

SUSY searches at the LHC

V. A. Mitsou IFIC Valencia

XL International Meeting on Fundamental Physics 14 May – 3 June 2012, Benasque, Spain

Outline

- Strategy for SUSY searches at LHC
- R-parity conserving supersymmetry
 - strong-production channels
 - 3rd-generation sparticle searches
 - direct gaugino production
- R-parity violation (RPV)
 - multi-lepton signatures
 - eµ final states
 - bilinear RPV
- Long-lived particles
 - displaced vertices
- Summary outlook

Supersymmetry (SUSY)

- Supersymmetry := fundamental global symmetry between fermions-bosons
- Theoretical motivation
 - Higgs mass stabilisation against loop corrections (fine-tuning problem)
 - unification of gauge couplings at single scale
 - dark matter candidate:
 Lightest supersymmetric particle (LSP)

SUSY particle spectrum

SM particles have supersymmetric partners that differ by ½ unit in spin

- sfermions: spin 0
 - squarks
 - sleptons
 - sneutrinos
- gauginos: spin ½
 - charginos / neutralinos
 - gluino
 - gravitino
- No SUSY particles found yet → SUSY must be broken
- Breaking mechanism affects phenomenology
 more than 100 parameters even in "minimal" models like the Minimal Supersymmetric Standard Model (MSSM)

Theoretical models

- Simplest extension of SM (MSSM) has > 100 new parameters
- How to test that at LHC?
- 1. Top-down approach
 - SUSY breaking mechanism
 - → different models
 - Gravity mediated (SUGRA)
 - Gauge mediated (GSMB)
 - ...

- 2. Bottom-up approach
 - Phenomenological models
 - assume masses and hierarchy
 - scan remaining parameters
 - Simplified models
 - specific decay chain

Simplified models topologies

- Identifying the boundaries of search sensitivity
 - e.g., dependence of reconstruction and selection efficiencies on sparticle mass differences

Typical E_T^{miss}-based analysis

- Many jets + large E_T^{miss} + leptons(incl. taus)/photons/bjets
- Cut sufficiently hard to reduce largely unknown background processes (fake MET, fake-leptons from QCD)
- Apply discriminating cuts to enhance signal/background ratio

2^T + E_T^{miss} analysis

More on analysis techniques

 Background estimation from data: measure bkg in a 'control' sample and propagate this measurement to the 'signal' sample

- Using distribution shape (ATLAS)
 - fit to jet multiplicity distribution in background control regions
 - likelihood is extended to include bin-by-bin M_{eff} information
- Neural networks (CMS)
 - artificial neural network (ANN) to suppress SM backgrounds
- Templates method (CMS)

V.A. Mitsou IMFP2012

A high-missing- E_T high- M_{eff} event

- M_{eff} = 1810 GeV
- MET = 460 GeV
- 5 jets with p_T > 40 GeV (528, 418, 233, 171 and 42 GeV)

- RPV decays
- gauge-mediated models

Small mass splittings (compressed spectra) require specific channels

Strong production – top-down approach

- SUSY particles mainly produced via strong interaction (gluino, squarks) at hadron colliders
- If R-parity is conserved:
 - sparticles produced by pair
 cascade decay to invisible LSP
- \Rightarrow Search for jets + E_T^{miss} + 0,1,2-leptons

Benchmark interpretation in CMSSM

- Exclude m ~ 1400 GeV for m(~q) = m(~g)
- 3 very different analysis confirm exclusion limit at high m₀

Strong production – bottom-up interpretations

Third-generation squarks

- Main motivation for TeV-scale SUSY is solving hierarchy problem
- If SUSY solves the hierarchy problem naturally, then 3rd gen. squarks must be light (few hundred GeV)

Possible search strategies

- If gluino is light enough → dominant process
 - gluino pair production

$$\Box \quad \tilde{g} \to b\tilde{b}_1, \, \tilde{g} \to t\tilde{t}_1$$

- search for b-jets + MET + jets
- If only 3rd gen. squarks are light
 - sbottom pair production \rightarrow 2 b-jets + MET
 - □ stop pair production → 2 opposite-sign leptons + MET + jets

