
It is the year 2012...!
                ... where’s my flying car? !

SUSY	
  

David	
  G.	
  Cerdeño	
  
!"#$%&'()*+%&)+)*+',-



02/02/2012	
  IFIC	
   Deividu	
  Serdenu	
  

Outline 

•  SUSY...	
  

•  ...BUT IS STILL 
ALIVE... 

Direct SUSY searches 
Higgs searches 
Low-energy observables 

Parameter space of SUSY models 
Implications for dark matter  

SUSY parameter space 
Simplifying assumptions 
... and extended models 

•  ...NOT BEEN 
FOUND YET...	
  



02/02/2012	
  IFIC	
   Deividu	
  Serdenu	
  

Conclusions 

•  Supersymmetry is more than just the CMSSM (and the experimental 
bounds have to be applied for each individual model)	
  

•  LHC searches + Higgs mass “measurement (+ dark matter 
requirements) impose very stringent constraints on the 
parameter space of SUSY models	
  

•  mh~125 GeV seems to imply a heavy spectrum with maximal stop 
mixing  	
  

•  Potential conflicts with low energy observables (g-2) and rare decays 	
  

•  Implications for dark matter Dark matter 	
  



Supersymmetric models 

New symmetry relating particles with different spin statistics 	
  

The more general symmetry of the S matrix	
  

The best approach to solve the naturalness problems of the Standard Model	
  



EW 	
   SUSY	
  

12something parameters	
  

Effective MSSM	
  
All parameters defined at low scale – inputs are all the new terms in the Lagrangian and 
Superpotential (the Yukawas are normally fit to reproduce experimental values)	
  

Gaugino mass parameters	
  

Slepton soft masses	
  

Squark soft masses	
  

Trilinear parameters	
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Parameters describing the Higgs sector	
  

Supersymmetric models contain a relatively large number of free parameters unless 
simplifying hypothesis are made on the origin of these or they are related to more 
fundamental theories	
  

The next ingredient is the soft SUSY breaking Lagrangian, which is given by mass terms
for the gauginos
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2.2 Masses and Mixing Matrices

The masses of the various particles are induced by the soft SUSY breaking parameters and
the vacuum expectation values vi of the neutral Higgs fields vi =< H0

i >. The ratio of the
vacuum expectation values is denoted by tanβ = v2/v1. The sum of the vacuum expectation
values (vevs) squared is fixed by the gauge boson masses:
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2 Ũ∗

j − BµHa
1Hb

2

)

+h.c. (4)

2.2 Masses and Mixing Matrices

The masses of the various particles are induced by the soft SUSY breaking parameters and
the vacuum expectation values vi of the neutral Higgs fields vi =< H0

i >. The ratio of the
vacuum expectation values is denoted by tanβ = v2/v1. The sum of the vacuum expectation
values (vevs) squared is fixed by the gauge boson masses:

m2
W =

1

4
g2(v2

1 + v2
2), m2

Z =
1

4
(g2 + g′2)(v2

1 + v2
2) (5)

Neglecting the mixing between different generations, the Standard Model fermion masses are
given by:

mui
=

1√
2
Y U

ii v2, mdi
=

1√
2
Y D

ii v1, mli =
1√
2
Y L

ii v1 (6)

for u-quarks, d-quarks and leptons, respectively.
The gluino mass is given by mg̃ = |M3|. The charginos are combination of the charged

winos w̃± = (w̃1 ∓ iw̃2)/
√

2 and the charged higgsinos h̃−
1 , h̃+

2 . The Lagrangian contains the
chargino mass term −(ψ̃−)T Xψ̃+ where ψ− = (−iw̃−, h̃−

1 )T , ψ+ = (−iw̃+, h̃+
2 )T and

X =

(

M g√
2
v2

g√
2
v1 µ

)

. (7)

The matrix is diagonalized by two unitary matrices U and V :

MD,χ̃± = U∗XV −1 . (8)

The neutral gauginos b̃, w̃3 as well as the neutral higgsinos h̃0
1, h̃

0
2 form the neutralinos. In

the basis ψ̃0 = (ib̃, iw̃3, h̃0
1, h̃

0
2)

T one finds the mass term −(ψ̃0)T Y ψ̃0 with

Y =













M1 0 −g′

2 v1
g′

2 v2

0 M2
g
2v1 −g

2v2

−g′

2 v1
g
2v1 0 −µ

g′

2 v2 −g
2v2 −µ 0













(9)

5



EW 	
   SUSY	
  

12something parameters	
  

Effective MSSM	
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19 parameters (pMSSM)	
  

All parameters defined at low scale – inputs are all the new terms in the Lagrangian and 
Superpotential (the Yukawas are normally fit to reproduce experimental values)	
  

Gaugino mass parameters	
  

Slepton soft masses	
  

Squark soft masses	
  

Trilinear parameters	
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Parameters describing the Higgs sector	
  

Supersymmetric models contain a relatively large number of free parameters unless 
simplifying hypothesis are made on the origin of these or they are related to more 
fundamental theories	
  

Universality of soft masses in order to avoid FCNC	
  

Gaugino mass parameters	
  

Slepton soft masses	
  

Squark soft masses	
  

Trilinear parameters	
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EW 	
   SUSY	
  

Next-to-MSSM	
  

Extended scenarios are also well-motivated (and have a larger number of parameters)	
  

Supersymmetric models contain a relatively large number of free parameters unless 
simplifying hypothesis are made on the origin of these or they are related to more 
fundamental theories	
  

• 	
  Addi8on	
  of	
  a	
  new	
  superfield,	
  S,	
  singlet	
  under	
  the	
  SM	
  gauge	
  group	
  

• 	
  New	
  terms	
  in	
  the	
  superpoten8al	
  

• 	
  New	
  terms	
  in	
  the	
  Lagrangian	
  



EW 	
   SUSY	
  

Parameters are defined at a high scale (normally GUT-scale) and Renormalization Group 
Equations are used to determine the low-energy parameters	
  

Supersymmetric models contain a relatively large number of free parameters unless 
simplifying hypothesis are made on the origin of these or they are related to more 
fundamental theories	
  

GUT Scale 
String Scale 
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we carry out a more through analysis, covering the full parameter space and studying

in detail the Higgs and SUSY spectra. We also analyze the impact of the 2011 LHC

data on our results and explore the eventual LHC reach in testing the model.

The minimization condition of the effective Higgs potential gives rise to the weak

scale equation

µ2 =
−m2

Hu
tan2 β +m2

Hd

tan2 β − 1
−

1

2
M2

Z , (3.5)

with

sin 2β =
2|Bµ|

(m2
Hu

+m2
Hd

+ 2µ2)
, tan β ≡ νu/νd . (3.6)

In principle, the usual procedure consists in fixing the value of tan β and then using

Eq. (3.5) to obtain the modulus of µ. The value of B is then obtained from Eq. (3.6).

In our case the value of B at the unification scale is also predicted so that Eqs. (3.5)

and (3.6) can be used to obtain both the values of tanβ and µ in terms of a single

parameter M (plus the dependence on the small flux parameter ρH). Since it is not

possible to derive an analytical solution for tanβ from Eqs. (3.5) and (3.6), and given

that we also need the value of tanβ to adjust the values of the Yukawa couplings at

the unification scale, an iterative procedure has to be followed in which the RGE are

solved numerically for a tentative value of tanβ, with the soft terms given by Eqs. (2.9)

in terms of the two parameters M and ρH . The resulting B at the weak scale is then

compared to Eqs. (3.5) and (3.6), and the value of tan β is varied until agreement is

reached. It is often not possible to find a solution with consistent REWSB and this

excludes large areas of the (M, ρH) parameter space.

We have implemented this iterative process through a series of changes in the public

code SPheno 3.0 [37, 38]. This code solves numerically the renormalization group

equations of the MSSM and provides the SUSY spectrum at low energy. We use

this code through a link in MicrOMEGAs 2.4 [41, 42, 43], which also calculates the

theoretical predictions for low-energy observables such as the branching ratios of rare

decays (b → sγ, Bs → µ+µ−) and the muon anomalous magnetic moment. The results

are sensitive to the value of the top quark mass, particularly for the Higgs mass, see

below. In the computation we use the central value in mt = 173.2± 0.9 GeV [39].

In addition to correct REWSB we also impose the presence of viable neutralino dark

matter, assuming R-parity conservation. The relic density of the neutralino is calcu-

lated numerically using the MSSM module of the code MicrOMEGAs 2.4 and we check

for compatibility with the data obtained from the WMAP satellite, which constrain

the amount of cold dark matter to be 0.1008 ≤ Ωh2 ≤ 0.1232 at the 2 σ confidence

level [40].
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Gaugino mass parameters	
  

Slepton soft masses	
  

Squark soft masses	
  

Trilinear parameters	
  

Higgs mass parameters	
  

Impose conditions for REWSB	
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Figure 8.4: RG evolution of scalar and gaugino mass parameters in the MSSM with MSUGRA boundary
conditions imposed atQ0 = 2×1016 GeV. The parameter µ2+m2

Hu
runs negative, provoking electroweak

symmetry breaking.

family squarks and sleptons are nearly degenerate with those of the first family, and so are not shown.)
Variations in the model parameters have important and predictable effects. For example, taking larger
values of tan β with other model parameters held fixed will usually tend to lower b̃1 and τ̃1 masses
compared to those of the other sparticles. Taking larger m2

0 will tend to squeeze together the spectrum
of squarks and sleptons and move them all higher compared to the neutralinos, charginos and gluino.
This is illustrated in Figure 8.5(b), which has m2

0 " m2
1/2. [The MSUGRA parameters used to make

this graph were m1/2 = −A0 = 320 GeV, m0 = 3200 GeV, tan β = 10, µ > 0.] In this model, the
heaviest chargino and neutralino are wino-like.

The third sample sketch, in fig. 8.5(c), is obtained from a typical minimal GMSB model, with
N5 = 1 [and boundary conditions as in eq. (7.7.21) with Λ = 150 TeV, tan β = 15, and sign(µ)= + at
a scale Q0 = Mmess = 300 TeV for the illustration]. Here we see that the hierarchy between strongly
interacting sparticles and weakly interacting ones is quite large. Changing the messenger scale or Λ
does not reduce the relative splitting between squark and slepton masses, because there is no analog
of the universal m2

0 contribution here. Increasing the number of messenger fields tends to decrease the
squark and slepton masses relative to the gaugino masses, but still keeps the hierarchy between squark
and slepton masses intact. In the model shown, the LSP is the nearly massless gravitino and the NLSP
is a bino-like neutralino, but for larger number of messenger fields it could be either a stau, or else
co-NLSPs τ̃1, ẽL, µ̃L, depending on the choice of tan β.

The fourth sample sketch, in fig. 8.5(d), is of a typical GMSB model with a non-minimal messenger
sector, N5 = 3 [and boundary conditions as in eq. (7.7.21) with Λ = 60 TeV, tan β = 15, and sign(µ)= +
at a scale Q0 = Mmess = 120 TeV for the illustration]. Again the LSP is the nearly massless gravitino,
but this time the NLSP is the lightest stau. The heaviest superpartner is the gluino, and the heaviest
chargino and neutralino are wino-like.

It would be a mistake to rely too heavily on specific scenarios for the MSSM mass and mixing
spectrum, and the above illustrations are only a tiny fraction of the available possibilities. However,
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Constrained MSSM: Universal choice of parameters	
  

Supersymmetric models contain a relatively large number of free parameters unless 
simplifying hypothesis are made on the origin of these or they are related to more 
fundamental theories	
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Supersymmetric models contain a relatively large number of free parameters unless 
simplifying hypothesis are made on the origin of these or they are related to more 
fundamental theories	
  

GUT Scale 
String Scale 

String Motivated 
Supergarvity models 

The soft parameters are understood as originating from a Supergravity theory (assuming 
a SUGRA-breaking mechanism)	
  

More fundamental models 
 
Less parameters (related to the geometry and size of the compact space)  
 
Justification for some universality principles (e.g., we can recover the CMSSM or NUHM)	
  

theory and the moduli parametrize the size and shape of the compactified vari-
ety. Assuming that the auxiliary fields of those multiplets are the seed of SUSY
breaking, interesting predictions for this simple class of models are obtained.
These are reviewed in section 3. The analysis does not assume any specific
SUSY-breaking mechanism. We leave section 4 for some final comments and
additional references to recent work.

