Second-order Analysis for Optimal Control of the Schrödinger Equation

Maria Soledad Aronna¹, Frédéric Bonnans and Axel Kröner²

¹ Ecole de Mathematica/FGV

²,³INRIA Saclay and CMAP, École Polytechnique

Partial differential equations, optimal design and numerics Benasque, 01.09.2015

Content

Semigroup setting

- Optimal control problem
- Second order optimality condition
- Application to Schrödinger equation

Content

Semigroup setting

- 2 Optimal control problem
- 3 Second order optimality condition
- Application to Schrödinger equation

Semigroup setting

Framework: Hilbert space H .

 C_0 (or strongly continous) semigroup: Family T(t), for $t \ge 0$, of bounded linear operators such that T(0) = I and

 $t \downarrow 0$

$$T(s+t) = T(s)T(t), \quad s,t \ge 0$$
$$x = \lim_{t \to 0} T(t)x, \quad \text{for all } x \in H.$$

Then there exists $M \ge 1$, $\omega \ge 0$ such that

$$||T(t)|| \le M e^{\omega t}$$
 for all $t \ge 0$.

Infinitesimal generator of a C_0 semigroup

(Unbounded) linear operator \mathcal{A} in H such that

$$\mathcal{A}x = \lim_{t \downarrow 0} \frac{T(t)x - x}{t}$$

with domain the set of x such that the above limit exists.

Characterization of C_0 semigroups

If $\lambda I + \mathcal{A}$ is invertible with a bounded inverse, we say that λ belongs to the resolvent set $\rho(\mathcal{A})$ and denote by $R_{\lambda}(\mathcal{A}) := (\lambda I + \mathcal{A})^{-1}$ the resolvent.

Theorem

A linear operator \mathcal{A} is the infinitesimal generator of a C_0 semigroup T(t) such that $||T(t)|| \leq Me^{\omega t}$, iff \mathcal{A} is closed with dense domain, and for all $\lambda > \omega$, $\lambda \in \rho(\mathcal{A})$ and

$$|R_{\lambda}(\mathcal{A})^n|| \leq M/(\lambda-\omega)^n, \quad n=1,2,\ldots$$

If M = 1, $\omega = 0$ we have a contraction semigroup: $||T(t)|| \le 1$. Ref: A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, 1983 (with convention -A instead of A).

Differential equations

In the sequel, T(t) denoted by $e^{-t\mathcal{A}}.$ If $\mathcal{A}\in L(H)$ then

$$e^{-t\mathcal{A}} = I - t\mathcal{A} + \frac{1}{2}t^2\mathcal{A}^2 + \cdots$$

For $f \in L^1(0,T;H)$ consider the differential equation over (0,T):

$$\dot{y} + \mathcal{A}y = f; \quad y(0) = y_0.$$

The mild, or semigroup solution is by the definition

$$y(t) = e^{-t\mathcal{A}}y_0 + \int_0^t e^{-(t-s)\mathcal{A}}f(s)$$

Nonlinear differential equations

For $F: H \to H$ we define the solution of

$$\dot{y}(t) + Ay(t) = F(y(t)) + f(t); \ t \in (0,T); \ y(0) = y_0$$

by

$$y(t)=e^{-t\mathcal{A}}y_0+\int_0^t e^{-(t-s)\mathcal{A}}(F(y(s))+f(s))\mathrm{d}s$$

whenever this is fixed-point equation, it is well-defined (as is e.g. if F is Lipschitz).

Dual semigroup

If $\mathcal A$ (unbounded) linear operator in H with domain $D(\mathcal A)$: its dual $\mathcal A^*$ is the linear operator over H^* with domain

$$\{x^* \in H; \;\; \exists y^* \in H^*; \; \langle x^*, \mathcal{A}x \rangle = \langle y^*, x \rangle, \;\; \text{ for all } x \in D(\mathcal{A}) \; \}.$$

If $\lambda \in \rho(\mathcal{A})$ then $R_{\lambda}(\mathcal{A})^* = R_{\lambda}(\mathcal{A}^*)$.

Theorem

Let \mathcal{A} be the infinitesimal generator of a C_0 semigroup $e^{-t\mathcal{A}}$. Then the semigroup $(e^{-t\mathcal{A}})^*$ over H^* is C_0 and its generator is \mathcal{A}^* .

