € (0,1)}

(Vu,—1) unit normal to th graph G,, and we



Integration by parts over A

Gu

Yy

divo=0 ¥

Y= xR , 0A=G,U(Qx{0}HUux

10/30



Calibration fields (0%, 0t) € L(Q x R;R? x R)

@ requiring continuity of o is to stringent for being optimal in
J*(w).

o f*(0*) < g+ ot holding merely a.e. can't handle possible
discontinuities of g(u)
( at u =0 in the free-boundary problem)

@ o has a normal trace well defined a.e. on every Lipschitz
hypersurface S, in particular on every S; = Q x {t} ,t € R
(by Anzellotti , it exists on d — 1 -rectifiable subsets)
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Class B of admissible fields for problem J*(£2)

We extend the class of competitors for J*(Q2) to the class By of
fields o = (0%, 0t) € (L°(Q x R))I*L such that:

(s0) dive=0 in QxR

(s1) (o)< g(t)+o" ae (x,t) € QAxR;
(s2) VseDg, —f(0) <g(s)+o(-,s) ae inQ
(s3) o*-vg =1(t) ae onl xR

Here D, is the set of discontinuities of g (assumed to be negligible).

Lemma:  J(Q) > [q—0'(x,0)dx Vo€ By . J

Note that in (s3):

- horizontal component ¢* is missing
- £*(0*) has been replaced by inf f* = —£(0).
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e The theortical existence of a maximizer & (calibration) is a
difficult issue: no control on the positive part of ot.
(in Neumann case, can show L! estimate and existence of relaxed

solutions with possible singular part in o).

e No uniqueness in general

e If J(Q) admits a bounded minimizer T such a <@ < 3, then in
dual problem J*(€2) we may take the supremum on the larger class
B, 3 obtained by requiring conditions (s0-s3) merely on Q x [«, 3].



Duality result

Theorem It holds

5(Q) = sup{/ﬁ—at(x, 0)dx : o e Bo} — Q).

e The theortical existence of a maximizer & (calibration) is a
difficult issue: no control on the positive part of ot.

(in Neumann case, can show L1 estimate and existence of relaxed
solutions with possible singular part in o).
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Duality result

Theorem It holds

5(Q) = sup{/ﬁ—at(x, 0)dx : o e Bo} — Q).

e The theortical existence of a maximizer & (calibration) is a
difficult issue: no control on the positive part of ot.

(in Neumann case, can show L1 estimate and existence of relaxed
solutions with possible singular part in o).

e No uniqueness in general

e If J(Q2) admits a bounded minimizer T such o <@ < (3, then in
dual problem J*(2) we may take the supremum on the larger class
B, 3 obtained by requiring conditions (s0-s3) merely on Q x [«, 3].
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Optimality conditions for primal-dual problem
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Let C(t) := {q € R gt > F*(q) —g(t)} , with support
function e((_ 2" -
- .y t)) i 0
h(t,P)::{ P(( p)+g()) e

400 otherwise

Theorem  An admissible pair (7,7) € W12(Q) x B is optimal iff
7-vg = h(t,vg) holds HY a.e. in Gy . (%)

If Dg is finite and & continuous in  x (R\ Dg), (*) amounts to
check that:

{ "7 (x, a(x))

= u(x)) +g(a(x)) ae xeQ
Vs € Dg, —£(0)

( %k
6( s)+ g(s) ae xe{u=s} ()

o

Remark: this determines @ on Gz \ Dy x R



Explicit optimal @ if g,~ are convex continuous
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Let @ a minimizer for J(£2). Then there exists 9)(x) such that
(Euler equation)

Y(x) € of(Vu) , divy € dg(u) in Q, —-vq € Oy(u(x)) in T1.
With ¢ , we may associate the field

— Y(x) o g% *( 3
N s TP B AR IC08

It is divergence free (s1) and satisfies boundary condition (s4). As
g(t) > g(u) + divyp(t — 1), we deduce inequality (s2) from the
Euler Eq combined with Fenchel inequality.