2 Soft terms from supergravity

2.1 General computation of soft terms

The full N=1 supergravity Lagrangian 1 (up to two derivatives) is specified
in terms of two functions which depend on the chiral superfields φM of the
theory (denoted by the same symbol as their scalar components): the analytic
gauge kinetic function fa(φM ) and the real gauge-invariant Kähler function
G(φM , φ∗

M ). fa determines the kinetic terms for the fields in the vector mul-
tiplets and in particular the gauge coupling constant, Refa = 1/g2

a. The
subindex a is associated with the different gauge groups of the theory since in
general G =

∏
a Ga. For example, in the case of the pure SUSY standard model

coupled to supergravity, a would correspond to SU(3)c, SU(2)L, U(1)Y . G is
a combination of two functions

G(φM , φ∗
M ) = K(φM , φ∗

M ) + log |W (φM )|2 , (1)

where K is the Kähler potential, W is the complete analytic superpotential,
and we use from now on the standard supergravity mass units where MP ≡
MPlanck/

√
8π = 1. W is related with the Yukawa couplings (which eventually

determine the fermion masses) and also includes possibly non-perturbative
effects

W = Ŵ (hm) +
1

2
µαβ(hm)CαCβ +

1

6
Yαβγ(hm)CαCβCγ + ... , (2)

where we assume two different types of scalar fields φM = hm, Cα: Cα corre-
spond to the observable sector and in particular include the SUSY standard
model fields, while hm correspond to a hidden sector. The latter fields may
develop large (# MW ) vacuum expectation values (VEVs) and are responsi-
ble for SUSY breaking if some auxiliary components Fm (see below) develop
nonvanishing VEVs. The ellipsis indicates terms of higher order in Cα whose
coefficients are suppressed by negative powers of MP . The second derivative
of K determines the kinetic terms for the fields in the chiral supermultiplets
and is thus important for obtaining the proper normalization of the fields.
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... we should understand 
that this is not valid for all 
SUSY models	
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Figure 1. SUSY signal αT distributions for the LM0 point and
√
s = 7 TeV in the di-jets channel

and in the 3 or more jets channel, as displayed by the legend. Solid lines are obtained from Fig. 2
of Ref. [26]: the CMS signal simulation including next-to-leading order (NLO) corrections and full
detector simulation whereas the dashed lines show the results of our simulation and approximations.
The only cut applied is HT > 350 GeV.
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Figure 2. Our approximation to the CMS αT -search CMSSM likelihood map for (a) tanβ = 3,
A0 = 0, (b) tanβ = 30 and A0 = −200 GeV, where the blacked out region at the bottom denotes
a τ̃1 lightest supersymmetric particle. The region below the red (lighter) curve is excluded at 95%
confidence level (C.L.), and ∆χ2 is clipped at 10. The CMS 95% C.L. curve is shown as the blue
(darker) line.

CMS’ signal simulation. The figure verifies that our calculation of the αT distribution is

compatible with the calculation of the experimental collaboration: the normalization of

the sub-dominant exclusive two jets sample is slightly different, but the shapes of both

samples match extremely well. After all of the other cuts are applied, including αT > 0.55,

the acceptance times efficiency of the SUSY signal selection is 5.0%.

Next, we perform a scan over CMSSM parameter space to see how closely we can

reproduce CMS’s calculation of the 95% contour. Like CMS, we choose tan β = 3 and

A0 = 0 for this scan. At each point in an 11 by 11 grid, we simulate 10 000 SUSY events,
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Although within the CMSSM some of 
these bounds are not too sensitive to 
the actual values of A and tanb	
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where v2 = v21 + v22, mt̃ = (mt̃Lmt̃R)
1/2, and Xt = At − µ cotβ, all evaluated at

the weak scale. The largest values for the Higgs mass are obtained then for large

tan β and large stop masses. In particular, the quantity in brackets is maximized for

|Xt| !
√
6mt̃. Interestingly enough this maximal value typically correspond to large

values for the trilinear soft term A/m ! ±2 (see e.g. Ref. [4, 6]). In our scheme we have

A/m = −3/
√
2 + ρH/

√
2 ! −2 and large values of tanβ = 36 − 41, so that relatively

large values of the Higgs mass are an automatic prediction of our scheme.

The 2011 run at LHC has restricted the most likely range for a SM Higgs to the

range 115.5 − 131 GeV (ATLAS) and 114.5 − 127 GeV (CMS). Furthermore there

is an excess of events in the γγ, ZZ∗ → 4l and WW ∗ → 2l channels suggesting the

presence of a Higgs boson at a mass around 125 GeV. Although more data are needed to

confirm this excess, it is interesting to see whether a Higgs boson in that range appears

in this construction. As we said, our scheme has essentially one free parameter and the

allowed values for the Higgs mass turn out to be very restricted. We have computed

the mass of the Higgs particles to two-loop order using the code SPheno linked through

the micrOMEGAs program 5. To show the allowed values for the lightest Higgs mass we

display in Fig. 6 the ratio (mτ̃1 −mχ0
1
)/mτ̃1 versus the value of the lightest Higgs mass

mh. This mass difference is very relevant for the coannihilation effect which is required

in this scheme to get viable neutralino dark matter. We also illustrate the variation

resulting from the 2σ uncertainty in the WMAP result.

One observes that there is a maximum value of the Higgs mass of order 125 GeV.

For higher values the neutralino ceases to be viable as a dark matter candidate. This

limit corresponds to the maximum allowed values M ! 1.4 TeV and tanβ ! 41 that we

discussed above and hence to a quite massive SUSY spectra, see below. There is also a

lower limit coming from the lower bound on the constraint BR(b → sγ) < 2.85× 10−4

which leads to

119 GeV ≤ mh ≤ 125 GeV . (3.8)

In the MSSM the bound on BR(Bs → µ+µ−) also has an impact on the predicted

Higgs mass [53]. In our case, if the current LHCb constraint is taken at face value and

5We have compared our results with those obtained with FeynHiggs2.8.6 [51, 52], finding good

agreement, within approximately 1 GeV.
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2 ! −2 and large values of tanβ = 36 − 41, so that relatively
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The 2011 run at LHC has restricted the most likely range for a SM Higgs to the

range 115.5 − 131 GeV (ATLAS) and 114.5 − 127 GeV (CMS). Furthermore there

is an excess of events in the γγ, ZZ∗ → 4l and WW ∗ → 2l channels suggesting the

presence of a Higgs boson at a mass around 125 GeV. Although more data are needed to

confirm this excess, it is interesting to see whether a Higgs boson in that range appears

in this construction. As we said, our scheme has essentially one free parameter and the

allowed values for the Higgs mass turn out to be very restricted. We have computed

the mass of the Higgs particles to two-loop order using the code SPheno linked through

the micrOMEGAs program 5. To show the allowed values for the lightest Higgs mass we

display in Fig. 6 the ratio (mτ̃1 −mχ0
1
)/mτ̃1 versus the value of the lightest Higgs mass

mh. This mass difference is very relevant for the coannihilation effect which is required
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resulting from the 2σ uncertainty in the WMAP result.

One observes that there is a maximum value of the Higgs mass of order 125 GeV.

For higher values the neutralino ceases to be viable as a dark matter candidate. This

limit corresponds to the maximum allowed values M ! 1.4 TeV and tanβ ! 41 that we

discussed above and hence to a quite massive SUSY spectra, see below. There is also a

lower limit coming from the lower bound on the constraint BR(b → sγ) < 2.85× 10−4

which leads to

119 GeV ≤ mh ≤ 125 GeV . (3.8)

In the MSSM the bound on BR(Bs → µ+µ−) also has an impact on the predicted

Higgs mass [53]. In our case, if the current LHCb constraint is taken at face value and

5We have compared our results with those obtained with FeynHiggs2.8.6 [51, 52], finding good

agreement, within approximately 1 GeV.

14

mate expression of the form [44]

m2
h ! M2

Z cos2 2β +
3m4

t

16π2v2

(

log
m2

t̃

m2
t

+
X2

t

m2
t̃

(

1−
X2

t

12m2
t̃

))

, (3.7)

where v2 = v21 + v22, mt̃ = (mt̃Lmt̃R)
1/2, and Xt = At − µ cotβ, all evaluated at

the weak scale. The largest values for the Higgs mass are obtained then for large

tan β and large stop masses. In particular, the quantity in brackets is maximized for

|Xt| !
√
6mt̃. Interestingly enough this maximal value typically correspond to large

values for the trilinear soft term A/m ! ±2 (see e.g. Ref. [4, 6]). In our scheme we have

A/m = −3/
√
2 + ρH/

√
2 ! −2 and large values of tanβ = 36 − 41, so that relatively

large values of the Higgs mass are an automatic prediction of our scheme.

The 2011 run at LHC has restricted the most likely range for a SM Higgs to the

range 115.5 − 131 GeV (ATLAS) and 114.5 − 127 GeV (CMS). Furthermore there

is an excess of events in the γγ, ZZ∗ → 4l and WW ∗ → 2l channels suggesting the

presence of a Higgs boson at a mass around 125 GeV. Although more data are needed to

confirm this excess, it is interesting to see whether a Higgs boson in that range appears

in this construction. As we said, our scheme has essentially one free parameter and the

allowed values for the Higgs mass turn out to be very restricted. We have computed

the mass of the Higgs particles to two-loop order using the code SPheno linked through

the micrOMEGAs program 5. To show the allowed values for the lightest Higgs mass we

display in Fig. 6 the ratio (mτ̃1 −mχ0
1
)/mτ̃1 versus the value of the lightest Higgs mass

mh. This mass difference is very relevant for the coannihilation effect which is required

in this scheme to get viable neutralino dark matter. We also illustrate the variation

resulting from the 2σ uncertainty in the WMAP result.

One observes that there is a maximum value of the Higgs mass of order 125 GeV.

For higher values the neutralino ceases to be viable as a dark matter candidate. This

limit corresponds to the maximum allowed values M ! 1.4 TeV and tanβ ! 41 that we

discussed above and hence to a quite massive SUSY spectra, see below. There is also a

lower limit coming from the lower bound on the constraint BR(b → sγ) < 2.85× 10−4

which leads to

119 GeV ≤ mh ≤ 125 GeV . (3.8)

In the MSSM the bound on BR(Bs → µ+µ−) also has an impact on the predicted

Higgs mass [53]. In our case, if the current LHCb constraint is taken at face value and

5We have compared our results with those obtained with FeynHiggs2.8.6 [51, 52], finding good

agreement, within approximately 1 GeV.

14

mate expression of the form [44]

m2
h ! M2

Z cos2 2β +
3m4

t

16π2v2

(

log
m2

t̃

m2
t

+
X2

t

m2
t̃

(

1−
X2

t

12m2
t̃

))

, (3.7)

where v2 = v21 + v22, mt̃ = (mt̃Lmt̃R)
1/2, and Xt = At − µ cotβ, all evaluated at

the weak scale. The largest values for the Higgs mass are obtained then for large

tan β and large stop masses. In particular, the quantity in brackets is maximized for

|Xt| !
√
6mt̃. Interestingly enough this maximal value typically correspond to large

values for the trilinear soft term A/m ! ±2 (see e.g. Ref. [4, 6]). In our scheme we have

A/m = −3/
√
2 + ρH/

√
2 ! −2 and large values of tanβ = 36 − 41, so that relatively

large values of the Higgs mass are an automatic prediction of our scheme.

The 2011 run at LHC has restricted the most likely range for a SM Higgs to the

range 115.5 − 131 GeV (ATLAS) and 114.5 − 127 GeV (CMS). Furthermore there

is an excess of events in the γγ, ZZ∗ → 4l and WW ∗ → 2l channels suggesting the

presence of a Higgs boson at a mass around 125 GeV. Although more data are needed to

confirm this excess, it is interesting to see whether a Higgs boson in that range appears

in this construction. As we said, our scheme has essentially one free parameter and the

allowed values for the Higgs mass turn out to be very restricted. We have computed

the mass of the Higgs particles to two-loop order using the code SPheno linked through

the micrOMEGAs program 5. To show the allowed values for the lightest Higgs mass we

display in Fig. 6 the ratio (mτ̃1 −mχ0
1
)/mτ̃1 versus the value of the lightest Higgs mass

mh. This mass difference is very relevant for the coannihilation effect which is required

in this scheme to get viable neutralino dark matter. We also illustrate the variation

resulting from the 2σ uncertainty in the WMAP result.

One observes that there is a maximum value of the Higgs mass of order 125 GeV.

For higher values the neutralino ceases to be viable as a dark matter candidate. This

limit corresponds to the maximum allowed values M ! 1.4 TeV and tanβ ! 41 that we

discussed above and hence to a quite massive SUSY spectra, see below. There is also a

lower limit coming from the lower bound on the constraint BR(b → sγ) < 2.85× 10−4

which leads to

119 GeV ≤ mh ≤ 125 GeV . (3.8)

In the MSSM the bound on BR(Bs → µ+µ−) also has an impact on the predicted

Higgs mass [53]. In our case, if the current LHCb constraint is taken at face value and

5We have compared our results with those obtained with FeynHiggs2.8.6 [51, 52], finding good

agreement, within approximately 1 GeV.

14

Hall, Pinner, Ruderman 2012	
  

The lightest CP-even Higgs receives important loop corrections to its mass coming from 
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, mt̃1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal

top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass

for mt̃1 in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark

mixing and do not yield a 124 GeV Higgs mass for mt̃1 below 3 TeV. Here we have taken

tan β = 20. The shaded regions highlight the difference between the Suspect and FeynHiggs

results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, λSHuHd, that is perturbative to unified scales, thereby constraining λ � 0.7

(everywhere in this paper λ refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m
2
h = M

2
Z cos

2
2β + λ

2
v
2
sin

2
2β + δ

2
t , (2)

where here and throughout the paper we use v = 174 GeV. For λv > MZ , the tree-level

contributions to mh are maximized for tan β = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan β as in the MSSM. However, even for λ taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

δt � 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan β in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 � λ � .7, near the

boundary of perturbativity at the GUT scale.
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where v2 = v21 + v22, mt̃ = (mt̃Lmt̃R)
1/2, and Xt = At − µ cotβ, all evaluated at

the weak scale. The largest values for the Higgs mass are obtained then for large

tan β and large stop masses. In particular, the quantity in brackets is maximized for

|Xt| !
√
6mt̃. Interestingly enough this maximal value typically correspond to large

values for the trilinear soft term A/m ! ±2 (see e.g. Ref. [4, 6]). In our scheme we have

A/m = −3/
√
2 + ρH/

√
2 ! −2 and large values of tanβ = 36 − 41, so that relatively

large values of the Higgs mass are an automatic prediction of our scheme.