Adjoint equation

Consider the direct and adjoint differential equation, where $a \in L(H)$, $f \in L^1(0,T;H)$, $g \in L^1(0,T;H)$:

$$\dot{y}(t) + \mathcal{A}y(t) = ay(t) + f(t); \ t \in (0,T); \ y(0) = y_0.$$

 $-\dot{p}(t) + \mathcal{A}^*p(t) = a^*p(t) + g(t); \ t \in (0,T); \ p(T) = p_T.$

The semigroup solutions in C(0,T;H) and $C(0,T;H^*)$ are

$$y(t) = e^{-t\mathcal{A}}y_0 + \int_0^t e^{-(t-s)\mathcal{A}}(ay(s) + f(s))ds$$
$$p(t) = e^{-(t-T)\mathcal{A}^*}p_T + \int_t^T e^{-(t-s)\mathcal{A}^*}(a^*p(s) + g(s))ds$$

Integration by parts (IBP)

We have that

$$\langle p(T), y(T) \rangle + \int_0^T \langle g(t), y(t) \rangle \mathrm{d}t = \langle p(0), y(0) \rangle + \int_0^T \langle p(t), f(t) \rangle \mathrm{d}t.$$

Application to optimal control:

 \boldsymbol{y} solution of linearized state equation

 $p \, \operatorname{costate}$

Another integration by parts formula

Let w be in $W^{1,1}(0,T)$. Then

$$\int_0^T \dot{w}(t) \langle p(t), y(t) \rangle dt = \begin{bmatrix} w(t) \langle p(t), y(t) \rangle \end{bmatrix}_0^T \\ - \int_0^T w(t) \Big(\langle p(t), b(t) \rangle - \langle g(t), y(t) \rangle \Big) dt$$

Content

Semigroup setting

Optimal control problem

3 Second order optimality condition

The optimal control problem

For Hilbert space H, let $\mathcal{B}_1 \in H$, $\mathcal{B}_2 \in L(H)$. Bilinear state equation

$$\dot{\Psi} + \mathcal{A}\Psi = f + u(\mathcal{B}_1 + \mathcal{B}_2\Psi); \quad \Psi(0) = \Psi_0.$$

Cost function

$$J(u,\Psi) := \alpha \int_0^T u(t) \mathrm{d}t + \frac{a_1}{2} \int_0^T \|\Psi(t) - \Psi_d(t)\|_H^2 \mathrm{d}t + \frac{a_2}{2} \|\Psi(T) - \Psi_{dT}\|_H^2;$$

Costate equation

$$-\dot{p} + \mathcal{A}^* p = a_1(\Psi - \Psi_d) + u\mathcal{B}_2^* p; \quad p(T) = a_2(\Psi(T) - \Psi_{dT}(T)).$$

Control space (scalar)

$$\mathcal{U} := L^1(0,T)$$

Control constraints

$$u_m \le u(t) \le u_M.$$

Existence

Reduced cost $F(u) := J(u, \Psi[u])$.

The optimal control problem is

$$\operatorname{Min} F(u); \quad u \in \mathcal{U}_{ad}. \tag{P}$$

The compactness hypothesis is, for some $s \in [1, \infty]$:

 $\left\{ \begin{array}{l} \text{For given } y_0 \in H \text{, the mapping } f \mapsto y(y_0, f) \\ \text{ is compact from } L^s(0, T; H) \text{ to } L^2(0, T; H). \end{array} \right.$

Lemma

Let compactness hypothesis hold. Then $u \mapsto \Psi[u]$ is continuous from \mathcal{U}_{∞} , endowed with the weak* topology, to C(0,T;H) endowed with the weak topology.

Theorem

Let compactness hypothesis hold. Then the optimal control problem has a nonempty set of solutions.

Axel Kröner (INRIA Saclay)

First order optimality conditions

Solution of state equation $\Psi[u]$

Reduced gradient (based on IBP)

$$DF(u)v = \int_0^T \left(\alpha + \langle p(t), \mathcal{B}_1 + \mathcal{B}_2 \Psi(t) \rangle\right) v(t) \mathsf{d}t$$

Assume (for ease of exposition) solution \hat{u} unconstrained, associated state $\hat{\Psi}$ and costate $\hat{p}:$ then

$$\langle \hat{p}(t), \mathcal{B}_1 + \mathcal{B}_2 \hat{\Psi}(t)
angle = 0$$
 a.e. on $(0,T).$

Refs on semigroup approach to optimal control

- X. Li, Y. Yao, in LNCIS 75, 1985.
- X. Li, J. Yong, SICOPT 1991, Birkhäuser, 1995.
- H.O. Fattorini in LNCIS 75, 1985, AMO 1987, Elsevier 2005.
- H.O. Fattorini, H. Frankowska MCSS 1991.
- Goldberg, Tröltzsch SICON 1993.

