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The principle of independent conditionals

and the Arrow of Time



	
  	
  Note:

this talk is about causal inference in classical statistics, nothing quantum

• there’s so much to discover still

• quantum analog of our results could be exciting

Moreover, content of this talk is inspired by quantum information theory...



	
  	
  What I learned from quantum information theory

The fact that a field exists since decades

does not imply

that the most elementary questions are already solved

“All questions about finite dimensional quantum systems are trivial”

A quantum theory postdoc in 1996

People started understanding entanglement in C2 ⌦ C2

after almost one century of quantum theory...



	
  	
  Some work on quantum causality

1. D.J. and T. Decker: How much is a quantum controller controlled by the
controlled system? AAECC 2008.

2. D.J. and T. Beth: On the potential influence of quantum noise on measur-
ing effectiveness in clinical trials. IJQI 2006.

3. D.J: Is there a physically universal cellular automaton or Hamiltonian?
ArXiv 2010.

. . . but I won’t talk about it



	
  	
  Goal of causal inference

predict the effect of interventions on the world

from passive observations only

) requires assumptions

) no purely mathematical justification possible



	
  	
  

Paradox result of a recent study

• coffee drinking increases life expectancy

(causal statement)

• coffee drinking is negatively correlated with life expectancy

(statistical statement)

explanation: coffee drinkers die earlier despite drinking coffee because they

tend to have unhealthy habits in addition

Example: tricky link between

statistical relations and causal relations



	
  	
  Reichenbach’s Principle of Common Cause

Z 

Y X Y X Y X 

postulates that every statistical dependence has a causal explanation:

If two quantities X and Y are statistically dependent then at least one of the

following cases is true:
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Causal inference from statistical data:

formal setting

• given the random variables X1, . . . , Xn and a data matrix of observations

• infer the causal directed acyclic graph (DAG)
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X
j

parents of X
j
   (PA

j
) 

 

= fj (PAj , Uj)

• every variable Xj is a function of its parents (direct causes) and an unob-

served noise term Uj

• the Uj are jointly statistically independent

Postulate 1:

Functional causal model

(Pearl 2000)

“local hidden variable model”
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Markov Condition

Theorem: the functional model implies the following 3 equivalent conditions:

• Local Markov condition: Xj statistically independent of non descen-

dants, given its parents

(equivalence subject to technical conditions, see Lauritzen 1996)

• Global Markov condition: d-separation implies conditional independence

• Factorization: p(X1, . . . , Xn) =
Qn

j=1 p(Xj |PAj)
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(ideas for quantum Markov conditions: Poulin & Leifer 2008,

compare also causal/acausal quantum states by Leifer & Spekkens 2007)
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Postulate 2:

Causal Faithfulness

(Spirtes, Glymour, Scheines 1993)

p is called faithful relative to G if only those independences

hold true that are implied by the Markov condition, i.e.,

X ?? Y |Z ) Z d-separates X and Y

Recall: Markov condition reads

X ?? Y |Z ( Z d-separates X and Y
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X

Z =X�Y

(fair coins)
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causal Markov condition + causal faithfulness:

• accept only those DAGs as causal hypotheses for which

Z d-separates X and Y , X ?? Y |Z

• identifies causal DAG up to Markov equivalence class (DAGs that imply

the same conditional independences)

(Spirtes, Glymour, Scheines and Pearl)
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) new inference rules desirable



	
  	
  	
  	
  



	
  	
  	
  	
  

• P (X) is the unique distribution that generates Gaussian output

• P (X) seems ‘to know’ P (Y |X)

Goal: invent an inference rule that rejects X ! Y for this reason



	
  	
  	
  	
  

New postulate for causal inference:

• if X ! Y then P (X) and P (Y |X) are algorithmically independent

• the shortest description of P (X,Y ) is given by describing P (X) and

P (Y |X) separately

• violated in the example above

• actually phrased for n variables
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  Raises 3 questions:

1. are these asymmetries observable for real data?

2. why is description length related to causality?

3. what’s the relation to the arrow of time?

(asymmetry between cause and effect should be related to asymmetry

between past and future)
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  Infer cause and effect from scatter plot
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  Infer cause and effect from scatter plot
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  Novel causal inference algorithms

implement rudimentary versions of the above principle

• Linear additive noise models: Kano, Shimizu, 2004

• Additive noise models: Hoyer, DJ, . . . NIPS 2008,

• Post-nonlinear models: Zhang, Hyvarinen, UAI 2009.

• Information-Geometric Causal Inference: Daniusis, DJ, . . . , UAI 2010, DJ
et al, AI 2012.

achieve classification rates of about 70-80 % on real data



	
  	
  	
  	
  Why is causality related to description length?

Forget about statistics for the moment –

how do we draw causal conclusions in real life?