Gluino-mediated stop production: 1ℓ + b-jets

- Event selection
 - $_{\scriptscriptstyle \Box}$ exactly 1e(µ) with p_T > 25 (20) GeV
 - at least 4 jets with p_T > 50 GeV, 1 b-jet
 - m_T > 100 GeV; m_{eff} > 700 GeV
 - \square E_T^{miss} > 80 GeV or 200 GeV

 MSSM scenario considering both gluino-mediated and direct stop production

- No significant excess is observed wrt SM bkg
- m(gluino) < 620 GeV excluded for m(stop) < 440 GeV

Direct sbottom pair production

- Signature: exactly 2 b-jets + $E_T^{miss} \rightarrow$ use flavour tagging
- Interpretations: pheno model with $Br(\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0) = 1$

Excluding sbottom mass < 380 GeV for neutralino masses up to ~ 100 GeV

Direct stop production

- Event selection: 1 b-jet, 2 OSSF leptons consistent with m_z, MET and jets
- Exclusion
 - neutralino masses below 220 GeV for stop masses below 270 GeV
 - stop masses below 310 GeV for 125 GeV < m(~χ₁⁰) < 220 GeV

arXiv:1204.6736 [hep-ex]

Direct weak gaugino production

arXiv:1204.5638 [hep-ex]

- If both gauginos decay leptonically → 3 leptons + high MET
- Selection
 - $_{\rm D}~$ exactly 3 leptons; $E_{T}^{\rm e}$ > 25 GeV, p_{T}^{μ} > 20 GeV ; one SFOS pair

Searches for R-parity violating SUSY

- eµ final states
- multi-lepton signatures
- bilinear RPV

R-parity conservation hinted but not required by proton stability

Rp conservation	Rp violation
Sparticles produced in pairs	Single sparticle production possible
Neutral and colorless LSP	LSP may be charged and/or carry color
Stable LSP → gives rise to high missing momentum	 LSP decays → possibility for new signals potentially long LSP lifetime MET may or may not be high exploit LSP invariant mass

RPV SUSY at LHC

- LSP decays to SM particles
 → no MET in trilinear RPV
- Examine S_T instead
 - S_T = sum of jet+lepton p_T's and MET
 - a.k.a. "inclusive effective mass"
- S_T recovers the low-MET signal
- Many signal regions explored by CMS
 - \square MET and H_T selection
 - ST selection
 - electrons, muons and taus
- Leptonic RPV: lepton number violation, λ , λ ' - Hadronic RPV: baryon number violation, λ '''