Content

Semigroup setting

- 2 Optimal control problem
- \bigcirc Second order optimality condition
- Application to Schrödinger equation

Second order optimality conditions

Lagrangian (formally)

$$J(u,\Psi) + \int_0^T \langle p(t), f(t) + u(t)(\mathcal{B}_1 + \mathcal{B}_2 \Psi(t)) - \dot{\Psi}(t) - \mathcal{A}\Psi(t) \rangle \mathrm{d}t$$

Second order optimality conditions II

Hessian of reduced cost (formally)

$$Q(v) := \int_0^T \left(a_1 \| z(t) \|^2 + v(t) \langle \hat{p}(t), \mathcal{B}_2 z(t) \rangle \right) \mathrm{d}t + a_2 \| z(T) \|^2,$$

where z = z[v] solution of linearized equation (formally)

$$\dot{z} + \mathcal{A}z = \hat{u}\mathcal{B}_2 z + v(\mathcal{B}_1 + \mathcal{B}_2\hat{\Psi}); \quad z(0) = 0.$$

Theorem (Second Order Necessary Condition) If \hat{u} local solution then $Q(v) \ge 0$ for any $v \in \mathcal{U}$.

Absence of information in the Legendre-Clebsch condition

Remember that

$$Q(v) := \int_0^T \left(a_1 \| z(t) \|^2 + v(t) \langle \hat{p}(t), \mathcal{B}_2 z(t) \rangle \right) \mathrm{d}t + a_2 \| z(T) \|^2.$$

No quadratic term in the control.

Idea: transformation of the quadratic form: Goh (1966).

Goh transform for the linearized system

Set

$$\xi := z - w(\mathcal{B}_1 + \mathcal{B}_2 \hat{\Psi}); \quad w(t) := \int_0^t v(s) \mathrm{d}s$$

Then $\xi(0) = 0$ and formally, with $[\mathcal{A}, \mathcal{B}_2] := \mathcal{A}\mathcal{B}_2 - \mathcal{B}_2\mathcal{A}$:

$$\dot{\xi} + \mathcal{A}\xi = \hat{u}\mathcal{B}_2\xi - wb_z^1;$$

where 'formally'

$$b_z^1 = -\mathcal{B}_2 f - [\mathcal{A}, \mathcal{B}_2]\hat{\Psi} - \mathcal{A}\mathcal{B}_1$$

Note that v does not appear in the dynamics for ξ ! We assume: $[\mathcal{A}, \mathcal{B}_2]\hat{\Psi} \in L^{\infty}(0, T; H)$, $\mathcal{AB}_1 \in H$.

Then we can take ξ as semigroup solution of the above equation.

A general IBP formula

Let
$$B \in L(\mathcal{H})$$
 and set $\Phi(t) := By(t)$.

Lemma

Let $[\mathcal{A}, B]y \in L^1(0, T; H)$ and $B^*\phi \in D(\mathcal{A}^*)$ when $\phi \in D(\mathcal{A}^*)$. Then

 $\dot{\Phi} = aBy + [B, a]y + Bb + [\mathcal{A}, B]y$

in the semigroup sense, and therefore, if $\varphi \in W^{1,1}(0,T)$:

$$\int_{0}^{T} \dot{\varphi}(t) \langle p(t), \Phi(t) \rangle dt = \left[\varphi(t) \langle p(t), \Phi(t) \rangle \right]_{0}^{T} \\ - \int_{0}^{T} \varphi(t) \Big(\langle p(t), aBy(t) + [B, a]y(t) + Bb + [\mathcal{A}, B]y(t) \rangle - \langle g(t), \Phi(t) \rangle \Big) dt.$$

Hypotheses for the Goh transform

Set $u = \hat{u} + v$ and

$$\Psi = \Psi[u]; \quad \delta \Psi := \Psi - \hat{\Psi}; \quad \eta := \delta \Psi - z.$$

Hypotheses:

 $\left\{ \begin{array}{ll} \mathcal{AB}_1, \ \mathcal{AB}_2\mathcal{B}_1, \ \mathcal{AB}_2^2\mathcal{B}_1 \ \text{belong to} \ H, \\ [\mathcal{A},\mathcal{B}_2], \ [\mathcal{A},\mathcal{B}_2^2], \ [\mathcal{A},\mathcal{B}_2^3] \ \text{applied to any } \Psi, \ \mathcal{B}_2\hat{\Psi} \ \text{belong to} \ L^2(0,T;H). \end{array} \right.$