The 2011 run at LHC has restricted the most likely range for a SM Higgs to the

range 115.5 − 131 GeV (ATLAS) and 114.5 − 127 GeV (CMS). Furthermore there

is an excess of events in the γγ, ZZ∗ → 4l and WW ∗ → 2l channels suggesting the

presence of a Higgs boson at a mass around 125 GeV. Although more data are needed to

confirm this excess, it is interesting to see whether a Higgs boson in that range appears

in this construction. As we said, our scheme has essentially one free parameter and the

allowed values for the Higgs mass turn out to be very restricted. We have computed

the mass of the Higgs particles to two-loop order using the code SPheno linked through

the micrOMEGAs program 5. To show the allowed values for the lightest Higgs mass we

display in Fig. 6 the ratio (mτ̃1 −mχ0
1
)/mτ̃1 versus the value of the lightest Higgs mass

mh. This mass difference is very relevant for the coannihilation effect which is required

in this scheme to get viable neutralino dark matter. We also illustrate the variation

resulting from the 2σ uncertainty in the WMAP result.

One observes that there is a maximum value of the Higgs mass of order 125 GeV.

For higher values the neutralino ceases to be viable as a dark matter candidate. This

limit corresponds to the maximum allowed values M ! 1.4 TeV and tanβ ! 41 that we

discussed above and hence to a quite massive SUSY spectra, see below. There is also a

lower limit coming from the lower bound on the constraint BR(b → sγ) < 2.85× 10−4

which leads to

119 GeV ≤ mh ≤ 125 GeV . (3.8)

In the MSSM the bound on BR(Bs → µ+µ−) also has an impact on the predicted

Higgs mass [53]. In our case, if the current LHCb constraint is taken at face value and

5We have compared our results with those obtained with FeynHiggs2.8.6 [51, 52], finding good

agreement, within approximately 1 GeV.
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For higher values the neutralino ceases to be viable as a dark matter candidate. This
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In the MSSM the bound on BR(Bs → µ+µ−) also has an impact on the predicted
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Figure 4: Contours of mh in the MSSM as a function of a common stop mass mQ3 = mu3 = mt̃

and the stop mixing parameter Xt, for tan β = 20. The red/blue bands show the result from

Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-

tuning of the Higgs mass, ∆mh
, and we see that ∆mh

> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always

heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, δm2
Hu

,

δm2
Hu

= −3y2
t

8π2

�
m2

Q3
+m2

u3
+ |At|2

�
ln

�
Λ

mt̃

�
, (5)

where Λ is the messenger scale for supersymmetry breaking. If δm2
Hu

becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine-tuning. At large tan β, Xt ≈ At, and maximal mixing (|At|2 = 6m2
t̃
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine-tuning [8], it is helpful to consider a single Higgs field with a

potential

V = m2
H
|h|2 + λh

4
|h|4. (6)
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where v2 = v21 + v22, mt̃ = (mt̃Lmt̃R)
1/2, and Xt = At − µ cotβ, all evaluated at

the weak scale. The largest values for the Higgs mass are obtained then for large

tan β and large stop masses. In particular, the quantity in brackets is maximized for

|Xt| !
√
6mt̃. Interestingly enough this maximal value typically correspond to large

values for the trilinear soft term A/m ! ±2 (see e.g. Ref. [4, 6]). In our scheme we have

A/m = −3/
√
2 + ρH/

√
2 ! −2 and large values of tanβ = 36 − 41, so that relatively

large values of the Higgs mass are an automatic prediction of our scheme.

The 2011 run at LHC has restricted the most likely range for a SM Higgs to the

range 115.5 − 131 GeV (ATLAS) and 114.5 − 127 GeV (CMS). Furthermore there

is an excess of events in the γγ, ZZ∗ → 4l and WW ∗ → 2l channels suggesting the

presence of a Higgs boson at a mass around 125 GeV. Although more data are needed to

confirm this excess, it is interesting to see whether a Higgs boson in that range appears

in this construction. As we said, our scheme has essentially one free parameter and the

allowed values for the Higgs mass turn out to be very restricted. We have computed

the mass of the Higgs particles to two-loop order using the code SPheno linked through

the micrOMEGAs program 5. To show the allowed values for the lightest Higgs mass we

display in Fig. 6 the ratio (mτ̃1 −mχ0
1
)/mτ̃1 versus the value of the lightest Higgs mass

mh. This mass difference is very relevant for the coannihilation effect which is required

in this scheme to get viable neutralino dark matter. We also illustrate the variation

resulting from the 2σ uncertainty in the WMAP result.

One observes that there is a maximum value of the Higgs mass of order 125 GeV.

For higher values the neutralino ceases to be viable as a dark matter candidate. This

limit corresponds to the maximum allowed values M ! 1.4 TeV and tanβ ! 41 that we

discussed above and hence to a quite massive SUSY spectra, see below. There is also a

lower limit coming from the lower bound on the constraint BR(b → sγ) < 2.85× 10−4

which leads to

119 GeV ≤ mh ≤ 125 GeV . (3.8)

In the MSSM the bound on BR(Bs → µ+µ−) also has an impact on the predicted

Higgs mass [53]. In our case, if the current LHCb constraint is taken at face value and

5We have compared our results with those obtained with FeynHiggs2.8.6 [51, 52], finding good

agreement, within approximately 1 GeV.
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Figure 1: The maximal value of the h boson mass as a function of Xt/MS in the pMSSM when

all other soft SUSY–breaking parameters and tanβ are scanned in the range Eq. (4) (left) and the

contours for 123< Mh <127 GeV in the [MS , Xt] plane for some selected range of tanβ values (right).

the theoretical uncertainties in the determination of Mh are included. Hence, only the scenar-
ios with large Xt/MS values and, in particular, those close to the maximal mixing scenario
At/MS ≈

√
6 survive. The no–mixing scenario is ruled out for MS <∼ 3 TeV, while the typical

mixing scenario needs large MS and moderate to large tan β values. We obtain Mmax
h =136,

123 and 126 GeV in, the maximal, zero and typical mixing scenarios, respectively3.

The right–hand side of Fig. 1 shows the contours in the [MS, Xt] plane where we obtain the
mass range 123 GeV < Mh < 127 GeV from our pMSSM scan with Xt/MS <∼ 3; the regions in
which tan β <∼ 3, 5 and 60 are highlighted. One sees again that a large part of the parameter
space is excluded if the Higgs mass constraint is imposed4.

3. Implications for constrained MSSM scenarios

In constrained MSSM scenarios (cMSSM)5, the various soft SUSY–breaking parameters obey
a number of universal boundary conditions at a high energy scale such as the GUT scale, thus
reducing the number of basic input parameters to a handful. These inputs are evolved via the
MSSM renormalisation group equations down to the low energy scale MS where the conditions
of proper electroweak symmetry breaking (EWSB) are imposed. The Higgs and superparticle

3
We have checked that the program FeynHiggs [18] gives comparable values for Mh within ≈ 2 GeV which

we consider to be our uncertainty as in Eq. (5).
4
Note that the M

max
h values given above are obtained with a heavy superparticle spectrum, for which the

constraints from flavour physics and sparticle searches are evaded, and in the decoupling limit in which the h

production cross sections and the decay branching ratios are those of the SM Higgs boson. However, we also

searched for points in the parameter space in which the boson with mass � 125 GeV is the heavier CP–even

H
0
boson which corresponds to values of MA of order 100 GeV. Among the ≈ 10

6
valid MSSM points of the

scan, only ≈ 1.5 × 10
−4

correspond to this scenario. However, if we impose that the H
0
cross sections times

branching ratios are compatible with the SM values within a factor of 2 and include the constraints from MSSM

Higgs searches in the τ
+
τ
−

channel, only ≈ 4 × 10
−5

of the points survive. These are all excluded once the

b → sγ and Bs → µ
+
µ
−

constraints are imposed. A detailed study of the pMSSM Higgs sector including the

dark matter and flavour constraints as well as LHC Higgs and SUSY search limits is presented in Ref. [19].
5
In this paper cMSSM denotes all constrained MSSM scenarios, including GMSB and AMSB.
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Figure 2. The (m0,m1/2) planes in the CMSSM (left) and the NUHM1 (right). The ∆χ2 = 2.30 and
5.99 contours, commonly interpreted as the boundaries of the 68 and 95% CL regions, are indicated in
red and blue, respectively, the solid lines including the hypothetical LHC measurement Mh = 125±1 GeV
and allowing for a theoretical error ±1.5 GeV, and the dotted lines showing the contours found previously
in [3] without this Mh constraint. Here the open green stars denote the pre-Higgs best-fit points [3],
whereas the solid green stars indicate the new best-fit points.

we expect that the primary effect of imposing the
Mh constraint should be to affect the preferred
ranges of m1/2 and tanβ, with a lesser effect on
the preferred range of m0. This effect is indeed
seen in both panels of Fig. 2. We see that the
68% CL ranges ofm1/2 extend to somewhat larger
values and with a wider spread than the pre-Higgs
results, particularly in the NUHM1. However,
the NUHM1 best-fit value of m1/2 remains at a
relatively low value of ∼ 800 GeV, whereas the
best-fit value of m1/2 in the CMSSM moves to ∼
1900 GeV. This jump reflects the flatness of the
likelihood function for m1/2 between ∼ 700 GeV
and ∼ 2 TeV, which is also reflected later in the
one-dimensional ∆χ2 functions for some sparticle
masses 3.

When we add the hypothetical Mh constraint
the total χ2 at the best-fit points increases sub-
stantially, as seen in Table 1, and the p-value de-
creases correspondingly. The Table compares fit
probabilities for two different assumptions on the

3Our fits are relatively insensitive to A0, so we do not
display figures for this parameter.

Higgs boson mass measurements" 119, 125 GeV,
see above, and with the option of dropping the
(g−2)µ constraint in the latter case 4. The combi-
nation of the increase in χ2 and in the increase in
the number of d.o.f. leads to a substantially lower
p-value after the inclusion of Eq. (1), if (g − 2)µ
is taken into account. On the other hand, a hy-
pothetical mass measurement at 119 GeV would
yield an improvement in the fit. For compari-
son, we also show the parameters for the best-
fit points. Since the uncertainties are large and
highly non-Gaussian, we omit them from the Ta-
ble.
The restrictions that the hypothetical LHC Mh

constraint imposes on m1/2 are also visible in
Fig. 3, where we display the effects of an LHC
Mh constraint in the (m1/2, tanβ) planes of the
CMSSM and NUHM1. We see here that an LHC
Mh constraint enlarges visibly the 68% CL range

4The fit probabilities are indicative of the current exper-
imental data preferences for one scenario over another
but, as discussed in [3], but they do not provide a robust
confidence-level estimation for the actual choice made by
Nature.
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Figure 3. The (m1/2, tanβ) planes in the CMSSM (left) and the NUHM1 (right), for Mh ! 125 GeV.
The notations and significations of the contours are the same as in Fig. 2.
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Figure 4. The (MA, tanβ) planes in the CMSSM (left) and the NUHM1 (right), for Mh ! 125 GeV. The
notations and significations of the contours are the same as in Fig. 2.

able is not very sensitive directly to Mh, and the
indirect sensitivity via m1/2 is not very strong,
though smaller values of m1/2 do lead to larger
values of BR(Bs → µ+µ−), in general. As seen in
Fig. 7, imposing the putative LHC Mh constraint
indeed has little effect on BR(Bs → µ+µ−). We
recall that the best-fit values in the CMSSM and
NUHM1 are both slightly larger than in the SM,
and enhancements of up to O(30− 40%) with re-
spect to the SM prediction could be detected at
the LHC at the 3 σ level.

Finally, in Fig. 8 we show results for the pre-
ferred regions in the (mχ̃0

1
,σSI

p ) plane. As seen
in Fig. 8, the fact that larger values of m1/2

and hence mχ̃0
1
are favoured by the larger val-

ues of Mh implies that at the 68% CL the pre-
ferred range of σSI

p is significantly lower when
Mh ! 125 GeV, when compared to our previous
best fit with Mh = 119 GeV, rendering direct de-
tection of dark matter significantly more difficult.
Again, this effect on mχ̃0

1
is more pronounced in

the CMSSM, whereas in the NUHM1 the value of
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Figure 7: Contours of Higgs mass fine-tuning, ∆mh
, in the NMSSM with the maximal value of

λ = 0.7 for tan β = 2 and 5, moving from left to right, withmQ3 = mu3 = mt̃ andmA = 500 GeV.

Contours of mh = 124 and 126 GeV are overlaid, including loop corrections from Suspect and

FeynHiggs. When tan β = 2 the tuning can be low, ∆mh
� 15, while for tan β = 5 heavier stop

masses are required because the tree-level Higgs mass is lower.

can be realized with mS several hundreds of GeV. For large enough values of λ, the second term

dominates the tree-level mass. The λ term grows at small tan β, and this means that the largest

Higgs mass is achieved with low tan β and as large λ as possible. Plugging in λ = 0.7, we find

that (mh
2
)tree is always smaller than 122 GeV.