	
  	
  	
  	
  



	
  	
  	
  	
  



	
  	
  	
  	
  



	
  	
  	
  	
  





	
  	
  	
  	
  



	
  	
  	
  	
  



	
  	
  	
  	
  



	
  	
  	
  	
  



	
  	
  	
  	
  



	
  	
  	
  	
  Algorithmic analog of Reichenbach’s principle

• Reichenbach argued that every statistical dependence indicates a causal

relation

• We argued that every algorithmic dependence indicates a causal rela-

tion



	
  	
  	
  	
  Question:

Do conditional algorithmic (in)dependences

tell us s.th.

about the causal DAG?



	
  	
  	
  	
  



	
  	
  	
  	
  

• Church-Turing:

every mechanism in nature can be simulated by a program on a universal

Turing machine

• Algorithmic causal model:

independent causal mechanisms are simulated by algorithmically inde-

pendent programs



	
  	
  	
  	
  

the algorithmic model implies the following 3 equivalent conditions

• Local Markov: xj ?? ndj |pa⇤j

• Global Markov: d-separation implies algorithmic independence

• Additivity: K(x1, . . . , xn) =
Pn

j=1 K(xj |pa⇤j )



	
  	
  	
  	
  



	
  	
  	
  	
  Statistical vs. algorithmic causal Markov condition

• Nodes: random variables vs. single objects (represented by binary words)

• Dependence measure: Shannon mutual information vs. algorithmic mu-

tual information

• Justification: function model vs. algorithmic functional model

algorithmic Markov condition more general:

• if objects x1, . . . , xn denote k iid samples from joint distribution P (X1, . . . , Xn)
then algorithmic information per k converges to Shannon entropy

• limit, however, blurs non-statistical dependences



	
  	
  	
  	
  Revisiting algorithmic independence of conditionals

• if X ! Y then P (X) and P (Y |X) contain no algorithmic information

about each other

• follows from algorithmic Markov condition if we believe that P (X) and

P (Y |X) are generated by causally unrelated mechanisms

(why) do we believe that nature generates

P (cause) and P (e↵ect|cause) independently?



	
  	
  	
  	
  Justifying independence of conditionals

Changes affecting P (e↵ect|cause)

• use less/more efficient cells

• change temperature

Changes affecting P (cause)

• move the solar cell to a more/less shady place

• mount it at a different angle to the sun

Cause:

amount of radiation
per cm2  solar cell

Effect:

 power generation
in the cell



	
  	
  	
  	
  Justifying independence of conditionals

changes under operations / different background conditions:

• some operations change P (cause) only

• some change P (e↵ect|cause) only

• some change both

• hard to find operations that change P (e↵ect) without affecting P (cause|e↵ect)
or vice versa



	
  	
  	
  	
  Arrow of time
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  Arrow of time

• typical closed system dynamics:

simple state ! complex state

• unlikely:

complex state ! simple state

(thermodynamic entropy = Kolmogorov complexity?)

Zurek: Algorithmic randomness and physical entropy, PRA 1989



	
  	
  	
  	
  Discrete dynamical system

initial state s with low description length K(s)



	
  	
  	
  	
  Discrete dynamical system

state D(s) with large description length

after applying bijective dynamics D



	
  	
  	
  	
  
Time reversed scenario

initial state s with large description length K(s)



	
  	
  	
  	
  
Time reversed scenario

final state D(s) with low description length K(D(s))



	
  	
  	
  	
  Independence between input and dynamics

induces Arrow of Time

initial state s, bijective dynamics D

• assume K(D(s)) < K(s)

• then K(s|D)
+
= K(D(s)|D)

+
 K(D(s)) < K(s)

• hence, s contains algorithmic information about D



	
  	
  	
  	
  Independence between input and dynamics

more general than Arrow of Time

• implication K(D(s)) � K(s) only holds for bijective D

• lower bounds for K(D(s)) in terms of non-bijectivity of D

• postulate makes also sense if D is probabilistic

• replace s ⌘ P (cause) and D ⌘ P (e↵ect|cause)

Postulate: K(s|D)
+
= K(s) (also for non-bijective D)



	
  	
  	
  	
  Wrong approach to distinguishing cause and effect

• Cause may be continuous, effect binary

• entropy depends on scaling

• application of non-linear functions tends to decrease entropy

“Variable with lower entropy is the cause”

(motivated by thermodynamics)



	
  	
  	
  	
  

• new inference principle:

algorithmic independence between a causal mechanism and its input

• Related to Arrow of Time

• justified by our general theory of inferring causal relations from algorith-

mic dependences
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•  Assumption: y = f(x) with invertible f 
•  Cannot use noise properties 

	
  	
  Inferring deterministic causal relations

Daniusis, DJ, . . . : UAI 2010

• If X ! Y then f and the density p(x) are chosen independently by nature

• Hence, peaks of p(x) do not correlate with the slope of f

• Then, peaks of p(y) correlate with the slope of f�1