Thus @ € B and optimality condition (xx) holds by exploiting
Fenchel equality

g(u(x)) = u(x) divyp(x) + g*(dive)



Proof of inequality J(Q) < J*(Q)
Assume that [ = 9Q,1 =0,
Step 1. We use u € W01’2(Q) ~ v =1,(x, t) € Ap where

1 ift<u(x)
1,(x,t) = , = BV(Q xR
b 1) {0 Frsupy @ 0T (2 R)

Let F: A9 — (—00,+00] be the convex functional defined by
F(v) = / h(t, Dv) .
QxR

Then F(1,) = [o(f(Vu) + g(u)). By classical convex duality
arguments

J(Q) = inf{F(v) : ve A} .

Q: is previous infimum unchanged if we restrict to functions of the

formv=1,77
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Generalized coarea formula

Proposition Let v € Ag such that F(v) < 4+o00. Then
(i) For a.e; x € Q, v(x,-) is non increasing with
v(x,—o0) =1, v(x, +00) = 0.

(i) Let us(x) :=inf{T € R : v(x,7) < s}. Then us € WOI’Z(Q)
for a.e s € (0,1) and

F(v) = /01 (/Q(f(Vus) +g(us))) ds.

Corollary J(Q) =min{F(v):v € A} (= J*(Q)).
If v € Ag is optimal, then us is solution to J(Q) for a.e s € (0,1)

In particular, if J(2) has finitely many solutions T;, v must be piece-
wise constant jumping across the graphs of the u;'s
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3- Case d = 1. Construction of calibrations

Let d =1, Q = (0,h), [o = {0, h} , up = 0.

Write divergence free o as 0 = (0w, —0xw) for some scalar
potential w : [0,a] x R — R. Then J*(2) reads

sup {W(h,O) —w(0,0) : FH(Oew) + dew < g(t)}

Remark: it looks like Monge-Kantorovich problem (in dual form)

@ J(0,0) is transported to d(p )

e constraint |[Vw| < 1 is substituted with the one above
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By using value-function

Let us perturbe the infimum problem J(2) by taking
Q=(0,x) , w(0)=0 , wx)=t.

Then, we introduce the value function
V(x,t) = inf {/ (F(u') + g(u)) ds , u(0) =0 , u(x) = t}
0

LEMMA G = (0:V,—0xV) solves J*(Q).

Proof: By Bellman's dynamic optimization principle, V/(x, t)
solves in the viscosity sense 0y V + f*(0: V) = g(t) (needs only <)
Besides: J*(Q) > — [ 5%(s,0) ds = V(h,0) = J(Q) O

Remark: This solution &(x, t) is singular closed to {x = 0}
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Free boundary example

Let Q= (0,h) , F =1 gy =120 (D = {0}), up=1.

h u/2
I(Qp) = inf / - ds+ AMu>0| : u(0)=u(h)=1
0
= min{Ah,2v/2VA} (non differentiable in h)

bo

Tg, Uy are local minimizers

{Uo} if \h> <8
Argmin(J\(Q24)) = ¢ {u1} if \h®> > 8
{Uo,ﬁl} if A2 =8
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Numerical computation of optimal flow

We treat a case with two solutions g, 1.

2 ift>0
Q=02 gB)=¢ o _. (=2

S(Q2) := sup {/ ot(x, 1)dxe/ |0|2} (e >0)
o€B Q Qx[0,1]

@ ¢ = 0 unperturbed dual Pb J*(Q)
@ € > 0 viscosity term (~ select solution of minimal L2-norm)

b

2N
lezlga

0 of(x,t) >0 2 X
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Numerical solution by Matlab + 2d-finite elements

ol l1l\l\]xlxl1l\lx]xlxlll\lx]xlxlll\]x]xllllme\\ =T I
oaNSe LR EELLTEELTEETETLS =) =
. /H;HHHHHH[HHM\\: :j AR W
RS = i §
0s '“;f/’/’z’z’z’/’/’//‘\\\\\\\x\x\x\\\\\\“ ~os NN

Z: :3 i ',; ; ; ; ;" AR

(c) Singular solution

e Singular solution (c) constructed by symmetrization of gradient
rotated of & = (0;V, —0x V) (value function)
e Time of computation is very high (Matlab optimization toolbox).
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3- Min-Max formulation

e We observe that F(v) = sup,cp L(v, o) where B is the class of
fields o € L*(Q x R, div) which satisfy (s1)(s2)(s3) and