Because the tree-level contribution is insufficient to raise the Higgs mass to 125 GeV, we also

consider the loop corrections to the Higgs mass arising from stops. In Figure 6, we show contours

of mh = 125 GeV, in the stop mass/mixing plane, with tan β = 2, 5, 10 and varying λ between

0 and 0.7. We take the tree-level mass to saturate the bound of equation 10 and we add to it

the one and two loop contribution from stops using Suspect, taking degenerate stop soft masses,

mQ3 = mu3 . Here, and for the rest of this section, we have set µ = 200 GeV and we fix Bµ

by taking the MSSM-like pseudoscalar mass to be 500 GeV, in the limit of no mixing with the

singlet-like pseudoscalar. Suspect includes only the MSSM contribution, and this means that we

are neglecting the one-loop contribution proportional to λ2
, which is a reasonable approximation

since λ < yt. For low tan β and λ close to 0.7, the lightest stop becomes tachyonic near maximal

mixing. Furthermore, for sub-maximal stop mixing, the stops are light enough to give O(1)

corrections to σ(gg → h); however, these corrections may take either sign, depending on the size
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, mt̃1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal

top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass

for mt̃1 in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark

mixing and do not yield a 124 GeV Higgs mass for mt̃1 below 3 TeV. Here we have taken

tan β = 20. The shaded regions highlight the difference between the Suspect and FeynHiggs

results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, λSHuHd, that is perturbative to unified scales, thereby constraining λ � 0.7

(everywhere in this paper λ refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m
2
h = M

2
Z cos

2
2β + λ

2
v
2
sin

2
2β + δ

2
t , (2)

where here and throughout the paper we use v = 174 GeV. For λv > MZ , the tree-level

contributions to mh are maximized for tan β = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan β as in the MSSM. However, even for λ taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

δt � 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan β in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 � λ � .7, near the

boundary of perturbativity at the GUT scale.
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Figure 2: The Higgs mass in the NMSSM as a function of tan β. The solid lines show the tree-

level result of equation 2 while the shaded bands bounded by dashed lines result from adding the

λ2v2 sin2
2β contribution of equation 2 to the two-loop Suspect/FeynHiggs MSSM result, with

degenerate stop soft masses and no stop mixing. The top contribution δt is sufficient to raise

the Higgs mass to 125 GeV for λ = 0.7 for a top squark mass of 500 GeV; but as λ is decreased

to 0.6 a larger value of the top squark mass is needed.

In the “λ-SUSY” theory [15], λ is increased so that the interaction becomes non-perturbative

below unified scales; but λ should not exceed about 2, otherwise the non-perturbative physics

occurs below 10 TeV and is likely to destroy the successful understanding of precision electroweak

data in the perturbative theory. The non-perturbativity of λ notwithstanding, gauge coupling

unification can be preserved in certain UV completions of λ-SUSY, such as the Fat Higgs [16].

The λ-SUSY theory is highly motivated by an improvement in fine-tuning over the MSSM by

roughly a factor of 2λ2/g2 ∼ 4λ2
, where g is the SU(2) gauge coupling. Equivalently, for the

MSSM and λ-SUSY to have comparable levels of fine-tuning, the superpartner spectrum can be

heavier in λ-SUSY by about a factor 2λ. The origin of this improvement, a large value of λ in

the potential, is correlated with the mass of the Higgs, which is naively raised from gv/
√
2 to

λv. However, this now appears to be excluded by current limits [17], with λ > 1 giving a Higgs

boson much heavier than 125 GeV (for other theories that raise the Higgs mass above that of

the MSSM see [18, 19, 20]).

Most studies of λ-SUSY [15, 21] have decoupled the CP even singlet scalar s by making its

soft mass parameter, m2
S, large. This was often done purely for simplicity to avoid the compli-

3

In principle, lighter spectra are also possible	
  



model AMSB GMSB mSUGRA no-scale cNMSSM VCMSSM NUHM

Mmax
h 121.0 121.5 128.0 123.0 123.5 124.5 128.5

Table 1: Maximal h0
boson mass (in GeV) in the various constrained MSSM scenarios when

scanning over all the input parameters in the ranges described in the text.

necessary to scan through the allowed range of values for all relevant SUSY parameters.

Following the analysis performed in Ref. [16], we adopt the ranges for the input parameters

of the considered mSUGRA, GMSB and AMSB scenarios:

mSUGRA: 50 GeV ≤ m0 ≤ 3 TeV, 50 GeV ≤ m1/2 ≤ 3 TeV, |A0| ≤ 9 TeV;

GMSB: 10 TeV ≤ Λ ≤ 1000 TeV, 1 ≤ Mmess/Λ ≤ 10
11
, Nmess = 1;

AMSB: 1 TeV ≤ m3/2 ≤ 100 TeV, 50 GeV ≤ m0 ≤ 3 TeV.

Moreover, in the three cases we allow for both signs of µ, require 1 ≤ tan β ≤ 60 and, to

avoid the need for excessive fine–tuning in the EWSB conditions, impose an additional bound

on the weak–scale parameters, i.e. MS = MEWSB =
√
mt̃1mt̃2 < 3 TeV.

Using the programs Softsusy and Suspect, we have performed a full scan of the GMSB,

AMSB and mSUGRA scenarios, including the four options “no-scale”, “cNMSSM”, “VCMSSM”

and “NUHM” in the later case. Using the SM inputs of Eq. (3) and varying the basic SUSY

parameters of the various models in the ranges described above, we have determined the maxi-

mal Mh value in each scenario. The results for Mmax
h are shown in Fig. 2 as a function of tan β,

the input parameter that is common to all models. The highest Mh values, defined as that

which have 99% of the scan points below it, for any tanβ value, are summarised in Table 1;

one needs to add ≈ 1 GeV to take into account the uncertainties in the SM inputs Eq. (3).
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Figure 2: The maximal value of the h mass defined as the value for which 99% of the scan points
have a mass smaller than it, shown as a function of tanβ for the various constrained MSSM models.

In all cases, the maximal Mh value is obtained for tan β around 20. We observe that in

the adopted parameter space of the models and with the central values of the SM inputs, the
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NUHM2: µ >0, mt =173.3 GeV
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Figure 8: Lightest Higgs boson mass versus various SUSY parameters from a scan over NUHM2
parameter space with m0 up to 5 TeV (blue points) and m0 up to 20 TeV (orange points). We take
positive µ and mt = 173.3 GeV.

if A0 < 0. In particular, a significant swath of parameter space with m0 ! 5 TeV and

A0 > 0 is evidently inconsistent with mh ! 125 GeV. In frame b), we plot the same

points in the A0/m0 vs. tan β plane. Here, we see that the greatest density of points with

mh = 125 ± 1 GeV occurs for |A0/m0| ! 3. However, there is an evidently new excluded
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mSUGRA: µ >0, mt =173.3 GeV
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Figure 4: Lightest Higgs boson mass versus various parameters from the mSUGRA model for
µ > 0 with mt = 173.3 GeV. Blue points denote m0 < 5 TeV, while orange points allow m0 values
up to 20 TeV.

m
W̃1

! 0.6 TeV. Finally, in Fig. 7f), we show the µ vs. mt̃1 plane. Fine-tuning arguments

general favor both low µ and low mt̃1 . Here, we see that the lowest values of µ and mt̃1

would be essentially ruled out by mh ∼ 125 GeV, so that mSUGRA would need to be

fine-tuned.

3. Implications of mh = 125 GeV in the NUHM2 model

Since heavy scalar masses are preferred by the rather large value of mh = 125 GeV, we

next investigate the NUHM2 model [29], where large values of m0 need not be limited by
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Tensions with low energy observables 

Experimental bounds in low-energy observables, when combined with LHC constraints (or 
when trying to fit the Higgs mass “measurement”) lead to some tension in the parameter 
space of SUSY models.  	
  

by the LHCb collaboration [31], leading to the unprecedented constraint BR(Bs →
µ+µ−) < 4.5×10−9. This is in fact very close to the SM prediction BR(Bs → µ+µ−) =

(3.2±0.2)×10−9 [48, 49] and thus has important implications in our parameter space.

Given that our model entails large values of tan β and a significant mixing in the stop

mass matrix, the resulting BR(Bs → µ+µ−) is relatively large. Fig. 4 represents the

theoretical predictions for this observable as a function of the corresponding universal

gaugino mass, showing that BR(Bs → µ+µ−) >∼ 4.4 × 10−9. We display in the plot

the experimental bound from Ref. [47] and Ref. [31], explicitly showing the effect of

the improved measurement. For each case, we take into account the 2σ theoretical

uncertainty of the SM contribution. It is in fact expected that this upper bound

improves in the near future with new data from CMS and LHCb. This has the potential

to disfavour our construction if no deviation from the SM value is observed. 3

On the right hand-side of Fig. 3 we display the line in the (M, ρH) plane that is

consistent with REWSB and viable neutralino dark matter. Interestingly enough, after

applying experimental constraints, the value of ρH is indeed small, of order 0.15− 0.17

and is very weakly dependent onM . This is consistent with the interpretation of ρH as a

small correction arising from gauge fluxes, as discussed in the previous chapter. Indeed

the values for ρH obtained are of the expected order of magnitude, ρH ∝ α1/2
GUT & 0.2.

The viable points of the parameter space lie along a narrow area of the parameter

space. In fact, small deviations in any of the parameters, M , tanβ or ρh have catas-

trophic consequences, since either the relic density becomes too large (it very rapidly

overcloses the Universe) or the stau becomes the LSP. We illustrate this in Fig. 3, where

the dashed and solid lines represent the points for which Ωmatter = 1 and mτ̃1 = mχ0
1
,

respectively. The line with critical density extends to M ≈ 2.5 TeV, but the region

fulfilling WMAP 2 σ region stops at M = 1.4 TeV. Interestingly, the flux ρh cannot

vanish (since the stau becomes the LSP), this is, even though small, a deviation from

the CMSSM is necessary. Also, it cannot be too large or we would have an excessive

amount of dark matter.

As we explained in the beginning of this chapter, the µ parameter is computed

at the electroweak scale from Eq. (3.5). Using SPheno 3.0 we have also computed its

value at the unification scale (the effect of the RGEs is not large for this parameter) so

that we can compare it with the soft parameters. This might give us an idea of what

3It should be pointed out in this respect that the inclusion of non-vanishing flux correction ρf for

sfermions in Eq. (2.9) can slightly alter the allowed regions in the parameter space, shifting the viable

points towards smaller values of tanβ, thereby decreasing the SUSY contribution to BR(Bs → µ+µ−).
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perimental bounds has to be imposed. We have taken into account the constraints

obtained by LEP on the masses of supersymmetric particles, as well as on the light-

est Higgs boson [13]. Also, the most recent experimental limits on the contributions

to low-energy observables have been included in our analysis. More specifically, we

impose the experimental bound on the branching ratio of the rare b → sγ decay,

2.85 × 10−4 ≤ BR(b → sγ) ≤ 4.25 × 10−4, obtained from the experimental world

average reported by the Heavy Flavour Averaging Group [52], and the theoretical cal-

culation in the Standard Model [53], with errors combined in quadrature. We also take

into account the upper constraint on the (B0
s → µ+µ−) branching ratio obtained by

CDF, BR(B0
s → µ+µ−) < 5.8×10−8 at 95% c.l. [54] (which improves the previous one

from D0 [55]).

Regarding the muon anomalous magnetic moment, a constraint on the supersym-

metric contribution to this observable, aSUSY
µ , can be extracted by comparing the ex-

perimental result [56], with the most recent theoretical evaluations of the Standard

Model contributions [57, 58, 59]. When e+e− data are used the experimental excess

in aµ ≡ (gµ − 2)/2 would constrain a possible supersymmetric contribution to be

aSUSY
µ = (27.6 ± 8)× 10−10, where theoretical and experimental errors have been com-

bined in quadrature. However, when tau data are used, a smaller discrepancy with the

experimental measurement is found. Due to this reason, in our analysis we will not

impose this constraint, but only indicate the regions compatible with it at the 2σ level,

this is, 11.6 × 10−10 ≤ aSUSY
µ ≤ 43.6 × 10−10.

Assuming R-parity conservation, and hence the stability of the LSP, we also in-

vestigate the possibility of obtaining viable neutralino dark matter. This is, in the

regions of the parameter space where the neutralino is the LSP we compute its relic

density by means of the program micrOMEGAs [60], and check compatibility with the

data obtained by the WMAP satellite [61], which constrain the amount of cold dark

matter to be 0.1037 ≤ Ωh2 ≤ 0.1161.

The value of the mass of the top quark is particularly relevant. In our computation

we have used the central value corresponding to the recent measurement by CDF [62],

mt = 172 ± 1.4 GeV. We will briefly comment on the effect that deviations from this

quantity may have on REWSB.

Finally, the presence in SUSY theories of scalar fields which carry electric and colour

charges can lead to the occurrence of minima of the Higgs potential where charge and/or

colour symmetries are broken when these scalars take non-vanishing VEVs. If these

minima are deeper than the physical (Fermi) vacuum, the latter would be unstable.
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Figure 7: Ratio A/mf at the GUT scale as a function of the modular weight ξ for the

case without fluxes (solid line) and when a small flux (ρH = 0.16) is introduced.

e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular

16
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Figure 1: aSUSY
µ as a function of the common gaugino mass M1/2. The four curves

inside each set associated to a particular value of tan β correspond, from bottom to top,

to MI = 1016,14,12,10 GeV respectively. Continuous lines correspond to regions where

the neutralino is the LSP.

and mν̃ . It turns out that when we lower the scale, the variation of µ is much more

important than the variation of M2 and mν̃ . Although this produces an important de-

crease in xµ (while the increase in xM2
is moderate), the big increase in F compensates

it. In this way, higher values of aSUSY
µ can be obtained.

We recall that low initial scales play a crucial role in increasing the spin-independent

part of the neutralino-nucleon cross sections, mainly due to the decrease of the µ

parameter [24]. In the MSSM with universal scenario at MGUT these cross sections

are strongly suppressed due to the fact that the lightest neutralino is mainly Bino.

By decreasing the value of the µ parameter, the Higgsino components of the lightest

neutralino increase and therefore also the spin-independent part of the cross sections

increases. On the contrary, the sensitivity of aSUSY
µ versus the initial scale is quite

moderate.

We show the results of our analysis in Figs. 1 and 2. They have been obtained

using the general formulae (2-4) discussed in Section 2. These figures correspond to

the µ > 0 case. We have not included the scenarios with opposite values of µ since

they imply negative values for aSUSY
µ and therefore are ruled out by the BNL results.

