
Second-order Analysis for Optimal Control of the
Schrödinger Equation

Maria Soledad Aronna1, Frédéric Bonnans and Axel Kröner2

1 Ecole de Mathematica/FGV

2,3INRIA Saclay and CMAP, École Polytechnique

Partial di�erential equations, optimal design and numerics
Benasque, 01.09.2015



Content

1 Semigroup setting

2 Optimal control problem

3 Second order optimality condition

4 Application to Schrödinger equation



Content

1 Semigroup setting

2 Optimal control problem

3 Second order optimality condition

4 Application to Schrödinger equation

Axel Kröner (INRIA Saclay) Optimal control of a semi-group Sept. 1, 2015 3 / 39



Semigroup setting

Framework: Hilbert space H .

C0 (or strongly continous) semigroup: Family T (t), for t ≥ 0, of bounded
linear operators such that T (0) = I and

T (s+ t) = T (s)T (t), s, t ≥ 0

x = lim
t↓0

T (t)x, for all x ∈ H.

Then there exists M ≥ 1, ω ≥ 0 such that

‖T (t)‖ ≤Meωt for all t ≥ 0.
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In�nitesimal generator of a C0 semigroup

(Unbounded) linear operator A in H such that

Ax = lim
t↓0

T (t)x− x
t

with domain the set of x such that the above limit exists.
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Characterization of C0 semigroups

If λI +A is invertible with a bounded inverse, we say that λ belongs to the
resolvent set ρ(A) and denote by Rλ(A) := (λI +A)−1 the resolvent.

Theorem

A linear operator A is the in�nitesimal generator of a C0 semigroup T (t) such

that ‖T (t)‖ ≤Meωt, i� A is closed with dense domain, and for all λ > ω,
λ ∈ ρ(A) and

‖Rλ(A)n‖ ≤M/(λ− ω)n, n = 1, 2, . . .

If M = 1, ω = 0 we have a contraction semigroup: ‖T (t)‖ ≤ 1.
Ref: A. Pazy, Semigroups of linear operators and applications to partial di�erential
equations, Springer, 1983 (with convention −A instead of A).
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Di�erential equations

In the sequel, T (t) denoted by e−tA. If A ∈ L(H) then

e−tA = I − tA+
1

2
t2A2 + · · ·

For f ∈ L1(0, T ;H) consider the di�erential equation over (0, T ):

ẏ +Ay = f ; y(0) = y0.

The mild, or semigroup solution is by the de�nition

y(t) = e−tAy0 +

∫ t

0

e−(t−s)Af(s)
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Nonlinear di�erential equations

For F : H → H we de�ne the solution of

ẏ(t) +Ay(t) = F (y(t)) + f(t); t ∈ (0, T ); y(0) = y0

by

y(t) = e−tAy0 +

∫ t

0

e−(t−s)A(F (y(s)) + f(s))ds

whenever this is �xed-point equation, it is well-de�ned (as is e.g. if F is Lipschitz).
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Dual semigroup

If A (unbounded) linear operator in H with domain D(A): its dual A∗ is the
linear operator over H∗ with domain

{x∗ ∈ H; ∃y∗ ∈ H∗; 〈x∗,Ax〉 = 〈y∗, x〉, for all x ∈ D(A) }.

If λ ∈ ρ(A) then Rλ(A)∗ = Rλ(A∗).

Theorem

Let A be the in�nitesimal generator of a C0 semigroup e−tA. Then the semigroup

(e−tA)∗ over H∗ is C0 and its generator is A∗.
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Adjoint equation

Consider the direct and adjoint di�erential equation, where a ∈ L(H),
f ∈ L1(0, T ;H), g ∈ L1(0, T ;H):

ẏ(t) +Ay(t) = ay(t) + f(t); t ∈ (0, T ); y(0) = y0.

−ṗ(t) +A∗p(t) = a∗p(t) + g(t); t ∈ (0, T ); p(T ) = pT .