Multilepton signals

Selection	$N(\tau)=0$			$N(\tau)=1$		$N(\tau)=2$	
	obs	expect	obs	expect	obs	expect	
4ℓ Lepton Results		_					
4ℓ (DY0) S_T (High)	0	0.0010 ± 0.0009	0	0.01 ± 0.09	0	0.18 ± 0.07	
4ℓ (DY0) S_T (Mid)	0	0.004 ± 0.002	0	0.28 ± 0.10	2	2.5 ± 1.2	
4ℓ (DY0) S_T (Low)	0	0.04 ± 0.02	0	2.98 ± 0.48	4	3.5 ± 1.1	
4ℓ (DY1, no Z) S_T (High)	1	0.009 ± 0.004	0	0.10 ± 0.07	0	0.12 ± 0.05	
4ℓ (DY1, Z) S_T (High)	1	0.09 ± 0.01	0	0.51 ± 0.15	0	0.43 ± 0.15	
4ℓ (DY1, no Z) S_T (Mid)	0	0.07 ± 0.02	1	0.88 ± 0.26	1	0.94 ± 0.29	
4ℓ (DY1, Z) S_T (Mid)	0	0.45 ± 0.11	5	4.1 ± 1.2	3	3.4 ± 0.9	
4ℓ (DY1, no Z) S_T (Low)	0	0.09 ± 0.04	7	5.5 ± 2.2	19	13.7 ± 6.4	
4ℓ (DY1, Z) S_T (Low)	2	0.80 ± 0.34	19	17.7 ± 4.9	95	60 ± 31	
4ℓ (DY2, no Z) S_T (High)	0	0.02 ± 0.01	_	_	_	_	
4ℓ (DY2, Z) S_T (High)	0	0.89 ± 0.34	_	_	_	_	
4ℓ (DY2, no Z) S_T (Mid)	0	0.20 ± 0.09	_	_	_	_	
4ℓ (DY2, Z) S_T (Mid)	3	7.9 ± 3.2	_	_	_	_	
4ℓ (DY2, no Z) S_T (Low)	1	2.4 ± 1.1	_	_	_	_	
4ℓ (DY2, Z) S_T (Low)	29	29 ± 12	_	_	_	_	
3ℓ Lepton Results							
3ℓ (DY0) S_T (High)	2	1.14 ± 0.43	17	11.2 ± 3.2	20	22.5 ± 6.1	
3ℓ (DY0) S_T (Mid)	5	7.4 ± 3.0	113	97 ± 31	157	181 ± 24	
3ℓ (DY0) S_T (Low)	17	13.5 ± 4.1	522	419 ± 63	1631	2018 ± 253	
3ℓ (DY1, no Z) S_T (High)	6	3.5 ± 0.9	10	13.1 ± 2.3	_	_	
3ℓ (DY1, Z) S_T (High)	17	18.7 ± 6.0	35	39.2 ± 4.8	_	_	
3ℓ (DY1, no Z) S_T (Mid)	32	25.5 ± 6.6	159	141 ± 27	_	-	
3ℓ (DY1, Z) S_T (Mid)	89	102 ± 31	441	463 ± 41	_	_	
3ℓ (DY1, no Z) S_T (Low)	126	150 ± 36	3721	2983 ± 418	_	_	
3ℓ (DY1, Z) S_T (Low)	727	815 ± 192	17631	15758 ± 2452	_	-	
Total 4ℓ	37	42 ± 13	32.0	32.1 ± 5.5	124	85 ± 32	
Total 3ℓ	1021	1137 ± 198	22649	19925 ± 2489	1808	2222 ± 255	
Total	1058	1179 ± 198	22681	19957 ± 2489	1932	2307 ± 257	

No significant excess of events observed so far

ℓ: е, μ, т

CMS, arXiv:1204.5341 [hep-ex]

Multileptons: constraints on RPV models

• Gluino vs. squark masses in GMSB RPV

 λ'_{311}

 $\tilde{\nu}_{\tau}$

d

eµ resonance

- Search for an excess in high eµ invariant mass
- Clean signal: look for exactly one isolated **electron** and exactly one isolated **muon** with opposite charge and p_T > 25 GeV

EPJC 71 (2011) 1809

eµ continuum

Similar lepton selection criteria as for eµ resonance

100 200 300 400 500 600 700 800 900 1000 $m_{\widetilde{\tau}}\,[\text{GeV}]$

- m_{eμ} > 100 GeV
- $\Delta \phi_{e\mu} > 3$

10³

10²

σ [fb]

MET < 25 GeV

⁻10⁻³

ு

arXiv:1205.0725 [hep-ex]

ATLAS

Ldt = 2.1 fb

100 200 300 400 500 600 700 800 900 1000

10²

Signal (m = 95 GeV)

Fake Background

500

 $m_{\tilde{\tau}}$ [GeV]

m_{eμ} [GeV]

600

🗮 Total Background

Тор $Z/\gamma^* \rightarrow \tau \tau$

Bilinear RPV

Valle, Hirsch, Porod, Romao, et al

- Bilinear R-parity violating (bRPV) terms in superpotential introduce **neutrino masses and mixings** in an natural way
 - RPV parameters constrained by neutrino measurements: Δm_{atm}², Δm_{sol}², tan²θ_{atm}, tan²θ_{sol}
- bRPV couplings embedded in mSUGRA
 - same cascade decay
 - LSP decays at the end
- Large variety of final states
 most involve leptons and taus
- Features high MET originating mainly from various LSP decays to neutrinos

Bilinear RPV & 1-lepton analysis

- Event selection:
 - exactly one isolated muon with $p_T > 20 \text{ GeV}$
 - veto for events with at least one electron with $p_T > 20$ GeV
 - requiring 3 or 4 jets with loose or tight cuts