In Fig. 1 we plot aSUSY
µ versus the common gaugino mass at the initial scale, M1/2,

for a fixed value of m = 150, 250 GeV, and A = 0. Inside each plot there are three

sets of four curves which correspond to tanβ = 5, 10, 30. The four curves inside

each set correspond to MI = 1016,14,12,10 GeV, from bottom to top respectively, and
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e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of
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t̃1 − χ coannihilation strips running close to their outer boundaries, portions of which are

compatible with mh ∼ 119 GeV when tan β = 10. However, this coannihilation region is

excluded by b → sγ for tanβ = 40. In the tanβ = 10 case there is also a portion of the τ̃1−χ

coannihilation strip atm1/2 ∼ 700 GeV that is compatible with mh ∼ 119 GeV, but no region

with mh ∼ 125 GeV can be seen. On the other hand, when tanβ = 40 and A0 = 3 TeV,

we see that there is a portion of the τ̃1 − χ coannihilation strip around m1/2 ∼ 800 GeV

that is compatible with mh = 125 GeV. When tanβ = 55 (lower panels of Fig. 3), the

t̃1 − χ coannihilation strips disappear, and the τ̃1 − χ coannihilation strip morphs into the

H/A rapid-annihilation funnel for m1/2 ∼ 1500 GeV 3. In both the cases A0 = 3000 GeV

(lower left panel) and A0 = 2000 GeV (lower right panel), in the funnel regions there are

portions of the WMAP-compatible strips that are compatible with mh = 125 GeV, within

the expected FeynHiggs uncertainty of ±1.5 GeV. These examples confirm that larger values

of tan β ∼ 40 or more and A0 > 0 would be favoured if mh = 125 GeV, as already suggested

by the upper right panel of Fig. 1 and the right panel of Fig. 2. Finally, we note that there

3Also visible in these panels between m1/2 ∼ 1000 GeV and ∼ 1500 GeV is another WMAP-compatible
strip running roughly parallel to the τ̃1 − χ coannihilation strip, which is due to rapid τ̃1 − ¯̃τ1 annihilation
through direct-channel H/A poles.
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Figure 1: aSUSY
µ as a function of the common gaugino mass M1/2. The four curves

inside each set associated to a particular value of tan β correspond, from bottom to top,

to MI = 1016,14,12,10 GeV respectively. Continuous lines correspond to regions where

the neutralino is the LSP.

and mν̃ . It turns out that when we lower the scale, the variation of µ is much more

important than the variation of M2 and mν̃ . Although this produces an important de-

crease in xµ (while the increase in xM2
is moderate), the big increase in F compensates

it. In this way, higher values of aSUSY
µ can be obtained.

We recall that low initial scales play a crucial role in increasing the spin-independent

part of the neutralino-nucleon cross sections, mainly due to the decrease of the µ

parameter [24]. In the MSSM with universal scenario at MGUT these cross sections

are strongly suppressed due to the fact that the lightest neutralino is mainly Bino.

By decreasing the value of the µ parameter, the Higgsino components of the lightest

neutralino increase and therefore also the spin-independent part of the cross sections

increases. On the contrary, the sensitivity of aSUSY
µ versus the initial scale is quite

moderate.

We show the results of our analysis in Figs. 1 and 2. They have been obtained

using the general formulae (2-4) discussed in Section 2. These figures correspond to

the µ > 0 case. We have not included the scenarios with opposite values of µ since

they imply negative values for aSUSY
µ and therefore are ruled out by the BNL results.

In Fig. 1 we plot aSUSY
µ versus the common gaugino mass at the initial scale, M1/2,

for a fixed value of m = 150, 250 GeV, and A = 0. Inside each plot there are three

sets of four curves which correspond to tanβ = 5, 10, 30. The four curves inside

each set correspond to MI = 1016,14,12,10 GeV, from bottom to top respectively, and
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case without fluxes (solid line) and when a small flux (ρH = 0.16) is introduced.

e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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the LHC and dark matter detection might well be
more cheerful than in the (g − 2)µ-less CMSSM
and NUHM1 scenarios discussed here. However,
the exploration of such possible alternative mod-
els lies beyond the scope of our analysis.

What if Mh = 119 GeV?

We have restricted our attention so far to Mh !

125 GeV, which corresponds to the excess seen
in both CMS and ATLAS. We now consider an
alternative potential LHC measurement Mh =
119±1 GeV, which corresponds to the CMS ZZ∗

signal and our earlier predictions including the
(g − 2)µ constraint, again allowing for a theoret-
ical error ±1.5 GeV in the calculation of Mh for
any given set of CMSSM or NUHM1 parameters.
The (m0,m1/2) planes shown in Fig. 13 for

NUHM	
  CMSSM	
  



Figure 1: aSUSY
µ as a function of the common gaugino mass M1/2. The four curves

inside each set associated to a particular value of tan β correspond, from bottom to top,

to MI = 1016,14,12,10 GeV respectively. Continuous lines correspond to regions where

the neutralino is the LSP.

and mν̃ . It turns out that when we lower the scale, the variation of µ is much more

important than the variation of M2 and mν̃ . Although this produces an important de-

crease in xµ (while the increase in xM2
is moderate), the big increase in F compensates

it. In this way, higher values of aSUSY
µ can be obtained.

We recall that low initial scales play a crucial role in increasing the spin-independent

part of the neutralino-nucleon cross sections, mainly due to the decrease of the µ

parameter [24]. In the MSSM with universal scenario at MGUT these cross sections

are strongly suppressed due to the fact that the lightest neutralino is mainly Bino.

By decreasing the value of the µ parameter, the Higgsino components of the lightest

neutralino increase and therefore also the spin-independent part of the cross sections

increases. On the contrary, the sensitivity of aSUSY
µ versus the initial scale is quite

moderate.

We show the results of our analysis in Figs. 1 and 2. They have been obtained

using the general formulae (2-4) discussed in Section 2. These figures correspond to

the µ > 0 case. We have not included the scenarios with opposite values of µ since

they imply negative values for aSUSY
µ and therefore are ruled out by the BNL results.

In Fig. 1 we plot aSUSY
µ versus the common gaugino mass at the initial scale, M1/2,

for a fixed value of m = 150, 250 GeV, and A = 0. Inside each plot there are three

sets of four curves which correspond to tanβ = 5, 10, 30. The four curves inside

each set correspond to MI = 1016,14,12,10 GeV, from bottom to top respectively, and
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Figure 7: Ratio A/mf at the GUT scale as a function of the modular weight ξ for the

case without fluxes (solid line) and when a small flux (ρH = 0.16) is introduced.

e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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Figure 4. The (MA, tanβ) planes in the CMSSM (left) and the NUHM1 (right), for Mh ! 125 GeV. The
notations and significations of the contours are the same as in Fig. 2.

able is not very sensitive directly to Mh, and the
indirect sensitivity via m1/2 is not very strong,
though smaller values of m1/2 do lead to larger
values of BR(Bs → µ+µ−), in general. As seen in
Fig. 7, imposing the putative LHC Mh constraint
indeed has little effect on BR(Bs → µ+µ−). We
recall that the best-fit values in the CMSSM and
NUHM1 are both slightly larger than in the SM,
and enhancements of up to O(30− 40%) with re-
spect to the SM prediction could be detected at
the LHC at the 3 σ level.

Finally, in Fig. 8 we show results for the pre-
ferred regions in the (mχ̃0

1
,σSI

p ) plane. As seen
in Fig. 8, the fact that larger values of m1/2

and hence mχ̃0
1
are favoured by the larger val-

ues of Mh implies that at the 68% CL the pre-
ferred range of σSI

p is significantly lower when
Mh ! 125 GeV, when compared to our previous
best fit with Mh = 119 GeV, rendering direct de-
tection of dark matter significantly more difficult.
Again, this effect on mχ̃0

1
is more pronounced in

the CMSSM, whereas in the NUHM1 the value of

NUHM	
  CMSSM	
  



Figure 1: aSUSY
µ as a function of the common gaugino mass M1/2. The four curves

inside each set associated to a particular value of tan β correspond, from bottom to top,

to MI = 1016,14,12,10 GeV respectively. Continuous lines correspond to regions where

the neutralino is the LSP.

and mν̃ . It turns out that when we lower the scale, the variation of µ is much more

important than the variation of M2 and mν̃ . Although this produces an important de-

crease in xµ (while the increase in xM2
is moderate), the big increase in F compensates

it. In this way, higher values of aSUSY
µ can be obtained.

We recall that low initial scales play a crucial role in increasing the spin-independent

part of the neutralino-nucleon cross sections, mainly due to the decrease of the µ

parameter [24]. In the MSSM with universal scenario at MGUT these cross sections

are strongly suppressed due to the fact that the lightest neutralino is mainly Bino.

By decreasing the value of the µ parameter, the Higgsino components of the lightest

neutralino increase and therefore also the spin-independent part of the cross sections

increases. On the contrary, the sensitivity of aSUSY
µ versus the initial scale is quite

moderate.

We show the results of our analysis in Figs. 1 and 2. They have been obtained

using the general formulae (2-4) discussed in Section 2. These figures correspond to

the µ > 0 case. We have not included the scenarios with opposite values of µ since

they imply negative values for aSUSY
µ and therefore are ruled out by the BNL results.

In Fig. 1 we plot aSUSY
µ versus the common gaugino mass at the initial scale, M1/2,

for a fixed value of m = 150, 250 GeV, and A = 0. Inside each plot there are three

sets of four curves which correspond to tanβ = 5, 10, 30. The four curves inside

each set correspond to MI = 1016,14,12,10 GeV, from bottom to top respectively, and
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case without fluxes (solid line) and when a small flux (ρH = 0.16) is introduced.

e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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Figure 1. Black contours: posterior pdf (upper panels, for flat and log priors) and profile likelihood (lower
panels) for the cMSSM parameters, including all present-day constraints (WMAP 7-years, LHC 1 fb−1 SUSY
searches and 5 fb−1 Higgs limits included), except XENON100. From the inside out, contours enclose 68%,
95% and 99% of marginal posterior probability (top two rows) and the corresponding profiled confidence
intervals (bottom panels). The black cross represents the best fit point, the black dot the posterior mean
(for the pdf plots). Parameters describing astrophysical and hadronic uncertainties have been fixed to their
fiducial values. Blue contours represent the constraints obtained without the inclusion of LHC data. In the
plots on the left, the dashed/green line represents the current LHC exclusion limit, while in the right-most
plots the red/dashed line is the 90% exclusion limit from XENON100, from Ref. [15], rescaled to our fiducial
local DM density of ρloc = 0.4 GeV/cm3.

[56], such that current cosmological constraints on the dark matter relic abundance can be
satisfied. In the (m1/2,m0) plane it corresponds to a large area at sizable m0 > 1 TeV and
relatively small m1/2.

A second region of interest is the stau co-annihilation (SC) region. In this region the
lightest stau is slightly heavier than the neutralino LSP. As a result, the neutralino relic
density is reduced by neutralino-stau co-annihilations, so that the WMAP constraint can be
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Figure 3. As in Fig. 1, but now black/filled contours result from scans that do not include the experimental
constraint on the anomalous magnetic moment of the muon. Blue contours correspond to the results obtained
when applying this constraint, and thus are identical to the black contours in Fig. 1.

tainties, especially in the computation of the hadronic loop contributions. According to the
most recent evaluations, when e+e− data are used the experimental excess in aµ ≡ (gµ−2)/2
would constrain a possible supersymmetric contribution to be δaSUSY

µ = (29.6±8.1)×10−10 ,
where theoretical and experimental errors have been combined in quadrature. However, when
tau data are used a smaller discrepancy (2.4σ) with the experimental measurement is found
[61].

In Ref. [24] it has been shown that the preference for small m0 and m1/2 in global

fits of the cMSSM is strongly driven by the δaSUSY
µ constraint. In order to evaluate the

dependence of our results on this constraint, we repeat the analysis presented in Section 3.1
after dropping the experimental constraint on δaSUSY

µ . The results are shown in Fig. 3. For
comparison, blue contours show the constraints derived on the cMSSM when including the
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Figure 1. Black contours: posterior pdf (upper panels, for flat and log priors) and profile likelihood (lower
panels) for the cMSSM parameters, including all present-day constraints (WMAP 7-years, LHC 1 fb−1 SUSY
searches and 5 fb−1 Higgs limits included), except XENON100. From the inside out, contours enclose 68%,
95% and 99% of marginal posterior probability (top two rows) and the corresponding profiled confidence
intervals (bottom panels). The black cross represents the best fit point, the black dot the posterior mean
(for the pdf plots). Parameters describing astrophysical and hadronic uncertainties have been fixed to their
fiducial values. Blue contours represent the constraints obtained without the inclusion of LHC data. In the
plots on the left, the dashed/green line represents the current LHC exclusion limit, while in the right-most
plots the red/dashed line is the 90% exclusion limit from XENON100, from Ref. [15], rescaled to our fiducial
local DM density of ρloc = 0.4 GeV/cm3.

[56], such that current cosmological constraints on the dark matter relic abundance can be
satisfied. In the (m1/2,m0) plane it corresponds to a large area at sizable m0 > 1 TeV and
relatively small m1/2.