The semigroup solutions in C(0, T ;H) and C(0, T ;H∗) are

y(t) = e−tAy0 +

∫ t

0

e−(t−s)A(ay(s) + f(s))ds

p(t) = e−(t−T )A∗
pT +

∫ T

t

e−(t−s)A∗
(a∗p(s) + g(s))ds
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Integration by parts (IBP)

We have that

〈p(T ), y(T )〉+

∫ T

0

〈g(t), y(t)〉dt = 〈p(0), y(0)〉+

∫ T

0

〈p(t), f(t)〉dt.

Application to optimal control:

y solution of linearized state equation

p costate

LHS = directional derivative of cost
RHS = expression of reduced gradient
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Another integration by parts formula

Let w be in W 1,1(0, T ). Then∫ T

0

ẇ(t)〈p(t), y(t)
〉
dt =

[
w(t)〈p(t), y(t)〉

]T
0

−
∫ T

0

w(t)
(
〈p(t), b(t)〉 − 〈g(t), y(t)〉

)
dt
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The optimal control problem

For Hilbert space H, let B1 ∈ H, B2 ∈ L(H).

Bilinear state equation

Ψ̇ +AΨ = f + u(B1 + B2Ψ); Ψ(0) = Ψ0.

Cost function

J(u,Ψ) := α

∫ T

0

u(t)dt+
a1

2

∫ T

0

‖Ψ(t)−Ψd(t)‖2Hdt+
a2

2
‖Ψ(T )−ΨdT ‖2H ;

Costate equation

− ṗ+A∗p = a1(Ψ−Ψd) + uB∗2p; p(T ) = a2(Ψ(T )−ΨdT (T )).

Control space (scalar)
U := L1(0, T )

Control constraints
um ≤ u(t) ≤ uM .
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Existence
Reduced cost F (u) := J(u,Ψ[u]).

The optimal control problem is

Min F (u); u ∈ Uad. (P)

The compactness hypothesis is, for some s ∈ [1,∞]:{
For given y0 ∈ H, the mapping f 7→ y(y0, f)
is compact from Ls(0, T ;H) to L2(0, T ;H).

Lemma

Let compactness hypothesis hold. Then u 7→ Ψ[u] is continuous from U∞,

endowed with the weak∗ topology, to C(0, T ;H) endowed with the weak topology.

Theorem

Let compactness hypothesis hold. Then the optimal control problem has a

nonempty set of solutions.
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First order optimality conditions

Solution of state equation Ψ[u]

Reduced gradient (based on IBP)

DF (u)v =

∫ T

0

(α+ 〈p(t),B1 + B2Ψ(t)〉) v(t)dt

Assume (for ease of exposition) solution û unconstrained, associated state Ψ̂ and
costate p̂: then

〈p̂(t),B1 + B2Ψ̂(t)〉 = 0 a.e. on (0, T ).
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Refs on semigroup approach to optimal control

X. Li, Y. Yao, in LNCIS 75, 1985.

X. Li, J. Yong, SICOPT 1991, Birkhäuser, 1995.
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Goldberg, Tröltzsch SICON 1993.
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Second order optimality conditions

Lagrangian (formally)

J(u,Ψ) +

∫ T

0

〈p(t), f(t) + u(t)(B1 + B2Ψ(t))− Ψ̇(t)−AΨ(t)〉dt
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Second order optimality conditions II

Hessian of reduced cost (formally)

Q(v) :=

∫ T

0

(
a1‖z(t)‖2 + v(t)〈p̂(t),B2z(t)〉

)
dt+ a2‖z(T )‖2,

where z = z[v] solution of linearized equation (formally)

ż +Az = ûB2z + v(B1 + B2Ψ̂); z(0) = 0.

Theorem (Second Order Necessary Condition)

If û local solution then Q(v) ≥ 0 for any v ∈ U .
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Absence of information in the Legendre-Clebsch condition

Remember that

Q(v) :=

∫ T

0

(
a1‖z(t)‖2 + v(t)〈p̂(t),B2z(t)〉

)
dt+ a2‖z(T )‖2.

No quadratic term in the control.

