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Kinetic Modelling

Atmospheric Pollution Modelling

Pollution in Los Ángeles, Madrid and Beijing.
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Kinetic Modelling

Statistical description

Particles Description: impossible due to their huge number.

Kinetic Description: f (t, x, ξ) represents the number density of particles at time
t in position x with velocity ξ.

Hydrodynamic Description: Continuum mechanics approach based on balance
equations for density, momentum and temperature.
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Kinetic Modelling

Macroscopic Quantities: Moments

Particle density:

ρ(t, x) =

Z
R3

f (t, x, ξ) dξ

Momentum:
J(t, x) = ρU(t, x) =

Z
R3

ξ f (t, x, ξ) dξ

Temperature:

3ρθ(t, x) =

Z
R3
|ξ − U(t, x)|2 f (t, x, ξ) dξ
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Fluid-Particles Interaction

Formation of Aerosols in the atmosphere

Pandis & Seinfeld (1998), Madelaine (1982)
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Fluid-Particles Interaction

Assumptions of the Model

Two phase flow:

[Dense Phase] Fluid: continuum mechanics description in terms of density of
the fluid n(t, x) and velocity field u(t, x).
Let ρF a typical value of the fluid mass per unit volume.
Fluid Equations: Compressible Euler.

[Dispersed Phase] Particles: kinetic description in terms of the number density
of particles f (t, x, ξ) in phase space (x, ξ) to compute velocity fluctuations
around the fluid velocity u(t, x).
Particles are spheres of radius a > 0 with mass given by mP = 4

3 ρPπa3, ρP

being the particle mass per unit volume.
Particles are assumed to follow a kind of Brownian motion:

mP x′′ + F(t, x, x′) = Γ(t).

where Γ(t) is a Wiener process with fixed variance for velocity fluctuations.
Particles Equation: Vlasov-Fokker-Planck.
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Fluid-Particles Interaction

Forces to be considered
Forces F(t, x, x′):

Friction: The fluid produces a friction force on the particles

6πµa
�
u(t, x)− ξ

�
,

with µ > 0 being the dynamic viscosity of the fluid. Accordingly, the force
exerted by the particles on the fluid is given by the sum

6πµa
Z

R3

�
ξ − u(t, x)

�
f dξ.

Gravity+Buoyancy: External forces per unit volume acting on the particles
−mP∇xΦ and on the fluid αρF∇xΦ.
α ∈ R is a dimensionless parameter which measures the ratio of the strength of
the external force on each phase:

Φ(x) = (1− ρF/ρP)gx3 α =
1

1− ρF/ρP

,

by Archimedes rule.
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Fluid-Particles Interaction

Disperse Phase
Vlasov-Fokker-Planck equation:

∂tf + ξ · ∇xf −∇xΦ · ∇ξf =
9µ

2a2ρP

divξ

�
(ξ − u)f +

kθ0

mP

∇ξf
�
,

where k stands for the Boltzmann constant, and θ0 > 0 controls the noise strength.

Fokker-Planck term:

The Fokker-Planck term implies a relaxation in velocity towards equilibrium
densities of the form

ρ(t, x)M(ξ) = ρ(t, x)
�

2π
kθ0

mP

�−3/2

exp
n
−mP |ξ − u(t, x)|2/2kθ0

o
,

with typical Stokes relaxation time given by

TS =
mP

6πµa
=

2ρP a2

9µ
.
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Fluid-Particles Interaction

Final PDE Model

Vlasov-Euler-Fokker-Planck system:

We arrive at the system:

∂tf + ξ · ∇xf −∇xΦ · ∇ξf =
9µ

2a2ρP

divξ

�
(ξ − u)f +

kθ0

mP

∇ξf
�
, (1)

∂tn + divx(nu) = 0, (2)

ρF

�
∂t(nu) + Divx(nu⊗ u) + αn∇xΦ

�
+∇xp(n) = 6πµa

Z
R3

(ξ − u)f dξ. (3)

where k stands for the Boltzmann constant, and θ0 > 0 controls the noise strength
and p(n) is a general pressure law, for instance p(n) = Cγ nγ , γ ≥ 1, Cγ > 0.
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Dimensionless Formulation

DimensionLess PDE Model

DimensionLess Vlasov-Euler-Fokker-Planck system:

∂tf + βξ · ∇xf − η′∇xΦ · ∇ξf =
1
ε
∇ξ ·

��
ξ − 1

β
u
�
f +∇ξf

�
, (4)

∂tn + divx(nu) = 0, (5)

∂t(nu) + Divx(nu⊗ u) +∇xp(n) + η n∇xΦ =
1
ε

ρP

ρF

(J − ρu). (6)

where
ρ(t, x) =

Z
R3

f (t, x, ξ) dξ, J(t, x) = β

Z
R3

ξ f (t, x, ξ) dξ.
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Asymptotic Limits

Dissipation Properties

Entropy Decay:

Assumme the scaling:

ρP

ρF

β2 = 1, η′ = ςβ, with ς = ±1.