A second region of interest is the stau co-annihilation (SC) region. In this region the
lightest stau is slightly heavier than the neutralino LSP. As a result, the neutralino relic
density is reduced by neutralino-stau co-annihilations, so that the WMAP constraint can be
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Figure 5. 1D marginal pdf for flat priors (thin solid/blue), log priors (thick solid/red) and 1D profile
likelihood (dashed/black) for the lightest Higgs mass mh. The results come from the implementation of all
experimental data, including LHC 2011 data, except for direct detection constraints (left), all data including
XENON100 data with astrophysical and hadronic uncertainties fully marginalised/maximised over (centre)
and all data except direct detection data and excluding the δaSUSY

µ constraint. The best fit point is indicated
by the encircled black cross.

prior. This conclusion remains true even if the δaSUSY
µ constraint is excluded from the scan

(see right panel of Fig. 5).
At this point we comment on how we expect the results of our analysis to change when

using priors other than the non-informative flat and log priors applied in this work.
In the literature Bayesian studies of the cMSSM have been performed which attempt

to incorporate the SUSY naturalness criterium. Namely, SUSY soft-masses should not be
far from the experimental electroweak (EW) scale in order to avoid unnatural fine-tuning
to obtain the correct size of the EW symmetry breaking. In some studies a penalisation of
the fine-tuned regions has been implemented, e.g. by using a conveniently modified prior
for the cMSSM parameters [66, 67]. On the other hand, in Ref. [68] it has been shown
that the naturalness arguments arise from the Bayesian analysis itself, with no need of in-
troducing “naturalness priors”. The key is when the experimental value of MZ is considered
in the same way as other experimental information (usually MZ is fixed to its experimen-
tal value and the Higgsino mass parameter µ is predicted from the EW symmetry breaking
conditions). Marginalising over µ results in a factor 1/cµ in the Bayesian posterior, where
cµ =

∣

∣∂ lnM2
Z/∂ lnµ

∣

∣ is the conventional Barbieri-Giudice measure of the degree of fine-
tuning [70, 71] (for details on this derivation see Ref. [68, 69]). This precisely agrees with
the “naturalness prior” which is introduced by hand in Ref. [66]. Thus, the presence of
this fine-tuning parameter in the denominator penalises the regions of parameter space cor-
responding to large fine-tuning. As a result the only region with large soft-masses that is
not disfavoured is the FP region, in which naturalness is preserved [72]. Indeed, this region
contains a large portion of the Bayesian posterior probability in the presence of the DM
relic abundance constraint, especially when the constraint on the anomalous magnetic mo-
ment of the muon is excluded from the analysis [69]. As was shown above, the addition of
XENON100 data strongly disfavours the FP region, therefore one would expect the bulk of
the posterior probability to fall within the low and intermediate soft-masses region, leading
to similar conclusions as the ones resulting from our log prior scan.
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Figure 9: Left panel: mh as calculated using FeynHiggs (showing the bands mh = 119 ±
1.5 GeV and 125 ± 1.5 GeV) and right panel: spin-independent elastic χ − p scattering
cross section (showing the XENON100 exclusion [30] as in Fig. 7), along WMAP strips for
tan β = 55 - the τ̃1 − χ coannihilation strips for A0 = 0 (7) (black) and A0/m0 = 2.0 (8)
(red), and the focus-point strip for A0 = 0 (9) (green).

6 Summary

We have discussed in this paper the interplay between a hypothetical measurement of the

mass of the Higgs boson and spin-independent elastic dark matter scattering, in the context

of WMAP strips in the (m1/2, m0) planes of the CMSSM. In the past, it has been common

to discuss planes with A0 = 0 and various values of tan β ∈ [10, 55]. However, previous

studies [24, 27, 29] have shown that A0 > 0 may be preferred, so we have explored this

possibility in this paper. Among the examples we consider is a t̃1 − χ coannihilation strip, a

possibility that does not arise if A0 = 0, and which has not been extensively studied in the

dark matter detection literature.

Positive values of A0 generally yield larger values of mh than for A0 = 0, which may be

preferred in light of the LHC ‘hint’ that mh ∼ 125 GeV, though mh ∼ 119 GeV may still

be a possibility. As could be anticipated from previous studies, only limited portions of the

WMAP strips are compatible with mh ∼ 125 GeV, whereas larger portions are compatible

with mh ∼ 119 GeV. In addition to τ̃1−χ coannihilation strips with tanβ ∼ 40 or more and

A0 ∼ 2m0 or more, which are reflected in Figs. 2 and 3 of [27], we also find that some portion

of the τ̃1−χ coannihilation strip for tanβ = 10 may also be compatible with mh ∼ 125 GeV

within the FeynHiggs uncertainty of ±1.5 GeV if A0 is very large, e.g., A0 = 3000 GeV,
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Constraints from rare decays 

by the LHCb collaboration [31], leading to the unprecedented constraint BR(Bs →
µ+µ−) < 4.5×10−9. This is in fact very close to the SM prediction BR(Bs → µ+µ−) =

(3.2±0.2)×10−9 [48, 49] and thus has important implications in our parameter space.

Given that our model entails large values of tan β and a significant mixing in the stop

mass matrix, the resulting BR(Bs → µ+µ−) is relatively large. Fig. 4 represents the

theoretical predictions for this observable as a function of the corresponding universal

gaugino mass, showing that BR(Bs → µ+µ−) >∼ 4.4 × 10−9. We display in the plot

the experimental bound from Ref. [47] and Ref. [31], explicitly showing the effect of

the improved measurement. For each case, we take into account the 2σ theoretical

uncertainty of the SM contribution. It is in fact expected that this upper bound

improves in the near future with new data from CMS and LHCb. This has the potential

to disfavour our construction if no deviation from the SM value is observed. 3

On the right hand-side of Fig. 3 we display the line in the (M, ρH) plane that is

consistent with REWSB and viable neutralino dark matter. Interestingly enough, after

applying experimental constraints, the value of ρH is indeed small, of order 0.15− 0.17

and is very weakly dependent onM . This is consistent with the interpretation of ρH as a

small correction arising from gauge fluxes, as discussed in the previous chapter. Indeed

the values for ρH obtained are of the expected order of magnitude, ρH ∝ α1/2
GUT & 0.2.

The viable points of the parameter space lie along a narrow area of the parameter

space. In fact, small deviations in any of the parameters, M , tanβ or ρh have catas-

trophic consequences, since either the relic density becomes too large (it very rapidly

overcloses the Universe) or the stau becomes the LSP. We illustrate this in Fig. 3, where

the dashed and solid lines represent the points for which Ωmatter = 1 and mτ̃1 = mχ0
1
,

respectively. The line with critical density extends to M ≈ 2.5 TeV, but the region

fulfilling WMAP 2 σ region stops at M = 1.4 TeV. Interestingly, the flux ρh cannot

vanish (since the stau becomes the LSP), this is, even though small, a deviation from

the CMSSM is necessary. Also, it cannot be too large or we would have an excessive

amount of dark matter.

As we explained in the beginning of this chapter, the µ parameter is computed

at the electroweak scale from Eq. (3.5). Using SPheno 3.0 we have also computed its

value at the unification scale (the effect of the RGEs is not large for this parameter) so

that we can compare it with the soft parameters. This might give us an idea of what

3It should be pointed out in this respect that the inclusion of non-vanishing flux correction ρf for

sfermions in Eq. (2.9) can slightly alter the allowed regions in the parameter space, shifting the viable

points towards smaller values of tanβ, thereby decreasing the SUSY contribution to BR(Bs → µ+µ−).
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LHCb	
  has	
  obtained	
  an	
  unprecedented	
  
upper	
  bound	
  on	
  the	
  rare	
  decay	
  of	
  Bs	
  into	
  
muons	
  

This	
  constrains	
  regions	
  with	
  small	
  pseudoscalar	
  mass	
  and	
  large	
  tanb,	
  but	
  also	
  those	
  in	
  which	
  the	
  stop	
  
mixing	
  is	
  sizable.	
  This	
  affects:	
  
	
  
•  Regions	
  with	
  heavy	
  Higgs	
  mass	
  (typically	
  maximal	
  stop	
  mixing	
  –	
  normally	
  large	
  tanb)	
  

•  Models	
  for	
  very	
  light	
  neutralino	
  dark	
  maVer	
  (small	
  mA,	
  large	
  tanb)	
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The corresponding (m, M) parameter space is plotted in Fig. 4. For such high
values of tanβ the three choices of non-universal Higgs masses, a), b), and c) allow
a large reduction in the CP-odd Higgs mass. In particular, this reduction is larger
than the decrease of µ in case a) and for this reason the three examples present a
large resemblance. Once more the regions which are within the reach of dark matter
detectors are very disfavoured by the predicted values of B(B0

s → µ+µ−). As we can
see, in the three cases the areas excluded by this constraint enclose all the points
within the reach of the projected CDMS Soudan. GENIUS would be able to test some
of the remaining points which have the correct value for the relic density. Note that
most of the points of the parameter space which could escape detection at GENIUS
are located along the coannihilation tail, where the neutralino and the light stau are
almost degenerate in mass.

At this point it may seem that the observed correlation between B(B0
s → µ+µ−) and

σχ̃0
1
−p is inevitable and that therefore large neutralino detection cross sections, within

the reach of present experiments, are not attainable. However, this correlation can be
diluted under several circumstances. For instance, the gluino mediated contribution to
the b → s transition can have the opposite sign than the chargino mediated term, which
is typically dominant, thereby leading to a partial cancellation and slightly decreasing
B(B0

s → µ+µ−).

For a larger reduction, one can consider tuning the value of the top trilinear cou-
pling, At, at the GUT scale in such a way that the stop (t̃L − t̃R) mixing is reduced
and the stop mass increased. Consequently, the chargino mediated b → s transition
is suppressed. This can be done with At > 0 at the GUT scale. For large values of
tan β, for which the µ/ tanβ term in the stop mixing can be neglected, the chargino
contribution to B(B0

s → µ+µ−) can be qualitatively expressed as

B(B0
s → µ+µ−) ∝

tan6 β

m4
A

(

µAt

m2

t̃L

)2

. (4)

When larger and positive values for At are taken at the GUT scale, its value at the
electroweak scale, after applying the RGEs, becomes less negative. Thus A2

t decreases,
m2

t̃L,R
increase through the effect of At on their RGEs, and as a consequence, the

term in parenthesis in (4) becomes smaller. Such a modification of At also causes
a decrease in the lightest Higgs mass. This, together with the enhancement of the
Higgsino components of χ̃0

1, is helpful for obtaining an increase in σχ̃0
1
−p but one has to

make sure the experimental bound on mh is not violated.

In order to exemplify this behaviour let us concentrate on the case with tanβ = 50
and non-universal Higgs masses according to case a) in (3), and consider variations in
the trilinear parameter. For example, let us compare the case where A = 0, which
was already shown in Fig. 1, with the one where A = 1.4 M . The ratio (µAt/m2

t̃L
)2

is represented on the left hand side of Fig. 5 as a function of the CP-odd Higgs mass
for both cases, where we have scanned in the whole (m, M) parameter space, and
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FIG. 5: Neutralino–nucleon cross section ξσ(nucleon)
scalar as a func-

tion of the neutralino mass for the LNM scan and for gd,ref
= 290 MeV. The (red) crosses denote configurations with
a heavy Higgs mass in the range compatible with the AT-
LAS [11] and CMS [12] excess at the LHC. The shaded areas
denote the DAMA/LIBRA annual modulation regions: the
upper area (vertical shade; green) refers to the case where
constant values of 0.3 and 0.09 are taken for the quenching
factors of Na and I, respectively[10]; the lower area (cross
hatched; red) is obtained by using the energy–dependent Na
and I quenching factors as established by the procedure given
in Ref. [45]. The gray regions are those compatible with the
CRESST excess [7]. In all cases a possible channeling effect is
not included.The halo distribution functions used to extract
the experimental regions are given in the text.

subset of configurations with 115 GeV ≤ MH ≤ 131 GeV.
These are contained in the band shown in the right panel
of Fig. 2, with values of the mA parameter in the range
90 GeV ≤ MA ≤ 129 GeV. This subpopulation of light
neutralinos would have a neutralino–nucleon elastic cross
section in the domain depicted in Fig. 5 by (red) crosses,
and would then be in amazing agreement with the results
of DM direct detection.

The identification of a putative Higgs boson with the
H boson appears to be compatible in terms of produc-
tion cross section and branching ratios. This is shown
in Fig. 6, where the exclusive production cross section
ratio Rγγ ≡ [σ(gg → H)×BR(H → γγ)]MSSM/[σ(gg →
H)BR(H → γγ)]SM is plotted as a function of BR(H →
γγ)MSSM/BR(H → γγ)SM for our configurations. Here
σ(gg → H) is the Higgs production cross section through
the gluon fusion process. We have calculated both quan-
tities using FeynHiggs 2.8.6 [55]. Indeed our population

FIG. 6: Production cross section ratio Rγγ ≡ [σ(gg →
H) × BR(H → γγ)]MSSM/[σ(gg → h)BR(h → γγ)]SM as
a function of BR(H → γγ)MSSM/BR(h → γγ)SM for the
configurations discussed in Section IIIA. Black points refer
to H masses in the range 115 GeV ≤ mH ≤ 131 GeV, while
(red) circles refer to a H mass interval more focussed around
126 GeV (specifically: 125 GeV ≤ mH ≤ 127 GeV).

of light neutralinos contains many configurations which
are in agreement with the putative Higgs signal. This
is a property arising spontaneusly in our scenario. No-
tice that although the BR of Higgs decay into 2 photons
is typically smaller that the corresponding SM branchig
ratio, Rγγ can be SM–like, due to enhanced production
cross sections.

