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Note:

this talk is about causal inference in classical statistics, nothing quantum

e there’s so much to discover still

e gquantum analog of our results could be exciting

Moreover, content of this talk is inspired by quantum information theory...



What | learned from quantum information theory

The fact that a field exists since decades
does not imply
that the most elementary questions are already solved

People started understanding entanglement in C? @ C?
after almost one century of quantum theory...

“All questions about finite dimensional quantum systems are trivial”
A quantum theory postdoc in 1996



Some work on quantum causality

1. D.J. and T. Decker: How much is a quantum controller controlled by the
controlled system? AAECC 2008.

2. D.J. and T. Beth: On the potential influence of quantum noise on measur-
ing effectiveness in clinical trials. IJQI 2006.

3. D.J: Is there a physically universal cellular automaton or Hamiltonian?
ArXiv 2010.

...but | won’t talk about it



Goal of causal inference

predict the effect of interventions on the world
from passive observations only

=- requires assumptions
= no purely mathematical justification possible



Example: tricky link between
statistical relations and causal relations

Paradox result of a recent study

e coffee drinking increases life expectancy
(causal statement)

e coffee drinking is negatively correlated with life expectancy
(statistical statement)

explanation: coffee drinkers die earlier despite drinking coffee because they
tend to have unhealthy habits in addition



Reichenbach’s Principle of Common Cause

postulates that every statistical dependence has a causal explanation:

If two quantities X and Y are statistically dependent then at least one of the
following cases is true:
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Causal inference from statistical data:
formal setting

e given the random variables X1, ..., X,, and a data matrix of observations

e infer the causal directed acyclic graph (DAG)



Postulate 1:
Functional causal model
(Pearl 2000) i

e every variable X is a function of its parents (direct causes) and an unob-
served noise term U;

e the U, are jointly statistically independent

’ ‘ parents of X (PA)

‘\»@—f(PA u)

“local hidden variable model”
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Markov Condition

Theorem: the functional model implies the following 3 equivalent conditions:

e Local Markov condition: X, statistically independent of non descen-
dants, given its parents

\ parents of X
non-descendh - / N

e Global Markov condition: d-separation implies conditional independence

descendants

e Factorization: p(X,,...,X,,) = [["_, p(X;|PA;)

(equivalence subject to technical conditions, see Lauritzen 1996) "



Interpretation of 3 Versions

e Local Markov Condition:
every information exchange with non-descendants involves the parents

e Global Markov Condition:
characterizes the set of all independences implied by the local version

e Factorization:
each causal conditional p(z;|pa;) represents a causal mechanism

(ideas for quantum Markov conditions: Poulin & Leifer 2008,
compare also causal/acausal quantum states by Leifer & Spekkens 2007)



Postulate 2:
Causal Faithfulness
(Spirtes, Glymour, Scheines 1993)

p is called faithful relative to G if only those independences
hold true that are implied by the Markov condition, i.e.,

X1Y|Z =  Zd-separates X andY

Recall: Markov condition reads

XU1Y|Z <« Zd-separates X andY

12



Unfaithful distributions, Example (1)

cancellation of direct and indirect influence in linear models

O x

Y% = Ux
/ B Y = aX4+Uy
@\ Z = pBX+~v4+Uz
Y

®

with independent noise terms Ux, Uy, Uy

B+ay=0 = XIZ
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Unfaithful distributions, Example (2)

binary causes with XOR as effect

o for p(X),p(Y)uniform: X L Z,Y 1 Z.
..e., unfaithful (since X, Z and Y, Z are connected in the graph).

o for p(X),p(Y) non-uniform: X £ Z,Y L Z.

I.e., faithful

(fair coins)
ol
\@ =XaeY

unfaithfulness considered unlikely because it only occures for
non-generic parameter values
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Conditional-independence based causal inference
(Spirtes, Glymour, Scheines and Pearl)

causal Markov condition + causal faithfulness:
e accept only those DAGs as causal hypotheses for which

Z d-separates X andY & X 1Y|Z

e identifies causal DAG up to Markov equivalence class (DAGs that imply
the same conditional independences)



Markov Equivalence Class

Theorem (Verma and Pearl, 1990): two DAGs are Markov
equivalent iff they have the same skeleton and the same
v-structures.

e skeleton: corresponding undirected graph

e v-structure: substructure X — Y « Z with no edge between X and Z
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Markov equivalent DAGs (1)

X—=—z
X—=r—z
==

e same skeleton, no v-structure

e only independence: X 1 Z|Y



Markov equivalent DAGs (2)

W) W)
/ /

3 X3
Z) Z)

same skeleton, v-structure at W



Limitations of Independence-based Approach

e Markov equivalence classes can be large

e Most elementary problem unsolvable:

O —0 o« OO

e probability distributions contain interesting information other than inde-
pendences

= new Iinference rules desirable
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Example:

Let X be binary and Y real-valued

e let Y be Gaussian and X = 1 for all y above some threshold and X =0
otherwise

y
e Y — X is plausible: simple thresholding mechanism

e X — Y requires a strange mechanism: P(Y|X = 0) and P(Y|X = 1)
are truncated Gaussians



not only P(Y|X) itself is strange...
this happens if we change P(X) to P/(X)

p(ysx=0)

