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Atmospheric Pollution Modelling

Pollution in Los Angeles, Madrid and Beijing.
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Statistical description

Diffusive scale: X, T Kinetic scale: X, T Atomic scale: x.t

f b

@ Particles Description: impossible due to their huge number.

@ Kinetic Description: f(t, x, £) represents the number density of particles at time
t in position x with velocity &.

@ Hydrodynamic Description: Continuum mechanics approach based on balance
equations for density, momentum and temperature.
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Kinetic Modelling

Macroscopic Quantities: Moments

@ Particle density:

o) = [ fo.x.0)de

@ Momentum:

o) = pU(e0) = [ €fen)de

@ Temperature:

300(0.5) = [ 1= V(P .. de
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Formation of Aerosols in the atmosphere

Sources Fslimation Calégorie de taille des parti-
des émissions | cules
(10'2g/an)

Sources naturelles

Crotite_terrestre ot érosion | 1600 grossos particulos

colienne

Océans (sel) 1300 accumulation et grosses parti-

cules

Voleans 30 grosses particules

Débris biclogiques 50 grosses particules

Sulphates dérivés des gaz | 130 particules trés fines

biogéniques

Sulphates dérivés des gaz vol- | 20 particules trés fines

caniques

Matiéres organiques 60 particules trés fines

Nitrates dérivés des NO, 30 particules trés fines

Total des sources naturelles | 3100

Sources anthropiques

Poussieres indusirielles 00 particules trés fines el grosses

Suie 10 particules trés fines

Sulphates dérivés de SOz 190 particules rés fines

Feux 90 particules trés fines

Nitrates dérivés des NO, 50 grosses particules

Matitres organiques 10 particules trés fines

Total  des sources anthro- | 450

picues

Total des deux sources 3600

Pandis & Seinfeld (1998), Madelaine (1982)
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Assumptions of the Model

Two phase flow:
@ [Dense Phase] Fluid: continuum mechanics description in terms of density of
the fluid n(7, x) and velocity field u(z, x).
Let p, a typical value of the fluid mass per unit volume.

Fluid Equations: Compressible Euler.

@ [Dispersed Phase] Particles: kinetic description in terms of the number density
of particles f(, x, £) in phase space (x, £) to compute velocity fluctuations
around the fluid velocity u(z, x).

Particles are spheres of radius a > 0 with mass given by m, = % P, Py
being the particle mass per unit volume.

Particles are assumed to follow a kind of Brownian motion:
mpx” + F(t,x,x') = T'(t).

where I'(¢) is a Wiener process with fixed variance for velocity fluctuations.

Particles Equation: Vlasov-Fokker-Planck.
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Forces to be considered

Forces F(t,x,x'):
@ Friction: The fluid produces a friction force on the particles
6mpa(u(t,x) — &),

with ¢+ > 0 being the dynamic viscosity of the fluid. Accordingly, the force
exerted by the particles on the fluid is given by the sum

67 pa /W ({ — u(t,x))fdf.
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Fluid-Particles Interaction

Forces to be considered

Forces F(t,x,x'):

@ Friction: The fluid produces a friction force on the particles
6mpa(u(t,x) — &),

with ¢+ > 0 being the dynamic viscosity of the fluid. Accordingly, the force
exerted by the particles on the fluid is given by the sum

671';1[1/ (& — u(t,x))f de.
R3
@ Gravity+Buoyancy: External forces per unit volume acting on the particles
—m, VP and on the fluid ap,. V..
a € Ris a dimensionless parameter which measures the ratio of the strength of
the external force on each phase:
o) = (1 - pe/p)gn a=—,
1 - /)r/ Pe

by Archimedes rule.
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Fluid-Particles Interaction

Disperse Phase

Vlasov-Fokker-Planck equation:

. 9 . kO
Of + & Vof = V- Vef = 5 - dive (€ —w)f +  Vef),

where k stands for the Boltzmann constant, and 6y > 0 controls the noise strength.

v

Fokker-Planck term:

The Fokker-Planck term implies a relaxation in velocity towards equilibrium
densities of the form

Pl OM(E) = plt, ) (zw"i") e {omle — ute, 0 /2000),

my
with typical Stokes relaxation time given by

m,  2p, a

S 6mpa o
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Final PDE Model

Vlasov-Euler-Fokker-Planck system:

We arrive at the system:

Of +€-Vf =V @ Vef = 222"[’) dive ((g —u)f + % VJ), (1)

where k stands for the Boltzmann constant, and 6y > 0 controls the noise strength
and
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Final PDE Model

Vlasov-Euler-Fokker-Planck system:
We arrive at the system:

o

Of +&-Vif =V, & - Vef = 2p
P

dive (1€ —wy + 2 wer), )

On + dive(nu) = 0, 2)

pF(&(nu) + Divy(nu @ u) + omVX(I)) + V.p(n) = 67rua/ (& —u)f d¢. 3)
R3

where k stands for the Boltzmann constant, and 6y > 0 controls the noise strength
and p(n) is a general pressure law, for instance p(n) = C, n”,v > 1, C, > 0.
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DimensionLess PDE Model

DimensionLess Vlasov-Euler-Fokker-Planck system:

0f + BV f V.- Vef = 1Ve - (6~ 5u)f + Vo), @)
O + divy(nu) = 0, 5)
Oy (nu) 4+ Divy(nu ® u) + Vip(n) + nnV,d = é%(l — pu). (6)
where .
o0 = [ s sex) =5 [ erreas
JR3 JR3
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Entropy Decay:

Assumme the scaling:
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Dissipation Properties

Entropy Decay:
Assumme the scaling:

Peg 1, 5 =¢B,  withe =+l
Pr

Defining the free energies associated respectively to the particles and the fluid as:

R = [ [ (mo)+ &+ <o) de
| 2

Fe(t) = /F‘ (HMT + II(n) + 77<I>n> dx,

where T : R — R™ is defined by sI1”(s) = p’(s).
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Dissipation Properties

Entropy Decay:

Assumme the scaling:
Pe 22 o . _
= [ =1, n =qp, with ¢ = £1.
Pr

Defining the free energies associated respectively to the particles and the fluid as:

R = [ [ (mo)+ &+ <o) de
| 2

70 = [ (a5 100 o)

where TT : RT™ — R is defined by sTI” (s) = p’(s). Then, we have the crucial
dissipation:

%(ﬂ +F)+ é /Rz/m (6 — B )T +2Ve/fP dedx < 0.
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Dissipation Properties 2

Comments:

@ Entropy Dissipation: This claim helps in understanding the asymptotic regime
€ < 1: we infer that f has essentially a hydrodynamic behavior

f(fvxv 6) = p(l,x) (27‘—)_3/2 exXp (_‘5 - ﬁ_lu(l‘,x)|2/2> = p(['/x)Mu(t,x)/‘H(f)'
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Bubbling Regime

We set '
In'| = — P —

8= 7
‘ Ve Pr

1
\E ’
meaning that:

Stokes velocity ~ Typical velocity of the fluid < Thermal velocity.
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Bubbling Regime

We set )
l=— =

8= ,
‘ Ve Pr

41,
\E ’
meaning that:

Stokes velocity ~ Typical velocity of the fluid < Thermal velocity.

The dispersed phase is buoyancy driven while the flow is gravity driven. Here, < 0
and the external forces act in opposite directions on the particles and on the fluid.
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Flowing Regime

We set

i %‘ =1, B = |n'| a fixed positive constant
.

meaning that

Stokes velocity < Typical velocity of the fluid ~ Thermal velocity.
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Asymptotic Limits

Flowing Regime

We set

i %‘ =1, B = |n'| a fixed positive constant
.

meaning that

Stokes velocity < Typical velocity of the fluid ~ Thermal velocity.

As e — 0 and (3 is smaller than 1, the two phases are driven by gravity, but with
much more influence on the fluid.
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Diffusion Asymptotics: Bubbling Regime

DimensionLess Bubbling Regime:

Of + —= (6 Vif + V@ - Vef)

NG Ve (6~ VEuf + Vef),

€




cs
[e] Jele}
Asymptotic Systems

Diffusion Asymptotics: Bubbling Regime

DimensionLess Bubbling Regime:

Of + 2 (€ Vf + Vit Vef) = Ve (€ - v/ + V).
On + dive(nu) = 0,
0y(nu) + Divy(nu @ u) + Vip(n) +nnV,® = J — pu.
where

p(tw)z/ﬂ;f(r,x.,f)dg, J(t,x) = /ffrxf
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Diffusion Asymptotics: Bubbling Regime

@ As e tends to 0, we should have that /' (7, x, &) =~ p(z, x)M ().
@ Hilbert expansion: we plug the ansatz
fo=fO + Ve e+

into the kinetic equation.