L(v,o) ::/Q RO’-DV
X

Thus according to our duality result

J(2) = min{F(v):ve A} = minsup L(v,0).
veAo seB
. Similarly we have for every oebB:
infyesy L(v,0) = — [q0t(x,0) if dive =0 ( +oo otherwise).
Thus
J*(Q) = sup inf L(v,0).
(@) = sup inf L(v.0)
Remark: Divergence free condition on ¢ is treated by duality (v
represents a pressure).
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Saddle point
Let (v,7) € Ao x B. Then (v,7) is an optimal pair iff

L(v,0) < L(v,5) < L(v,5) , forall(v,0)e€ Agx B

We can use then an approximation scheme

O'g+1 = Projgn(of + aVhvh)
h _ h b _h

Vn+1 =Vy = ,B(dIV Un+1)

—h _ h h

o+l = 2Vn+1 —Vn
where
- hy, h; are the size parameters of a d + 1-cartesian grid G,
- divis adjoint to V", Projgh is a suitable non linear projector
(discretization of constraint B)

- aBe2 - _ (VoA 2
aﬁch < 1 W|th Ch — Sup”‘/h”#o ||Vh|| - ” H
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Scheme MAC + Orthogonal projections

Scheme MAC seems well adapted. Here are some results by Minh
Phan

Optimal v exhibits two plateaus corresponding to solutions g, Ti1
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4- Case d > 1. A case of Existence

Theorem  Assume that
o alz| -5 < F(z) < AL + |2I)
@ f* is bounded on its domain
o g = g(t) is a bounded nondecreasing function.
e [(=00Q

Then there exists a calibration, i.e. the supremum J*(Q) is attained.

Example. The next free boundary pb falls into this framework.

inf{/\/1+]Vu|2dx—|—‘{u>0}‘ : u=1on OQ}
Q
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Proof strategy
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Let for instance up = 1, g(t) = L(0,400)s f(z) =|z|.

We consider the modified dual problem

J5(Q) := sup { —[q of(x,1)dx, divo=0 on QxR }
ceK(RQ)

which resembles J*(Q2), BUT now competitors o belong to

K(Q) = {(7 € LY(QxR; R [of| +[0%| < g ae. in Qx R}.
It turns out that J*(Q) is attained and agrees with J*(Q)

[cf. rearrangement results for functionals with non constant density,
Landes 2008].



5- About Munford Shah problem

A celebrated example of non convex variational Pb:

J(Q):= inf {/ WU|2dx+Hd ! /u—h x)|? dx}
ueSBV(Q) JQ\S.

o Existence due to Ambrosio in 1990

e Sufficient conditions for global minimizers (calibrations) ,
G.Alberti, GB, G. Dal Maso (2001)
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A possible dual Pb

— Jo 0f(x,0)dx , dive =0 on QxR
J(Q2) == sup
oeK(Q) X -vg=0 a.e. on 92 x R

BUT here the convex constraint is non local. In order to account
the jump energy, o € K(Q2) requires two conditions:
1 1
o SIP <ot S|t~ h(x)P

“to
/ o*(x,s) ds
t;

<

° < 1 , forevery t, tr
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A possible dual Pb

— Jo 0f(x,0)dx , dive =0 on QxR
J(Q2) == sup
v =20
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ceK(Q)

a.e. on 90 x R

BUT here the convex constraint is non local. In order to account
the jump energy, o € K(Q2) requires two conditions:

1 1
S0 < ot Sl — ()P

° <1

“to
/ o*(x,s) ds
t

Jty
THEOREM J(Q) > J*(Q)
(u,0), one has

, for every t1, to

with equality if, for an admissible

o(x,u(x)) = (Vu( )s %(|Vu\2 —|u—h?)) ae x€Q

u (x
Ju —(9) 7

=1 HI¥lae xe8,




Open problem

Do we have the equality J(Q) = J*(Q2) ?

Difficulty: no coarea formula for Munford Shah functional !
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