Yo y
e P(X) is the unique distribution that generates Gaussian output
e P(X)seems ‘to know’ P(Y|X)

Goal: invent an inference rule that rejects X — Y for this reason



Algorithmic independence of conditionals (IC)
(Lemeire & Dirkx 2006, Janzing & Scholkopf 2010, Lemeire & Janzing 2012)

New postulate for causal inference:

e if X — Y then P(X) and P(Y|X) are algorithmically independent

e the shortest description of P(X,Y) is given by describing P(X) and
P(Y|X) separately

e violated in the example above

e actually phrased for n variables



Raises 3 questions:

. are these asymmetries observable for real data?
. why is description length related to causality?

. what’s the relation to the arrow of time?

(asymmetry between cause and effect should be related to asymmetry
between past and future)



Infer cause and effect from scatter plot
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Infer cause and effect from scatter plot
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Infer cause and effect from scatter plot
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Novel causal inference algorithms

implement rudimentary versions of the above principle
e Linear additive noise models: Kano, Shimizu, 2004
e Additive noise models: Hoyer, DJ, ... NIPS 2008,
e Post-nonlinear models: Zhang, Hyvarinen, UAI 2009.

e Information-Geometric Causal Inference: Daniusis, DJ, ..., UAI 2010, DJ
et al, Al 2012.

achieve classification rates of about 70-80 % on real data



Why is causality related to description length?

Forget about statistics for the moment —

how do we draw causal conclusions in real life?



Causal inference for individual objects

Janzing & Schilkop! 2010

Similarities between single objects also indicate causal relations:

Rives (o

SPORT S |

Halbbitter




Consider a binary sequence

Experiment:
2 persons are instructed to write down a string with 1000 digits

Result:
Both write 1100100100001111110110101010001...
(all 1000 digits coincide)



The naive statistician concludes...

"There must be an agreement between the subjects”

e correlation coefficient 1 (between digits) is highly significant for sample
size 1000 !

e reject statistical independence, assume causal relation



Some other mathematician recognizes...

11.0010010000111111011010101001....

o~
/"

e subjects may have come up with this number independently because it
follows from a simple law

e superficially strong similarities are not necessarily significant if the pattern
is too simple



How do we measure complexity

of patterns/objects?



Kolmogorov complexity

(Kolmogorov, Chaitin, Solomonoff)

of a binary string =
e K(z) := length of the shortest program with output x (on a Turing ma-
chine)

e interpretation: number of bits required to describe the rule that generates
T

e equality "=" is always understood up to string-independent additive con-
stants

e K(z) is uncomputable

e probability-free definition of information content



Conditional Kolmogorov complexity

K (y|x): length of the shortest program that generates y
from z

number of bits required for describing y if x is given

K (y|z*): length of the shortest program that generates y from the short-
est description of

note: x can be generated from its shortest description but not
vice versa because there is no algorithmic way to
find the shortest compression



Algorithmic mutual information
(Chaitin, Gacs)

Information of x about y

o I(z:y) = K(z)+K(y)—K(z,y)
= K(z) - K(z|y")=K(y) - K(y|z")

e Interpretation: number of bits saved when compressing z, y jointly rather
than independently

e Algorithmic independencexz 1L y: <— I(x:y)=0



Algorithmic mutual information (example)

(750 2 0) =K 0)



Conditional algorithmic mutual information

Information that = has on y (and vice versa) when z is given

o I(z:y|2) =K (z|2)+ K(y|z) - K(z,y]2)
e Analogy to statistical mutual information:

I(X:Y|2)=8SX|2)+8(Y|2)-8(X,Y|2)

e Conditional algor. independence z 1L y|z <= I(z:y|z) =0



Algorithmic analog of Reichenbach’s principle

e Reichenbach argued that every statistical dependence indicates a causal
relation

e We argued that every algorithmic dependence indicates a causal rela-
tion



Question:

Do conditional algorithmic (in)dependences
tell us s.th.
about the causal DAG?



Algorithmic model of causality
(Janzing & Scholkopf IEEE TIT 2010)

Given n causality related strings z4,...,z,

e each z, is computed from its parents pa; and an unobserved string u;
from a Turing machine T

pa’] j
= T'(paj, u;)

e all u; are algorithmically independent
e u; describe the mechanism that generate z; from pa;

e u; are he analog of noise in the statistical functional model



Relation to Church-Turing Principle

e Church-Turing:
every mechanism in nature can be simulated by a program on a universal
Turing machine

e Algorithmic causal model:

independent causal mechanisms are simulated by algorithmically inde-
pendent programs



Theorem:
(Janzing & Scholkopf IEEE TIT 2010)

the algorithmic model implies the following 3 equivalent conditions

e Local Markov: x; Il nd; |pa;
e Global Markov: d-separation implies algorithmic independence

o Additivity: K(21,...,2,) = > | K(x;|pa)