DimensionLess Bubbling Regime:

We end up with the limiting system
Orp + div, (p(u + V@) — pr) =0,
On + dive(nu) = 0,

Oh(mu) + Div, (i © ) + Va(p(n) + p) + (g1 — )V, ® =0,
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Hydrodynamic Asymptotics: Flowing Regime

DimensionLess Flowing Regime:

We end up with the limiting system
Op + divy(pu) =0,
O + divy(nu) =0

a((n+B7%p) )+Divx(( + B2p)u ® u)
Vi(p+pn) + (mm+cp) V@ = 0.
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Bubbling Regime: Coupling of density and fluctuations

The scheme is based on the expansion
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Bubbling Regime: Coupling of density and fluctuations

The scheme is based on the expansion

fe(t,x,8) = pe(t,)M(§) + Vere(t,x,€)

with the "fluctuations” r. bounded in L? by entropy dissipation.

‘We rewrite the scaled kinetic equation as

1 1
affi + E : v.xrs + (ua + V,\(I))Vfra = :Lf5+$M(§)S€(t7xa 5)7

where
Se(t,x,§) = =& Vipe — &+ (ue(t,x) + VaP)pe,

and the evolution of the remainder obeys

1 1
Oire = —Lre——MS.

b

7 &-Vre + (ue + Vi@)Vere — MV - (/}R3 Ere d&)]
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Given n*, i, f*, *, evaluation of n, u, f, r at time kAt:

Step 0.- Solve the Euler equations for the fluid density n and velocity u.
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@ Particles density is constant for this step:

erfde — u/ Frde.
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Splitting Method 1

Given n*, i, f*, *, evaluation of n, u, f, r at time kAt:
Step 0.- Solve the Euler equations for the fluid density n and velocity u.
@ Particles density is constant for this step:
&rfde—u / Frde.
R3 JR3
© Numerical method: Després & Lagoutiere 99°-04” which preserves with

accuracy the shock structure of the hyperbolic system. This defines n**!
and u*t!,
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Splitting Method 1

Given n*, i, f*, *, evaluation of n, u, f, r at time kAt:
Step 0.- Solve the Euler equations for the fluid density n and velocity u.

@ Particles density is constant for this step:
erfde — u/ Frde.
R3 JR3

© Numerical method: Després & Lagoutiere 99°-04” which preserves with
accuracy the shock structure of the hyperbolic system. This defines n**!
and !,

@ Different stability conditions: We perform Step 0 on a time interval
(kAty, (k + 1)A#), and then we make several sub-cycles (Step 1-Step 2)
below on time intervals (k' At,, (K" 4+ 1)At,), for some Az, < Aty
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Asymptotic Preserving Kinetic Schemes: Bubbling

Splitting Method 1

Given n*, i, f*, *, evaluation of n, u, f, r at time kAt:
Step 0.- Solve the Euler equations for the fluid density n and velocity u.

@ Particles density is constant for this step:
erfde — u/ Frde.
R3 JR3

© Numerical method: Després & Lagoutiere 99°-04” which preserves with
accuracy the shock structure of the hyperbolic system. This defines n**!
and !,

@ Different stability conditions: We perform Step 0 on a time interval
(kAty, (k + 1)A#), and then we make several sub-cycles (Step 1-Step 2)
below on time intervals (k' At,, (K" 4+ 1)At,), for some Az, < Aty
Typically, the space mesh size Ax being given, we have Az, = O(Ax?)

but At = O(AX)
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Splitting Method 2

Step 1.- Solve the stiff equations
1 1 1
of = —-Lf, Or = =Lr+ —MS,
€ € €

where
S=—£-Vp+&- (T +V.D)p.
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Splitting Method 2

Step 1.- Solve the stiff equations

1 1 1
of = —-Lf, Or = =Lr+ —MS,
3 €

€

where
S=—£-Vp+&- (T +V.D)p.