Idea: transformation of the quadratic form: Goh (1966).
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Goh transform for the linearized system

Set

ξ := z − w(B1 + B2Ψ̂); w(t) :=

∫ t

0

v(s)ds

Then ξ(0) = 0 and formally, with [A,B2] := AB2 − B2A:

ξ̇ +Aξ = ûB2ξ − wb1z;

where 'formally'
b1z = −B2f − [A,B2]Ψ̂−AB1

Note that v does not appear in the dynamics for ξ !
We assume: [A,B2]Ψ̂ ∈ L∞(0, T ;H), AB1 ∈ H.

Then we can take ξ as semigroup solution of the above equation.
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A general IBP formula

Let B ∈ L(H) and set Φ(t) := By(t).

Lemma

Let [A, B]y ∈ L1(0, T ;H) and B∗φ ∈ D(A∗) when φ ∈ D(A∗). Then

Φ̇ = aBy + [B, a]y +Bb+ [A, B]y

in the semigroup sense, and therefore, if ϕ ∈W 1,1(0, T ):∫ T

0

ϕ̇(t)〈p(t),Φ(t)
〉
dt =

[
ϕ(t)〈p(t),Φ(t)〉

]T
0

−
∫ T

0

ϕ(t)
(
〈p(t), aBy(t) + [B, a]y(t) +Bb+ [A, B]y(t)〉 − 〈g(t),Φ(t)〉

)
dt.
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Hypotheses for the Goh transform

Set u = û+ v and

Ψ = Ψ[u]; δΨ := Ψ− Ψ̂; η := δΨ− z.

Hypotheses:{
AB1, AB2B1, AB2

2B1 belong to H,

[A,B2] , [A,B2
2], [A,B3

2] applied to any Ψ, B2Ψ̂ belong to L2(0, T ;H).
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Quadratic form: �rst step

Q(v) = Q1(v) +Q2(v) with setting B(t) := B1 + B2Ψ̂(t):

Q1(v) := a1

∫ T

0

‖z(t)‖2dt+ a2‖z(T )‖2

= a1

∫ T

0

‖ξ(t) + w(t)B(t)‖2dt+ a2‖ξ(T ) + w(T )B(T )‖2

Q2(v) :=

∫ T

0

v(t)〈p̂(t),B2z(t)〉dt

=

∫ T

0

v(t)〈p̂(t),B2ξ(t)〉dt+

∫ T

0

v(t)w(t)〈p̂(t),B2B(t)〉dt
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Quadratic form: �rst step

We need to use the IBP formula one time for each several time, e.g.:

l2(w) =

∫ T

0

v(t)〈p̂(t),B2ξ(t)〉dt

= wT (p̂T ,B2ξT )H + a1

∫ T

0

w(t)(Ψ̂(t)−Ψd(t),B2ξ(t))Hdt

−
∫ T

0

w(t)2(p̂(t),B2b
1
z(t))Hdt−

∫ T

0

w(t)(p̂(t), [A,B2]ξ(t))Hdt.
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Goh transform in the second variation
We have that Q(v) = Ω(w, h), where h = w(T ):

Ω = ΩT + Ωa + Ωb,

where

ΩT := a2 ‖ξ(T ) + hB(T )‖2H + h2(p̂T ,B2B1 + B2
2Ψ̂T )H + h(p̂T ,B2ξT )H ,

Ωa :=

∫ T

0

(
a1‖ξ‖2H + 2a1w(ξ,B)H + 2a1w(Ψ̂−Ψd,B2ξ)H − 2w(p̂, [A,B2]ξ)H

)
dt,

Ωb :=

∫ T

0

w2(t)R(t)dt,

with R ∈ L∞(0, T ;H) given by

R(t) := a1(‖B‖2H + (Ψ̂−Ψd,B2B)H) + (p̂, r(t))H ,

where r(t) := B2
2f(t)−AB2B1 + 2B2AB1 −

[
[A,B2],B2

]
Ψ̂.

Schrödinger application: f = 0, B1 = 0, then

R(t) := a1(‖B‖2H + (Ψ̂−Ψd,B2B)H)− (p̂,
[
[A,B2],B2

]
Ψ̂)H
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Second order optimality conditions III

Corollary

If û local solution then

Ω(w, h) ≥ 0, for any (w, h) ∈ L2(0, T )×R.