Though imposing the above requirement would imply
some further selection within the neutralino population
previously discussed, we do not find in our scan any sig-
nificant correlation between Rγγ and the properties of
relic neutralinos, such as the neutralino relic abundance
Ωχh2 or the neutralino–nucleon cross section ξσ(nucleon)

scalar .
In factRγγ is mainly affected by the production cross sec-
tion σ(gg → H), which depends on SUSY–QCD parame-
ters that do not enter directly into the calculation of relic
neutralino observables. Although a thorough analysis of
these aspects is beyond the scope of the present paper,
the previous considerations are sufficient to conclude that
our scenario can be compatible with the possible Higgs
signal at the LHC in a natural way.

mX>18	
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Fig. 8. h0 branching fraction to b̃1
¯̃b1 as a function of the Z

decay width to b̃1
¯̃b1 for different values of the lightest sbottom

mass.

Fig. 9. Spin independent χ-p scattering cross-section as a func-
tion of the χ̃0

1 mass. The points presented here pass all the pre-
vious constraints, including the tight relic density bounds. The
red squares correspond to a slepton NLSP with a mass slightly
above the LEP limits (class i), the blue triangles to scenarios
with a chargino NLSP (class ii), and the green points to cases
where a scalar quark is degenerate with the light neutralino
(class iii).

ate b̃1 scenario have neutralino annihilation cross-sections

times relative velocity to bb̄ smaller than 5×10
−27

cm
3
/s,

which is one order of magnitude below the current Fermi-

LAT limits, which makes them compatible also with dark

matter indirect detection limits.

In summary, after considering the constraint from the

LEP data, the only viable scenario with a neutralino mass

below 20 GeV corresponds to the light sbottom NLSP

case.

In Fig. 9, we present distribution of the points passing

the tight relic density bound. Alternatively, in Fig. 10, the

same distribution is presented in the case where the loose

relic density constraint is used.

Fig. 10. Spin independent χ-p scattering cross-section as a
function of the χ̃0

1 mass. The points presented here pass all the
previous constraints, including the loose relic density bound.
The red squares correspond to a slepton NLSP with a mass
slightly above the LEP limits (class i), the blue triangles to
scenarios with a chargino NLSP (class ii), and the green points
to cases where a scalar quark is degenerate with the light neu-
tralino (class iii).

A comparison of these two figures reveals that the

lower bound of the relic density reduces the overall statis-

tics, but also removes points corresponding to scenarios

with a scalar quark degenerate with the light neutralino

for neutralino masses above 20 GeV. This can be explained

by the fact that points with a very small relic density

have a small splitting. However, to get a relic density

in the WMAP interval, the splitting should not be too

small relatively to the neutralino mass. Also, the direct

search bounds disfavour large splittings. Therefore, com-

bining the relic density and direct search limits, only a

small window remains where points can pass all the con-

straints.

2.4 Non-standard scenarios

The calculation of the relic density and the dark matter

direct detection constraints rely on many assumptions. In

particular, different cosmological scenarios can lead to a

relic density which is larger than that computed in the

standard cosmological scenario. First, the neutralino could

be only one of several dark matter components. Then, if

dark energy were the dominant component at the time

of the relic freeze-out, it would result in an acceleration

of the expansion of the Universe, which would lead to an

earlier freeze-out and a much larger relic density [67–71].

Finally, entropy generation at the time of freeze-out, for

example due to the decay of a late inflaton, can also lead

to an increase – or a decrease – of the relic density [72–76].

These effects are however limited by Big-Bang nucleosyn-

thesis constraints, but using AlterBBN [77], we verified

that they can nevertheless lead to an increase of three or-
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Constraints from rare decays 

by the LHCb collaboration [31], leading to the unprecedented constraint BR(Bs →
µ+µ−) < 4.5×10−9. This is in fact very close to the SM prediction BR(Bs → µ+µ−) =

(3.2±0.2)×10−9 [48, 49] and thus has important implications in our parameter space.

Given that our model entails large values of tan β and a significant mixing in the stop

mass matrix, the resulting BR(Bs → µ+µ−) is relatively large. Fig. 4 represents the

theoretical predictions for this observable as a function of the corresponding universal

gaugino mass, showing that BR(Bs → µ+µ−) >∼ 4.4 × 10−9. We display in the plot

the experimental bound from Ref. [47] and Ref. [31], explicitly showing the effect of

the improved measurement. For each case, we take into account the 2σ theoretical

uncertainty of the SM contribution. It is in fact expected that this upper bound

improves in the near future with new data from CMS and LHCb. This has the potential

to disfavour our construction if no deviation from the SM value is observed. 3

On the right hand-side of Fig. 3 we display the line in the (M, ρH) plane that is

consistent with REWSB and viable neutralino dark matter. Interestingly enough, after

applying experimental constraints, the value of ρH is indeed small, of order 0.15− 0.17

and is very weakly dependent onM . This is consistent with the interpretation of ρH as a

small correction arising from gauge fluxes, as discussed in the previous chapter. Indeed

the values for ρH obtained are of the expected order of magnitude, ρH ∝ α1/2
GUT & 0.2.

The viable points of the parameter space lie along a narrow area of the parameter

space. In fact, small deviations in any of the parameters, M , tanβ or ρh have catas-

trophic consequences, since either the relic density becomes too large (it very rapidly

overcloses the Universe) or the stau becomes the LSP. We illustrate this in Fig. 3, where

the dashed and solid lines represent the points for which Ωmatter = 1 and mτ̃1 = mχ0
1
,

respectively. The line with critical density extends to M ≈ 2.5 TeV, but the region

fulfilling WMAP 2 σ region stops at M = 1.4 TeV. Interestingly, the flux ρh cannot

vanish (since the stau becomes the LSP), this is, even though small, a deviation from

the CMSSM is necessary. Also, it cannot be too large or we would have an excessive

amount of dark matter.

As we explained in the beginning of this chapter, the µ parameter is computed

at the electroweak scale from Eq. (3.5). Using SPheno 3.0 we have also computed its

value at the unification scale (the effect of the RGEs is not large for this parameter) so

that we can compare it with the soft parameters. This might give us an idea of what

3It should be pointed out in this respect that the inclusion of non-vanishing flux correction ρf for

sfermions in Eq. (2.9) can slightly alter the allowed regions in the parameter space, shifting the viable

points towards smaller values of tanβ, thereby decreasing the SUSY contribution to BR(Bs → µ+µ−).
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Fig. 8. h0 branching fraction to b̃1
¯̃b1 as a function of the Z

decay width to b̃1
¯̃b1 for different values of the lightest sbottom

mass.

Fig. 9. Spin independent χ-p scattering cross-section as a func-
tion of the χ̃0

1 mass. The points presented here pass all the pre-
vious constraints, including the tight relic density bounds. The
red squares correspond to a slepton NLSP with a mass slightly
above the LEP limits (class i), the blue triangles to scenarios
with a chargino NLSP (class ii), and the green points to cases
where a scalar quark is degenerate with the light neutralino
(class iii).
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which is one order of magnitude below the current Fermi-
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Figure 1: Constraint from BR(Bs → µ+µ−

) in the CMSSM plane (Mt̃1
, tan β) in the upper

panel and (MH± , tan β) in the lower panel, with the allowed points displayed in the foreground

in the left and in the background in the right.

The effect of an SM–like measurement of BR(Bs → µ+µ−
) in non–constrained MSSM (the

pMSSM) is demonstrated in [63].

Next we consider the constraints from B → K∗µ+µ−
observables. In order to study the

maximal effects we consider tan β=50 but show also the results for tan β=30, and investigate

the SUSY spread in function of the lightest stop mass. We start with the averaged differential

branching ratio as defined in Table 4. The results in CMSSM are displayed in Fig. 3 for the low

q2 region and in Fig. 4 for the high q2 region, where the solid red lines correspond to the LHCb

central value, while the dashed and dotted lines represent the 1 and 2σ bounds respectively,

including both theoretical and experimental errors (added in quadrature). At low q2, this

branching ratio excludes Mt̃1
below ∼ 250 GeV for tan β=50 and ∼ 150 GeV for tan β=30. In

the high q2 region the branching ratio is doing slightly better, as the Mt̃1
below ∼ 300 GeV and

∼ 200 GeV are excluded for tan β=50 and tan β=30 respectively. As this light stop region is

already excluded by the direct SUSY searches for the same scenario, BR(B → K∗µ+µ−
) does

not provide additional information. The main reason of the limited constraining power of the

branching ratio is the large theoretical uncertainties (mainly due to form factors) from which

this observable is suffering. The results are shown for two values of A0 (=0 and -1000 GeV)

for comparison. As can be seen from the figures, the constraints with smaller A0 are slightly
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Figure 2: Constraint from BR(Bs → µ+µ−
) in the NUHM plane (Mt̃1

, tan β) in the upper

panel and (MH± , tan β) in the lower panel, with the allowed points displayed in the foreground

in the left and in the background in the right.

stronger.

Contrary to the branching ratio, angular distributions, in which the theoretical uncertainties

are reduced, can in principle provide more robust constraints on the SUSY parameter space. In

particular, we consider in the following the forward-backward asymmetry AFB, the zero-crossing

q20 of AFB, FL, as well as S3, AIm for which the LHCb results with 1 fb
−1

of data are available.

The two latter observables do not provide any constraint with the current results and accuracy.

The SUSY spread in function of the stop mass of AFB, q20 and FL is given in Figs. 5–7. As can

be seen, AFB provides the most stringent constraints among these observables, and excludes

Mt̃1
� 800 GeV and 600 GeV at tan β=50 and tan β=30 respectively. q20 on the other hand

excludes Mt̃1
� 550 GeV (for tan β=50) and 400 GeV (for tan β=30) while FL excludes Mt̃1

�
200 GeV (for tan β=50) and 150 GeV (for tan β=30). The impressive constraining power of

AFB is mainly due to the fact that the measured central value is smaller than the SM prediction

and in addition the reported experimental errors are more than twice smaller than the previous

results.

Same observables at high q2 have less impact on the SUSY parameters and therefore their

results are not reproduced here.
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A specific string-motivated scenario 

Let us consider an F-theory construction in which SUSY breaking is transmitted solely by 
the moduli fields (having no contribution from the dilaton)	
  

only in the phenomenological applications of the model may jump safely to chapter 3.

We assume that the SM gauge fields reside at a stack of 7-branes wrapping a 4-cycle

S (of size controlled by a Kahler modulus t) in a 6-manifold whose overall volume

is controlled by a large modulus tb ! t. In the F-theory context these moduli t, tb

would correspond to the size of S and B3. As argued in Ref. [19] we can model out this

structure with a Kahler potential of the form [33, 34]

G = −2 log(t3/2b − t3/2) + log |W |2 , (2.1)

with t = T + T ∗ being the relevant local modulus associated to the SM and W the full

superpotential 2. The SM matter fields Cα of the MSSM reside at the intersection of

7-branes. Then the gauge kinetic function and the Kahler metrics of the matter fields

are given to leading order in 1/tb by [35, 19]

f = T ; Kα =
t1−ξα

tb
, (2.2)

where ξα is the modular weight of the corresponding particle. Its value depends on the

geometrical origin of the field with ξα = 1/2 for fields localized on intersecting 7-branes.

Note that the SM gauge couplings are unified and determined by the real part of f .

Using this information and assuming that the auxiliary field of the local modulus has

FT #= 0, using standard supergravity formulae (like e.g. those in Ref. [16]) it is easy to

derive the simple set of soft term boundary conditions [18, 19]

m2
α = (1− ξα)|M |2 , α = Q,U,D, L, E,Hu, Hd , (2.3)

AU = −M(3 − ξHu
− ξQ − ξU) ,

AD = −M(3 − ξHd
− ξQ − ξD) ,

AL = −M(3 − ξHd
− ξL − ξE) ,

B = −M(2 − ξHu
− ξHd

) ,

where M is the universal gaugino mass and the notation is standard. In the case under

consideration quarks, leptons and Higgs fields live at 7-brane intersections and hence

ξα = 1/2 for all α. Then one gets the simple set of boundary conditions

M =
√
2m = −(2/3)A = −B . (2.4)

2We ignore the dependence on the dilaton and complex structure fields which are typically fixed

in the presence of closed string fluxes. There may also be additional Kahler moduli which will not

modify the general arguments applicable to any local brane configuration.
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where ξα is the modular weight of the corresponding particle. Its value depends on the

geometrical origin of the field with ξα = 1/2 for fields localized on intersecting 7-branes.

Note that the SM gauge couplings are unified and determined by the real part of f .

Using this information and assuming that the auxiliary field of the local modulus has

FT #= 0, using standard supergravity formulae (like e.g. those in Ref. [16]) it is easy to

derive the simple set of soft term boundary conditions [18, 19]

m2
α = (1− ξα)|M |2 , α = Q,U,D, L, E,Hu, Hd , (2.3)

AU = −M(3 − ξHu
− ξQ − ξU) ,

AD = −M(3 − ξHd
− ξQ − ξD) ,

AL = −M(3 − ξHd
− ξL − ξE) ,

B = −M(2 − ξHu
− ξHd

) ,

where M is the universal gaugino mass and the notation is standard. In the case under

consideration quarks, leptons and Higgs fields live at 7-brane intersections and hence

ξα = 1/2 for all α. Then one gets the simple set of boundary conditions

M =
√
2m = −(2/3)A = −B . (2.4)

2We ignore the dependence on the dilaton and complex structure fields which are typically fixed

in the presence of closed string fluxes. There may also be additional Kahler moduli which will not

modify the general arguments applicable to any local brane configuration.
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Two parameter model (M, ρΗ) 
“Similar” to the CMSSM (actually a special case) 
tanb is NOT an input, it is derived in order to fulfil the boundary condition for B 

m2
H =

1

2
|M |2(1−

3

2
ρH) , (3.2)

A = −
1

2
M(3 − ρH) , (3.3)

B = −M(1 − ρH) , (3.4)

where ρH parametrizes the effect of magnetic fluxes on the Higgs Kahler metrics, see

Ref. [19]. As we said, this set of soft terms constitutes a deformation of a slice of the

CMSSM with slightly non-universal Higgs masses. We will call it Modulus Dominated

CMSSM (MD-CMSSM, Fig. 2).