Note that p = f f d€ is not modified by the first equation so that the source
term in the second equation can be treated as constant in time.
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Splitting Method 2

Step 1.- Solve the stiff equations
1 1 1
of = —-Lf, Or = =Lr+ —MS,
€ € €
where
S=—£-Vp+&- (T +V.D)p.

Note that p = f f d€ is not modified by the first equation so that the source
term in the second equation can be treated as constant in time.

Step 2.- Solve the transport part

Of +&-Vr+ (Wt +V,®) Ver =0, Ar=0
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Splitting Method 2

Step 1.- Solve the stiff equations
1 1 1
of = —-Lf, Or = =Lr+ —MS,
€ € €
where
S=—£-Vp+&- (T +V.D)p.

Note that p = f f d€ is not modified by the first equation so that the source
term in the second equation can be treated as constant in time.

Step 2.- Solve the transport part
Of +&-Var+ W +V.®) - Ver=0, 9dr=0

Note that the convection term has characteristic speed £ and not £/+/¢) which
defines /X1 and pF' T = [+ de.
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AtL/e

Approximation of e

Solutions of |
OF =—-LF+H

can be explicitly computed since the fundamental solution of L is given by

_W) ~ 1

g(t7€7€*) = Dv(f) exp ( 2(1 _ 7(;)2) ’Y(l) =€ > DW(I) - W
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AtL/e

Approximation of e

Solutions of |
OF =—-LF+H

can be explicitly computed since the fundamental solution of L is given by

_W) ~ 1

g(t7€7€*) = Dv(f) exp ( 2(1 _ 7(;)2) ’Y(l) =€ > DW(I) - W

Duhamel formula:

r9 = [ ("2 e e)reete + [6(" % 6 o6 de don
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AtL/e

Approximation of e

Solutions of |
OF =—-LF+H

can be explicitly computed since the fundamental solution of L is given by

G(t,€,&x) = Dyy exp (_%)’ W) =e", Dy = W

Duhamel formula:

r9 = [ ("2 e e)reete + [6(" % 6 o6 de don

£

Since it involves the quantity ¢~ /2 with 0 < £ < 1, then

D”/Rf"p ( - %)F(&) dg. =M(¢) (/Rz F(€,) dE, + 7€ /RB €.F(E,) dg*) ,
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AtL/e

Approximation of e

‘We use this expansion to approximate the Duhamel formula with
H(t,x, &) = —LM(&)S(K' At, x, &) which is not modified during the time step.
Accordingly, we make appear

1 (K +1)At ,
g/’ e(cr—k Atr) /e do=1- e—A[/a.
k' At
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AtL/e

Approximation of e

‘We use this expansion to approximate the Duhamel formula with
H(t,x, &) = —LM(&)S(K' At, x, &) which is not modified during the time step.
Accordingly, we make appear

1 (K +1)At ,
g/’ e(cr—k Atr) /e do=1- e—A[/a.
k' At

Therefore, Step 1 of the method reduces to:
e = ME (p“ +e B / &f’ dz*) :
RN

Pne = e (¢ [ e as) + (- e mEs.
J RN
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Properties Numerical Method

Remarks:

@ Asymptotic Preserving: taking the completely relaxed model, i.e., ¢ = 0, yields
an approximation scheme of the Smoluchowski-Euler model.

@ Full discretization: A downwind discretization for —£0,p in Step 1 and an
upwind discretization for —£0,r in Step 2. For the discretization of
(u’”’1 — axq))&gr in Step 2, we choose a centered discretization in velocity.

@ Boundary conditions: At the convection Step 2 specular reflections for the
fluxes associated to the convection in space. At the end of Step 1, we impose a
boundary condition on the fluctuations coherent with specular reflection for f.

@ Well-Balanced: Equilibrium states for the kinetic equation are kept up to
consistency error.
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Conclusions & Perspectives

@ Excellent Asymptotic Preserving Schemes for the simplified coupled
kinetic-fluid model for atmospheric pollutants.

@ Improvements of the model: coagulation in size of pollutants, different species,
chemical reactions,...

@ Use of these models in realistic situations: contacts underway with
mechanicists in Lyon and Lille.
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