Defining the free energies associated respectively to the particles and the fluid as:

FP(t) =

Z
R3

Z
R3

�
f ln(f ) +

ξ2

2
f + ςΦf

�
dξ dx,

FF(t) =

Z
R3

�
n
|u|2

2
+ Π(n) + ηΦn

�
dx,

where Π : R+ −→ R+ is defined by sΠ′′(s) = p′(s). Then, we have the crucial
dissipation:

d
dt

�
FP + FF

�
+

1
ε

Z
R3

Z
R3

��(ξ − β−1u)
p

f + 2∇ξ

p
f
��2 dξ dx ≤ 0.
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Asymptotic Limits

Dissipation Properties 2

Comments:

Entropy Dissipation: This claim helps in understanding the asymptotic regime
ε � 1: we infer that f has essentially a hydrodynamic behavior

f (t, x, ξ) ' ρ(t, x) (2π)−3/2 exp
�
−|ξ − β−1u(t, x)|2/2

�
= ρ(t, x)Mu(t,x)/β(ξ).
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Asymptotic Limits

Bubbling Regime

We set
β =

1√
ε
, |η′| = 1√

ε
,

ρP

ρF

= ε.

meaning that:

Stokes velocity ' Typical velocity of the fluid � Thermal velocity.

The dispersed phase is buoyancy driven while the flow is gravity driven. Here, η′ < 0
and the external forces act in opposite directions on the particles and on the fluid.
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Asymptotic Limits

Flowing Regime

We set
β2 ρP

ρF

= 1, β = |η′| a fixed positive constant

meaning that

Stokes velocity � Typical velocity of the fluid ' Thermal velocity.

As ε → 0 and β is smaller than 1, the two phases are driven by gravity, but with
much more influence on the fluid.
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Diffusion Asymptotics: Bubbling Regime

DimensionLess Bubbling Regime:

∂tf +
1√
ε

(ξ · ∇xf +∇xΦ · ∇ξf ) =
1
ε
∇ξ ·

�
(ξ −

√
εu)f +∇ξf

�
,

∂tn + divx(nu) = 0,

∂t(nu) + Divx(nu⊗ u) +∇xp(n) + ηn∇xΦ = J − ρu.

where

ρ(t, x) =

Z
R3

f (t, x, ξ) dξ, J(t, x) =
1√
ε

Z
R3

ξ f (t, x, ξ) dξ.
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Diffusion Asymptotics: Bubbling Regime

As ε tends to 0, we should have that f (t, x, ξ) ' ρ(t, x)M(ξ).

Hilbert expansion: we plug the ansatz

fε = f (0) +
√

εf (1) + εf (2) + . . .

into the kinetic equation.

DimensionLess Bubbling Regime:

We end up with the limiting system
8>>><
>>>:

∂tρ + divx
�
ρ(u +∇xΦ)−∇xρ

�
= 0,

∂tn + divx(nu) = 0,

∂t(nu) + Divx(nu⊗ u) +∇x(p(n) + ρ) + (ηn− ρ)∇xΦ = 0,
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Hydrodynamic Asymptotics: Flowing Regime

DimensionLess Flowing Regime:

We end up with the limiting system
8>>>>>><
>>>>>>:

∂tρ + divx(ρu) = 0,

∂tn + divx(nu) = 0

∂t
�
(n + β−2ρ)u

�
+ Divx

�
(n + β−2ρ)u⊗ u

�
+∇x

�
ρ + p(n)

�
+ (ηn + ςρ)∇xΦ = 0.
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Bubbling Regime: Coupling of density and fluctuations
The scheme is based on the expansion

fε(t, x, ξ) = ρε(t, x)M(ξ) +
√

εrε(t, x, ξ)

with the "fluctuations" rε bounded in L2 by entropy dissipation.

We rewrite the scaled kinetic equation as

∂tfε + ξ · ∇xrε + (uε +∇xΦ)∇ξrε =
1
ε

Lfε+
1√
ε

M(ξ)Sε(t, x, ξ),

where
Sε(t, x, ξ) = −ξ · ∇xρε − ξ · (uε(t, x) +∇xΦ)ρε,

and the evolution of the remainder obeys

∂trε =
1
ε

Lrε−
1
ε

MSε

− 1√
ε

�
ξ · ∇xrε + (uε +∇xΦ)∇ξrε −M∇x ·

�Z
R3

ξ?rε dξ?