Quadratic form: first step

 $Q(v)=Q_1(v)+Q_2(v)$ with setting $\mathcal{B}(t):=\mathcal{B}_1+\mathcal{B}_2\hat{\Psi}(t)$:

$$Q_{1}(v) := a_{1} \int_{0}^{T} ||z(t)||^{2} dt + a_{2} ||z(T)||^{2}$$

= $a_{1} \int_{0}^{T} ||\xi(t) + w(t)\mathcal{B}(t)||^{2} dt + a_{2} ||\xi(T) + w(T)\mathcal{B}(T)||^{2}$

$$Q_{2}(v) := \int_{0}^{T} v(t) \langle \hat{p}(t), \mathcal{B}_{2}z(t) \rangle dt$$

=
$$\int_{0}^{T} v(t) \langle \hat{p}(t), \mathcal{B}_{2}\xi(t) \rangle dt + \int_{0}^{T} v(t)w(t) \langle \hat{p}(t), \mathcal{B}_{2}\mathcal{B}(t) \rangle dt$$

Quadratic form: first step

We need to use the IBP formula one time for each several time, e.g.:

$$\begin{split} l_{2}(w) &= \int_{0}^{T} v(t) \langle \hat{p}(t), \mathcal{B}_{2}\xi(t) \rangle \mathsf{d}t \\ &= w_{T}(\hat{p}_{T}, \mathcal{B}_{2}\xi_{T})_{H} + a_{1} \int_{0}^{T} w(t) (\hat{\Psi}(t) - \Psi_{d}(t), \mathcal{B}_{2}\xi(t))_{H} \mathsf{d}t \\ &- \int_{0}^{T} w(t)^{2} (\hat{p}(t), \mathcal{B}_{2}b_{z}^{1}(t))_{H} \mathsf{d}t - \int_{0}^{T} w(t) (\hat{p}(t), [\mathcal{A}, \mathcal{B}_{2}]\xi(t))_{H} \mathsf{d}t. \end{split}$$

Goh transform in the second variation We have that $Q(v) = \Omega(w, h)$, where h = w(T): $\Omega = \Omega_T + \Omega_a + \Omega_b$.

where

$$\begin{split} \Omega_T &:= a_2 \, \|\xi(T) + h\mathcal{B}(T)\|_H^2 + h^2(\hat{p}_T, \mathcal{B}_2\mathcal{B}_1 + \mathcal{B}_2^2\hat{\Psi}_T)_H + h(\hat{p}_T, \mathcal{B}_2\xi_T)_H, \\ \Omega_a &:= \int_0^T \Big(a_1 \|\xi\|_H^2 + 2a_1 w(\xi, \mathcal{B})_H + 2a_1 w(\hat{\Psi} - \Psi_d, \mathcal{B}_2\xi)_H - 2w(\hat{p}, [\mathcal{A}, \mathcal{B}_2]\xi)_H \Big) \mathsf{d}t, \\ \Omega_b &:= \int_0^T w^2(t) R(t) \mathsf{d}t, \end{split}$$

with $R\in L^\infty(0,T;H)$ given by

$$R(t) := a_1(\|\mathcal{B}\|_H^2 + (\hat{\Psi} - \Psi_d, \mathcal{B}_2\mathcal{B})_H) + (\hat{p}, r(t))_H,$$

where $r(t) := \mathcal{B}_2^2 f(t) - \mathcal{A}\mathcal{B}_2 \mathcal{B}_1 + 2\mathcal{B}_2 \mathcal{A}\mathcal{B}_1 - [[\mathcal{A}, \mathcal{B}_2], \mathcal{B}_2]\hat{\Psi}.$

Schrödinger application: f = 0, $\mathcal{B}_1 = 0$, then

$$R(t) := a_1(\|\mathcal{B}\|_H^2 + (\hat{\Psi} - \Psi_d, \mathcal{B}_2\mathcal{B})_H) - (\hat{p}, [[\mathcal{A}, \mathcal{B}_2], \mathcal{B}_2]\hat{\Psi})_H$$

Second order optimality conditions III

Corollary

If \hat{u} local solution then

 $\Omega(w,h) \ge 0$, for any $(w,h) \in L^2(0,T) \times \mathbb{R}$.

Proof based on

- continuity of Ω in the $L^2(0,T) \times \mathbb{R}$ topology
- In the limit, w and h independent

Goh-Legendre condition

Lemma

Let $w \mapsto \xi$ be compact $L^2(0,T) \to L^2(0,T;H)$. Then

 $R(t) \ge 0$ a.e.