	PRD 85 (2012) 012006				
Muon channel					
Signal region	Observed	Fitted background			
3JL	58	64 ± 19			
3JT	11	13.9 ± 4.3			
4JL	50	53 ± 16			
4JT	7	6.0 ± 2.7			

95% CL exclusion limits for mSUGRA bRPV

Searches for long-lived particles

displaced vertices

Long-lived particles in SUSY

- GMSB: NLSP decays to LSP (~G) only via the (small) gravitational coupling
 - $\underline{N}_{mes} = \underline{1}$: non-pointing photons $\widetilde{\chi}_1^0 \longrightarrow \widetilde{G} + \gamma$
 - <u>N_{mes}>1</u>: penetrating sleptons

 $\widetilde{\ell} \xrightarrow{\text{long}} \widetilde{G} + \ell$

- Split SUSY: squarks are heavy, suppressing gluino decays
 - colored heavy particles (R-hadrons)

 $R=\widetilde{g}q\overline{q},\,\widetilde{g}qqq,\,\widetilde{g}g$

- AMSB (or in fine-tuned MSSM):
 - χ_1^{\pm} and χ_1^{0} are mass degenerate
 - long-lived **chargino** (decay on flight \rightarrow kink track)

$$\widetilde{\chi}_1^{\pm} \longrightarrow \widetilde{\chi}_1^0 + \pi^{\pm}$$

SMP	LSP	Scenario	Conditions
$\tilde{\tau}_1$	$\tilde{\chi}_1^0$	MSSM	$\tilde{\tau}_1$ mass (determined by $m^2_{\tilde{\tau}_{L,R}}$, μ , $\tan \beta$, and A_{τ}) close to $\tilde{\chi}^0_1$ mass.
	\tilde{G}	GMSB	Large N, small M, and/or large $\tan \beta$.
		ĝMSB	No detailed phenomenology studies, see [20].
		SUGRA	Supergravity with a gravitino LSP, see [21].
	$ ilde{ au}_1$	MSSM	Small $m_{\tilde{\tau}_{L,R}}$ and/or large $\tan\beta$ and/or very large A_{τ} .
		AMSB	Small m_0 , large $\tan \beta$.
		\tilde{g} MSB	Generic in minimal models.
$\tilde{\ell}_{i1}$	Ĝ	GMSB	$\tilde{\tau}_1$ NLSP (see above). \tilde{e}_1 and $\tilde{\mu}_1$ co-NLSP and also SMP for small $\tan\beta$ and $\mu.$
	$\tilde{\tau}_1$	\tilde{g} MSB	\tilde{e}_1 and $\tilde{\mu}_1$ co-LSP and also SMP when stau mixing small.
$\tilde{\chi}_1^+$	<i>x</i> ₁ ⁰	MSSM	$m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \lesssim m_{\pi^+}$. Very large $M_{1,2} \gtrsim 2 \text{ TeV} \gg \mu $ (Hig- gsino region) or non-universal gaugino masses $M_1 \gtrsim 4M_2$, with the latter condition relaxed to $M_1 \gtrsim M_2$ for $M_2 \ll \mu $. Natural in O-II models, where simultaneously also the \tilde{g} can be long-lived near $\delta_{\text{GS}} = -3$.
		AMSB	$M_1 > M_2$ natural. m_0 not too small. See MSSM above.
\tilde{g}	$\tilde{\chi}_1^0$	MSSM	Very large $m_{\tilde{q}}^2 \gg M_3$, e.g. split SUSY.
	\tilde{G}	GMSB	SUSY GUT extensions [22-24].
	\tilde{g}	MSSM	Very small $M_3 \ll M_{1,2}$, O-II models near $\delta_{\rm GS} = -3$.
		GMSB	SUSY GUT extensions [22-26].
ack)	$\tilde{\chi}_1^0$	MSSM	Non-universal squark and gaugino masses. Small $m_{\tilde{q}}^2$ and $M_3,$ small $\tan\beta,$ large $A_t.$
\tilde{b}_1			Small m_{π}^2 and M_{π} large $\tan \beta$ and/or large $A_{\pi} \gg A_{\pi}$