Proof based on
- continuity of Ω in the L2(0, T )×R topology
- In the limit, w and h independent
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Goh-Legendre condition

Lemma

Let w 7→ ξ be compact L2(0, T )→ L2(0, T ;H). Then

R(t) ≥ 0 a.e.
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Taylor expansion of cost function using w

We have the Taylor expansion where w(t) :=
∫ t

0
v(s)ds:

F (û+ v) = F (û) +DF (û)v +
1

2
Ω(w,w(T )) + o(‖w‖21)

Second order su�cient condition: for some α > 0:

Ω(w, h) ≥ 2α
(
h2 + ‖w‖22

)
, for all h ∈ R, w ∈ L2(0, T ). (SOSC)

Theorem

If (SOSC) holds, and R(t) is continuous, then û satis�es the weak quadratic

growth condition

F (û+ v) ≥ F (û) +DF (û)v +
1

2
α‖w‖22
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Heat equation

Setting: Ω ⊂ R3 open, bounded, smooth boundary

Heat equation: b ∈ H1
0 (Ω) ∩W 2,∞(Ω), y0 ∈ C(Ω̄) ∩H1

0 (Ω), y = y(x, t){
ẏ −∆y = u(t)b(x)y in Q := Ω× [0, T ]
y = 0 on ∂Ω× [0, T ]; y(·, 0) = y0.

Cost function:

J(u) =
1

2

∫
Q

(y(x, t)− yd(x, t))2dxdt
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Semigroup property

We need to study for λ ≥ 0

λy −∆y = f ∈ L2(Ω).

Then integrating by parts (Dirichlet boundary conditions)

λ‖y‖22 +

∫
Ω

|∇y(x)|2dx =

∫
Ω

y(x)f(x)dx ≤ ‖y‖2‖f‖2

implying that the heat equation corresponds to a contraction semigroup.
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Well-posedness of ξ equation

Here A = −∆ with domain D(A) := H1
0 (Ω) ∩H2(Ω).

We have to compute (cancellation of b∆y)

[−∆, b]y = (−∆b)y + 2∇b · ∇y.

Known regularity result: if y0 ∈ H1
0 (Ω) and û ∈ L2(0, T ) then

y ∈ C(0, T ;H1
0 (Ω)) ⇒ [−∆, b]y ∈ C(0, T ;L2(Ω)).

Same analysis gives [−∆, b]ξ ∈ C(0, T ;L2(Ω)).
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Schrödinger equation
Here Ω as before and Ψ(x, t) ∈ C:

Ψ̇− i∆Ψ = f

Semigroup property: consider

λΨ− i∆Ψ = f

Multiply by Ψ̂ (conjugate), integrate over Ω:

λ‖Ψ‖22 + i

∫
Ω

|∇Ψ|2dx =

∫
Ω

f(x)Ψ(x)dx

Use Cauchy-Schwarz and take real parts: obtain contraction semigroup
Here A = −i∆ with domain (complex spaces) D(A) := H1

0 (Ω) ∩H2(Ω).
We have to compute (cancellation of b∆Ψ)

[−i∆, b]Ψ = (−i∆b)Ψ + 2i∇b · ∇Ψ.

Regularity result: if Ψ0 ∈ H1
0 (Ω) ∩H2(Ω) and û ∈ L∞(0, T ) then

Ψ ∈ C(0, T ;H1
0 (Ω)) ⇒ [−i∆, b]Ψ ∈ C(0, T ;L2(Ω)).

Same analysis gives [−i∆, b]ξ ∈ C(0, T ;L2(Ω)).
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Numerical experiment I

Do such singular arcs really occur in practice ?

Or is the solution bang-bang ?

Numerical experiment support the existence of singular arcs !

Computations based on the (free software) optimal toolbox
http://bocop.org
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Singular arc in the Schrödinger equation

Figure : Presence of singular arcs, Schrödinger equation
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Summary

Optimal control of a semigroup.

Control enters cost functional and equation linearly.

Goh-transformation.

Second-order su�cient optimality condition.
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Thank you for your attention.

Axel Kröner (INRIA Saclay) Optimal control of a semi-group Sept. 1, 2015 39 / 39


	Semigroup setting
	Optimal control problem
	Second order optimality condition
	Application to Schrödinger equation