MD!CMSSM

MSSM

CMSSM

HNUMSSM

Figure 2: Pictorial view of the modulus dominance constrained MSSM as a slice of the

Higgs non-universal HNUMSSM which is a slight deformation (due to the small flux

parameter) of the CMSSM.

Consistency of the scheme requires this parameter to be small so that indeed the

interpretation of ρH as a small flux correction makes sense. Note that we thus have

essentially two free parameters, M and µ, with a third parameter ρH restricted to be

small. We are going to impose two constraints: 1) consistent REWSB and 2) correct

neutralino dark matter abundance. These two constraints are very stringent and it is

non-trivial that both conditions may be simultaneously satisfied in such a constrained

system [19].

3.1 REWSB and dark matter constraints: a model with a

single free parameter

We have performed a detailed analysis of both REWSB and dark matter constraints

based on the above boundary conditions. A similar study was made in Ref. [19] but here
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Here we have assumed that there is an explicit µ-term from some unspecified origin

(possibly also fluxes), so that the model would have in principle only two free param-

eters, M and µ and therefore constitutes a slice of the CMSSM boundary conditions.

In general, magnetic flux backgrounds may be present on the worldvolume of the 7-

branes in order to get a chiral spectrum. In the presence of magnetic flux backgrounds

in the 7-branes the kinetic functions and Kahler metrics may get small corrections

which have the form in the dilute flux approximation [36, 19]

f = T (1 + a
S

T
) ; Kα =

t1/2

tb
(1 +

cα
t1/2

) , (2.5)

where a and cα are constants and S is the the complex dilaton field. These corrections

are suppressed in the large t limit, corresponding to the physical weak coupling. In

this limit one may also neglect the correction to f compared to that coming from Kα.

One then finds corrected soft terms of the form

m2

f̃ =
1

2
|M |2(1−

3

2
ρf ) , (2.6)

m2
H =

1

2
|M |2(1−

3

2
ρH) , (2.7)

A = −
1

2
M(3 − ρH − 2ρf) , (2.8)

B = −M(1 − ρH) , (2.9)

where ρα = cα/t1/2. Note that as an order of magnitude one numerically expects

ρH " 1/t1/2 " α1/2
GUT " 0.2. These expressions are further simplified if one assumes

that, e.g., only the flux correction to the Higgs Kahler metric is non negligible. This is

for example what happens in F-theory SU(5) GUTs, in which it is assumed that the

hypercharge flux is only non-vanishing in the Higgs matter curve. In what follows we

will only consider this case, although we have done an analogous analysis with ρf #= 0

which yields completely analogous results (although requiring slightly larger ρH).

3 Higgs and SUSY spectrum in the Modulus Dom-

inated CMSSM

In the scheme under discussion we are thus left with soft terms at the string unification

scale with the relations

m2

f̃ =
1

2
|M |2 , (3.1)

7

Fields live on a 7-brane	
  

In the case of vanishing 
fluxes one recovers a 
special case of the 
CMSSM, for non-vanishing 
fluxes, the NUHM	
  



A specific string-motivated scenario 

Can we reproduce LHC constraints + DM relic density?	
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Figure 3: Left) Trajectory in the (M, tan β) plane for which the REWSB conditions

are fulfilled and the correct amount of dark matter is obtained. Right) Corresponding

values of the flux, ρH . In both cases, dots correspond to points fulfilling the central

value in WMAP result for the neutralino relic density. The dot-dashed line denotes

points along which the matter density is critical, Ωmatter = 1, whereas the solid line

indicates the points for which the stau becomes the LSP. The points below the dashed

line are excluded by the lower bound on BR(b → sγ) and the upper bound on BR(Bs →
µ+µ−) from Ref. [47] and the recent LHCb result [31]. The gray area indicates the

points compatible with the latter constraint when the 2σ error associated to the SM

prediction is included.

Imposing both conditions we are left with a model with a single free parameter

or, equivalently, lines in the (M, tan β) and (M, ρH) planes. In Fig. 3 we show the

trajectories consistent with both REWSB and viable neutralino dark matter. The left

hand-side of Fig. 3 shows how the viable values for tan β are confined to a large value

region, tanβ " 36−41. The maximum values for M and tan β occur for M " 1.4 TeV,

tan β " 41. The existence of these maximal values are due to the dark matter condition.

Indeed, as we will see momentarily, the LSP in this scheme is mostly pure Bino and

generically its abundance exceeds the WMAP constraints. However along the line in

the figure the lightest neutralino χ0
1 is almost degenerate in mass with the lightest stau

τ̃1 (see Fig. 6) and a coannihilation effect takes place in the early universe reducing

very effectively its abundance. Above the point M " 1.4 TeV, coannihilation is not
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Figure 6: The normalized mass difference (mτ̃1 −mχ0
1
)/mτ̃1 as a function of the lightest

Higgs mass mh. Dots correspond to points fulfilling the central value in the result

from WMAP for the neutralino relic density and dotted lines denote the upper and

lower limits after including the 2σ uncertainty. The dot-dashed line represents points

with a critical matter density Ωmatter = 1. The vertical line corresponds to the 2σ

limit on BR(b → sγ) and the upper bound on BR(Bs → µ+µ−) from Ref. [47] and the

recent LHCb result [31]. The gray area indicates the points compatible with the latter

constraint when the 2σ error associated to the SM prediction is included.

the SM uncertainty is included in our theoretical predictions, the resulting range for

the Higgs mass is reduced to

124.4 GeV ≤ mh ≤ 125 GeV . (3.9)

We have to remark at this point that these values are sensitive to the value taken

for the top quark mass and the corresponding error. As we said we have taken the

central value in mt = 173.2± 0.9 [39]. The value of the Higgs mass is very dependent

on the top mass. As a rule of thumb, one can consider that an increase of 1 GeV in the

top mass leads to an increase of approximately 1 GeV in mh [54]. Note also that the

computation of the Higgs mass includes additional intrinsic errors of order 1 GeV, see
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Imposing the relic density constraint forces us 
to stay in the coannihilation region with large 
values of tanb	
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Figure 7: Ratio A/mf at the GUT scale as a function of the modular weight ξ for the

case without fluxes (solid line) and when a small flux (ρH = 0.16) is introduced.

e.g. Refs. [55, 56]. In any event, it is remarkable that the allowed region in our model

is well within the range allowed by the 2011 LHC data. In particular, generic points

in the CMSSM space tend to have a lighter Higgs mass tipically of order 115 GeV or

lower. Our particular choice of soft terms plus the constraint of viable neutralino dark

matter force our Higgs mass to be relatively high.

It should be pointed out that the regions of the parameter space with larger values of

the Higgs mass correspond to a heavy spectrum and therefore predict a small supersym-

metric contribution to the muon anomalous magnetic moment, aSUSY
µ . In particular, the

points with mh > 124 GeV predict aSUSY
µ ≈ 3×10−10. These values show some tension

with the observed discrepancy between the experimental value [57] and the Standard

Model predictions using e+e− data, which imply 10.1× 10−10 < aSUSY
µ < 42.1× 10−10

at the 2 σ confidence level [58] where theoretical and expreimental errors are combined

in quadrature (see also Refs. [59, 60], which provide similar results). However, if tau

data is used this discrepancy is smaller 2.9× 10−10 < aSUSY
µ < 36.1× 10−10 [60].

As we said, in the context of the CMSSM obtaining a large Higgs mass and not too

heavy SUSY spectrum requires having A # −2m. This may be considered as a hint

of a scheme with all SM localized in intersecting branes and is in fact independent of

what the possible origin of the µ term is. Indeed, for general (but universal) modular
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SM fields live at the intersection of 7-branes, very much like in the recent F-theory GUT

constructions (see Refs. [28, 29, 30] for reviews and references). In the latter, quarks and

leptons live confined in complex matter curves embedded in the bulk 7-brane in which

the SM gauge group lives (see Fig. 1). Yukawa couplings arise at the intersection points

of the different matter curves. It must be emphasized that this kind of constructions

form a large class, since several other string constructions are their duals. Thus for

example Type IIA orientifolds with the SM at intersecting D6-branes are their mirror

and F-theory constructions are also directly related to M-theory compactifications in

manifolds of G2 holonomy, see Ref. [21] for a review of these connections.

Figure 1: General structure of a local F-theory SU(5) GUT. The GUT group lives

on 7-branes whose 4 extra dimensions beyond Minkowski wrap a 4-cycle S. This S

manifold is inside a 3 complex dimensional manifold B3 where the 6 extra dimensions

are compactified. The gauge bosons live in the bulk of S whereas quarks, leptons, and

Higgsses are localized in complex curves inside S. These matter curves (10 and 5̄ in

the figure) correspond to the intersection of the 7-branes wrapping S with other U(1)

7-branes (not depicted in the figure). There is one matter curve for each SU(5) rep.

and at the intersection of matter curves with Higgs curves Hu, Hd Yukawa couplings

develop (figure taken from Ref. [21]).

In the present paper we explore in further detail this string theory configuration

beyond the results of Ref. [19] and study its phenomenological consequences, including

the Higgs masses and sparticle spectrum. We also study the LHC reach in testing these

models. In doing this analysis we find a number of interesting new results:

• We have realized that our construction, put forward a few years ago [19], does

contain the ingredients which favour a relatively heavy lightest CP-even Higgs

mass. Indeed, in these constructions one has a very predictive set of boundary

conditions with M =
√
2m = −(2/3)A = −B so that one is essentially left with

two free parameters, M and µ. In particular, this implies A = −3/
√
2m # −2m,

3

The conditions for maximal stop 
mixing are fulfilled and the Higgs can 
have a sizable mass	
  



A specific string-motivated scenario 

Can we reproduce LHC constraints + DM relic density?	
  

One interesting way of presenting the structure of the SUSY spectrum is in terms

of the lightest Higgs mass. In Fig. 8 we show the masses of the gluino and the squarks

as a function of mh. The region to the left of the vertical dashed line is excluded since

it leads to BR(b → sγ) < 2.85× 10−4. Note that this implies that squarks of the first

two generations and gluinos in our scheme must be heavier than # 1.2 TeV. This is

consistent with LHC limits obtained with 1 fb−1. For the third generation of squarks,

the lightest stop has a mass of at least 800 GeV and the heaviest one, along with the

sbottoms are heavier than 1 TeV.
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Figure 8: Squark and gluino masses as a function of the Higgs mass. The region to the

left of the vertical dashed indicates the constraint BR(b → sγ) < 2.85× 10−4 and the

upper bound on BR(Bs → µ+µ−) from Ref. [47] and the recent LHCb result [31]. The

gray area indicates the points compatible with the latter constraint when the 2σ error

associated to the SM prediction is included.

If the signal for a Higgs at 125 GeV is real, one expects a quite heavy spectrum with

gluinos of order 3 TeV and squarks of the first two generations of order 2.8 TeV. The

lightest stop would be around 2 TeV and the rest of the squarks at around 2.3 TeV.

Note however that these values depend strongly on the Higgs mass so that e.g. a Higgs

around 124 GeV would rather correspond to squarks and gluinos around 2.2 TeV. Given

the intrinsic error in the computation of the Higgs mass, this only give us a rough idea
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Figure 13: Maximum value of M that can be explored at the LHC with
√
s = 7, 8 TeV

(left hand-side) and
√
s = 13, 14 TeV (right hand-side) as a function of the luminosity.

centered around a larger /ET then the cut in /ET can generally be increased so as to re-

duce the number of background events as long as the number of signal events is above

critical. The latter obviously depends on the luminosity.

Using this ”adaptive cut” in /ET we have determined, for each given value of the

luminosity (and for each LHC energy configuration), the maximum value of M for

which the number of signal events satisfies condition (4.1). This is, we have calculated

the detectability potential of LHC for this specific model. The results are displayed

in Fig. 13, where the maximum value of M is plotted as a function of the luminosity.

Operating at
√
s = 7, 8 and 13, 14 TeV, LHC will be able to test this scenario up to

M ≈ 600, 750 and 1400 GeV, respectively, with a luminosity of 20, 30 and 30, 50 fb−1.

In fact, the LHC at 14 TeV would be able to explore regions of the parameter space

with a larger M than the one displayed in the plot. However, as shown in the previous

chapters, there is actually no point of the parameter space above that value for which

REWSB and dark matter conditions are fulfilled, and for that reason the line flattens

at M = 1400 GeV.

In order to check the validity of our ”adaptive cut” in /ET we have applied it to

the CMSSM and compared the resulting predicted reach with those obtained by the

ATLAS[61] and CMS [71] collaborations for the same signal. We have obtained a

similar reach. Remember in this sense that ATLAS and CMS use a given value for the

cut in /ET at low masses and a larger value for heavier masses.
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Rare decay constraints only leave the region 
with the largest possible mass spectrum	
  

That could only be explored with the LHC in 
a 13-14 TeV configuration.	
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Conclusions 

•  Supersymmetry is more than just the CMSSM (and the experimental 
bounds have to be applied for each individual model)	
  

•  LHC searches + Higgs mass “measurement (+ dark matter 
requirements) impose very stringent constraints on the 
parameter space of SUSY models	
  

•  mh~125 GeV seems to imply a heavy spectrum with maximal stop 
mixing  	
  

•  Potential conflicts with low energy observables (g-2) and rare decays 	
  

•  Implications for dark matter Dark matter 	
  