Fairbairn et al, Phys Rept 438 (2007) 1

V.A. Mitsou IMFP2012

Displaced vertices: analysis

• RPV: LSP decays 4 – 180 mm from the interaction point for couplings $\lambda'_{2ij} \neq 0$

- Search for high-impact-parameter vertices: |d₀| > 2 mm
 - trigger: high-p_T muon
 - □ SM-particle late decays → require high mass & high track multiplicity
 - overlap of high- p_T track with hadronic interaction vertex
 - → veto to vertices reconstructed within regions of high-density material

Displaced vertices: results

- Number of events passing the selected requirements except for the m_{DV} and N_{DVtracks}
- No data events observed in the signal region

707 (2012) 478

PLB

 Upper exclusion limits at 95% CL for different squark and neutralino masses

Summary & outlook

- Supersymmetry (-like) signals have been sought after by the ATLAS and CMS experiments
 - motivated by various models/topologies: strong production, 3rd generation fermions, degeneracies, R-parity violation
 - ... leading to a wide spectrum of signatures: MET + jets + leptons/ photons/b-jets/taus, displaced vertices, resonant peaks, ...
 - both techniques and strategy keep evolving
- No deviation from known SM processes observed so far (5 fb⁻¹ at √s = 7 TeV)
 - → approaching/reaching the 1-TeV scale
- Future: SUSY may be "hidden" in:
 - light stops / sbottoms / staus
 - R-parity violation
 - long-lived (s)particles

V.A. Mitsou IMFP2012

SUSY in view of Higgs (non-)discovery

- If a light SM-like Higgs ~ 125 GeV is discovered
 → fully compatible with SUSY
 - however for BSM to be established, we need to observe
 - deviations of Higgs couplings from their SM values
 - additional heavier non-SM-like Higgs boson(s)
- If not → departure from decoupling limit
 - □ light stop suppresses h → $\gamma\gamma$, WW
 - □ light neutralino leading to invisible Higgs decays
 h → χχ
 (also favoured by DM fits)

R-parity violation and dark matter

- Gravitivo LSP with cosmologically-long lifetime
- Bilinear RPV: neutrino masses are generated in an intrinsically supersymmetric way
- Signal: monochromatic gamma-rays

- v-oscillations
- DM relic density $\Omega_{\chi}h^2$
- γ-ray line searches
 (Fermi, EGRET)

bRPV with gravitino LSP and LHC signatures

If lightest neutralino is the NLSP, a variety of signatures are predicted

- Neutralino can also decay to three fermions
- Neutralino is also long lived
 displaced vertices
- → Many final states to be explored

Restrepo et al, arXiv:1109.0512

350

400

Beyond bRPV: µvSSM

Muñoz, Lopez-Fogliani, Ruiz de Austri et al.

 μ-from-v Supersymmetric Standard Model has been introduced to solve the μ-problem of MSSM while keeping the

bilinear RPV couplings, and the associated connection with neutrino masses

Very rich phenomenology

 many Higgs and neutalinos
 lifetimes longer than in bRPV
 gravitino dark matter also possible

Choi, Lopez-Fogliani, Muñoz, Ruiz de Austri, arXiv:0906.3681 [hep-ph]

Direct sbottom pair production

• Signature: exactly 2 b-jets + $E_T^{miss} \rightarrow$ use flavour tagging

• Interpretations: pheno. model with $Br(\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0) = 1$

Excluding sbottom mass < 380 GeV for neutralino masses up to ~ 100 GeV

Gluino-mediated sbottom production

Signature: 0-lepton + 1 or 2 b-jets + E_T^{miss}

Pheno MSSM model

- Only gluino + sbottom + LSP
- Mass spectrum: $m(\tilde{g}) > m(\tilde{b}_1) > m(\tilde{\chi}_1^0)$

 Exclude m(gluino) < 920 GeV for m(sbottom) up to ~ 800 GeV

 Exclude m(gluino) < 900 GeV for m(neutralino) up to ~ 300 GeV

arXiv:1203.6193 [hep-ex]