Example: 3 carpet designs




Statistical vs. algorithmic causal Markov condition

e Nodes: random variables vs. single objects (represented by binary words)

e Dependence measure: Shannon mutual information vs. algorithmic mu-
tual information

e Justification: function model vs. algorithmic functional model

algorithmic Markov condition more general:

e if Objects z4, ..., x,, denote k iid samples from joint distribution P( X4, ..., X,)
then algorithmic information per k& converges to Shannon entropy

¢ limit, however, blurs non-statistical dependences



Revisiting algorithmic independence of conditionals

e if X — Y then P(X) and P(Y|X) contain no algorithmic information
about each other

e follows from algorithmic Markov condition if we believe that P(X) and
P(Y|X) are generated by causally unrelated mechanisms

(why) do we believe that nature generates
P(cause) and P(effect|cause) independently?



Justifying independence of conditionals

Effect:
power generation
in the cell

amount of radiation
per cm? solar cell

Changes affecting P(cause)

e move the solar cell to a more/less shady place

e mount it at a different angle to the sun

Changes affecting P(effect|cause)

e use less/more efficient cells

e change temperature



Justifying independence of conditionals

changes under operations / different background conditions:

e some operations change P(cause) only
e some change P(effect|cause) only
e some change both

e hard to find operations that change P(effect) without affecting P(cause|effect)
or vice versa



Arrow of time




Arrow of time




Arrow of time




Arrow of time

e typical closed system dynamics:

simple state — complex state

o Unlikely:
complex state — simple state

(thermodynamic entropy = Kolmogorov complexity?)

Zurek: Algorithmic randomness and physical entropy, PRA 1989



Discrete dynamical system

initial state s with low description length K (s)



Discrete dynamical system

state D(s) with large description length
after applying bijective dynamics D



Time reversed scenario

initial state s with large description length K (s)



Time reversed scenario

final state D(s) with low description length K(D(s))



Independence between input and dynamics
induces Arrow of Time

initial state s, bijective dynamics D

e assume K(D(s)) < K(s)
e then K (s|D) £ K(D(s)|D) < K(D(s)) < K(s)

¢ hence, s contains algorithmic information about D



Independence between input and dynamics
more general than Arrow of Time

Postulate: K (s|D) = K(s) (also for non-bijective D)

e implication K (D(s)) > K (s) only holds for bijective D

e lower bounds for K(D(s)) in terms of non-bijectivity of D

e postulate makes also sense if D is probabilistic

e replace s = P(cause) and D = P(effect|cause)



Wrong approach to distinguishing cause and effect

“Variable with lower entropy is the cause”
(motivated by thermodynamics)

e Cause may be continuous, effect binary
e entropy depends on scaling

e application of non-linear functions tends to decrease entropy



Take home messages

e hew inference principle:
algorithmic independence between a causal mechanism and its input

e Related to Arrow of Time

e justified by our general theory of inferring causal relations from algorith-
mic dependences



Thanks for your attention!
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Probability free version:

Observations (z1,y1),- .., (zm,ym) from P(X,Y) define causal structure with
n = 2m + 2 objects:

Xl g yl
v b 4
>
W X2 v y2
s M
A a
X3 > y3
4 q



Probability free version:

Algorithmic Markov condition implies e.9.  z3,x4 1L y1,¥y2 |x1, 2o

e additional z-values do not help for predicting y from =z

e semisupervised learning does not help in causal direction
Schélkopf, Janzing,...2012



Causal inference with additive noise models
(Hoyer, Janzing, Mooij, Peters, Scholkopf 2008)

e Assume the effect is a function of the cause up to an additive noise term
that is independent of the cause:

Y=f(X)+Uy wWithUy L X

e there is, in the generic case, no model
X=g(Y)+UX withUx 1LY,

even if f is invertible (proof non-trivial)



Intuition:

e assume noise of bounded range
¢ additive noise model implies range of Y around f is constant

e for nonlinear f, range of X around backward function non-constant




Inference rule

Infer X — Y if there is an additive noise model from X to Y
but not vice versa

Implementation:

e compute a function f as non-linear regression of Y on X function of

e compute the residual
U:=Y — f(X)

e check whether U and X are statistically independent

Results:

e performed above chance level on our real-world cause-effect pairs ~ 70%

e ratio of correct answers tends to 1 for conservative decisions



Justification of AN-based inference via IC condition
(Janzing & Steudel 2010)

Assume there is an additive noise model from X toY
e P(Y)and P(X|Y) satisfy the equation

52 0? 0”
8y logp(y) 8y2 log p(z|y) — C&an log p(z|y)

e P(Y) can “almost” be computed from P(X|Y)

e Y — X is unlikely because P(Y) contains algorithmic information about
P(X|Y) unless P(Y) is simple



Inferring deterministic causal relations

e If X — Y then f and the density p(x) are chosen independently by nature
e Hence, peaks of p(x) do not correlate with the slope of f

e Then, peaks of p(y) correlate with the slope of f~1

A

y
p(y) f (x)

X
/o N\

Daniusis, DJ, ...: UAI 2010