��
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Asymptotic Preserving Kinetic Schemes: Bubbling

Splitting Method 1

Given nk, uk, f k, rk, evaluation of n, u, f , r at time k∆t:

Step 0.- Solve the Euler equations for the fluid density n and velocity u.

1 Particles density is constant for this step:
Z

R3
ξrk dξ − u

Z
R3

f k dξ.

2 Numerical method: Després & Lagoutière 99’-04’ which preserves with
accuracy the shock structure of the hyperbolic system. This defines nk+1

and uk+1.
3 Different stability conditions: We perform Step 0 on a time interval

(k∆th, (k + 1)∆th), and then we make several sub-cycles (Step 1-Step 2)
below on time intervals (k′∆tp, (k′ + 1)∆tp), for some ∆tp < ∆th.
Typically, the space mesh size ∆x being given, we have ∆tp = O(∆x2)
but ∆th = O(∆x).
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Splitting Method 2

Step 1.- Solve the stiff equations

∂tf =
1
ε

Lf , ∂tr =
1
ε

Lr +
1
ε

MS,

where
S = −ξ · ∇xρ + ξ · (uk+1 +∇xΦ)ρ.

Note that ρ =
R

f dξ is not modified by the first equation so that the source
term in the second equation can be treated as constant in time.

Step 2.- Solve the transport part

∂tf + ξ · ∇xr + (uk+1 +∇xΦ) · ∇ξr = 0, ∂tr = 0

Note that the convection term has characteristic speed ξ and not ξ/
√

ε) which
defines f k′+1 and ρk′+1 =

R
f k′+1 dξ.
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Approximation of e∆tL/ε

Solutions of
∂tF =

1
ε

LF + H

can be explicitly computed since the fundamental solution of L is given by

G(t, ξ, ξ?) = Dγ(t) exp
�
−|ξ − γ(t)ξ?|2

2(1− γ(t)2)

�
, γ(t) = e−t , Dγ(t) =

1
(2π(1− γ(t)2))N/2 .

Duhamel formula:

F(t, ξ) =

Z
R3
G
� t − s

ε
, ξ, ξ?

�
F(s, ξ?) dξ? +

Z t

s
G
� t − σ

ε
, ξ, ξ?

�
H(σ, ξ?) dξ? dσ.

Since it involves the quantity e−t/ε with 0 < ε � 1, then

Dγ

Z
R3

exp
�
− |ξ − γξ?|2

2(1− γ2)

�
F(ξ?) dξ? = M(ξ)

�Z
R3

F(ξ?) dξ? + γξ

Z
R3

ξ?F(ξ?) dξ?

�
.
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Approximation of e∆tL/ε

We use this expansion to approximate the Duhamel formula with
H(t, x, ξ) = − 1

ε
M(ξ)S(k′∆t, x, ξ) which is not modified during the time step.

Accordingly, we make appear

1
ε

Z (k′+1)∆t

k′∆t
e(σ−k′∆t)/ε dσ = 1− e−∆t/ε.

Therefore, Step 1 of the method reduces to:
8>><
>>:

f k′+1/2(ξ) = M(ξ)

�
ρk′ + e−∆t/εξ

Z
RN

ξ?f k′ dξ?

�
,

rk′+1/2(ξ) = e−∆t/εM(ξ)

�
ξ

Z
RN

ξ?rk′ dξ?

�
+ (1− e−∆t/ε) M(ξ)Sk′ .
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Properties Numerical Method

Remarks:

Asymptotic Preserving: taking the completely relaxed model, i.e., ε = 0, yields
an approximation scheme of the Smoluchowski-Euler model.

Full discretization: A downwind discretization for −ξ∂xρ in Step 1 and an
upwind discretization for −ξ∂xr in Step 2. For the discretization of
(uk+1 − ∂xΦ)∂ξr in Step 2, we choose a centered discretization in velocity.

Boundary conditions: At the convection Step 2 specular reflections for the
fluxes associated to the convection in space. At the end of Step 1, we impose a
boundary condition on the fluctuations coherent with specular reflection for f .

Well-Balanced: Equilibrium states for the kinetic equation are kept up to
consistency error.
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Improvements of the model: coagulation in size of pollutants, different species,
chemical reactions,...

Use of these models in realistic situations: contacts underway with
mechanicists in Lyon and Lille.
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