Axel Kröner (INRIA Saclay)

Taylor expansion of cost function using w

We have the Taylor expansion where $w(t) := \int_0^t v(s) ds$:

$$F(\hat{u} + v) = F(\hat{u}) + DF(\hat{u})v + \frac{1}{2}\Omega(w, w(T)) + o(\|w\|_1^2)$$

Second order sufficient condition: for some $\alpha > 0$:

 $\Omega(w,h) \ge 2\alpha \left(h^2 + \|w\|_2^2\right), \quad \text{for all } h \in \mathbb{R}, \ w \in L^2(0,T). \quad (SOSC)$

Theorem

If (SOSC) holds, and R(t) is continuous, then \hat{u} satisfies the weak quadratic growth condition

$$F(\hat{u} + v) \ge F(\hat{u}) + DF(\hat{u})v + \frac{1}{2}\alpha ||w||_2^2$$

Content

Semigroup setting

- 2 Optimal control problem
- 3 Second order optimality condition

Heat equation

Setting: $\Omega \subset \mathbb{R}^3$ open, bounded, smooth boundary Heat equation: $b \in H^1_0(\Omega) \cap W^{2,\infty}(\Omega)$, $y_0 \in C(\overline{\Omega}) \cap H^1_0(\Omega)$, y = y(x,t)

$$\left\{ \begin{array}{ll} \dot{y} - \Delta y = u(t)b(x)y \quad \text{in } Q := \Omega \times [0,T] \\ y = 0 \text{ on } \partial \Omega \times [0,T]; \quad y(\cdot,0) = y_0. \end{array} \right.$$

Cost function:

$$J(u) = \frac{1}{2} \int_Q (y(x,t) - y_d(x,t))^2 \mathrm{d}x \mathrm{d}t$$

Semigroup property

We need to study for $\lambda \geq 0$

$$\lambda y - \Delta y = f \in L^2(\Omega).$$

Then integrating by parts (Dirichlet boundary conditions)

$$\lambda \|y\|_2^2 + \int_{\Omega} |\nabla y(x)|^2 \mathrm{d}x = \int_{\Omega} y(x) f(x) \mathrm{d}x \le \|y\|_2 \|f\|_2$$

implying that the heat equation corresponds to a contraction semigroup.

Well-posedness of ξ equation

Here $\mathcal{A} = -\Delta$ with domain $D(\mathcal{A}) := H_0^1(\Omega) \cap H^2(\Omega)$. We have to compute (cancellation of $b\Delta y$)

$$[-\Delta, b]y = (-\Delta b)y + 2\nabla b \cdot \nabla y.$$

Known regularity result: if $y_0 \in H^1_0(\Omega)$ and $\hat{u} \in L^2(0,T)$ then

$$y \in C(0,T;H^1_0(\Omega)) \quad \Rightarrow \quad [-\Delta,b]y \in C(0,T;L^2(\Omega)).$$

Same analysis gives $[-\Delta, b]\xi \in C(0, T; L^2(\Omega))$.

Schrödinger equation

Here Ω as before and $\Psi(x,t) \in \mathcal{C}$:

$$\dot{\Psi} - i\Delta\Psi = f$$

Semigroup property: consider

$$\lambda\Psi-i\Delta\Psi=f$$

Multiply by $\hat{\Psi}$ (conjugate), integrate over Ω :

$$\lambda \|\Psi\|_2^2 + i \int_\Omega |\nabla \Psi|^2 \mathrm{d} x = \int_\Omega f(x) \Psi(x) \mathrm{d} x$$

Use Cauchy-Schwarz and take real parts: obtain contraction semigroup Here $\mathcal{A} = -i\Delta$ with domain (complex spaces) $D(\mathcal{A}) := H_0^1(\Omega) \cap H^2(\Omega)$. We have to compute (cancellation of $b\Delta\Psi$)

$$[-i\Delta, b]\Psi = (-i\Delta b)\Psi + 2i\nabla b \cdot \nabla \Psi.$$

Regularity result: if $\Psi_0 \in H^1_0(\Omega) \cap H^2(\Omega)$ and $\hat{u} \in L^\infty(0,T)$ then

$$\Psi \in C(0,T;H_0^1(\Omega)) \quad \Rightarrow \quad [-i\Delta,b]\Psi \in C(0,T;L^2(\Omega)).$$

Same analysis gives $[-i\Delta,b]\xi\in C(0,T;L^2(\Omega))$.

Axel Kröner (INRIA Saclay)

Numerical experiment I

Do such singular arcs really occur in practice ? Or is the solution bang-bang ? Numerical experiment support the existence of singular arcs ! Computations based on the (free software) optimal toolbox http://bocop.org

Singular arc in the Schrödinger equation

Figure : Presence of singular arcs, Schrödinger equation

Summary

Optimal control of a semigroup.

Control enters cost functional and equation linearly.

Goh-transformation.

Second-order sufficient optimality condition.

Thank you for your attention.