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Motivation: An optimal design problem
Let Ω ⊂ R2 be an exterior domain with smooth boundaryS.

Figure 1: Exterior domain with boundaryS
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We consider the two-dimensional Euler system

∂tU +∇ · F = ∂tU + ∂xFx + ∂yFy = 0, enΩ (1)

with U,F defined by

U =


ρ
ρu
ρv
ρE

 , Fx =


ρu

ρu2 + p
ρuv
ρuH

 , Fy =


ρv
ρuv

ρv2 + p
ρvH

 (2)

where

p = (γ − 1)ρ
(

E − 1
2
(u2 + v2)

)
, H = E +

p

ρ
. (3)

The velocity vector field is denoted byv,

v =
(

u
v

)
.

We consider the following boundary condition onS:

v · nS = 0, onS, (4)

wherenS is the exterior unitary normal vector.
System (1) must be completed with some initial conditions

U(x, 0) = U0(x). (5)



Finally we introduce the functional

J(S) =
∫ T

0

∫
S

g(P )ds dt,

whereg(s) is a given smooth function and the set of admissible designsUad.
The optimal design problem is then: FindSmin ∈ Uad such that

J(Smin) = min
S∈Uad

J(S).

In presence of a shockΣ, i.e. a discontinuity of the variablesU in the(t, x) variables, the
Euler system above must be completed with the Rankine-Hugoniot conditions on the shock:

[U ]Σnt
Σ + [(Fx, Fy)]Σ · n

x
Σ = 0, onΣ, (6)

where(nt
Σ,nx

Σ) = nΣ ∈ R × R2 is a normal vector toΣ, and[U ]Σ is the jump across the
shock defined as

[U ]Σ = lim
ε→0

U((x, t) + εnΣ)− lim
ε→0

U((x, t)− εnΣ).

Remark Note that shock may possibly meet the boundaryS
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This problem has been the object of intensive study in aerodynamics since the pioneering
works of A. Jameson (80) and O. Pironneu.

Some difficulties

• Huge optimization problems in aerodynamic applications

• Mesh generation in iterative optimization processes

• Mesh sensitivities. How the functional depends on the mesh

• Presence of shocks

• ...
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An optimal control problem for Burgers equation
We consider the inviscid Burgers equation:{

∂tu + ∂x(u2

2 ) = 0, in R× (0, T ),
u(x, 0) = u0(x), x ∈ R

(7)

Given a targetud ∈ L2(R)) we consider the cost functional to be minimizedJ : L1(R) → R,
defined by

J(u0) =
∫

R
|u(x, T )− ud(x)|2 dx, (8)

whereu(x, t) is the unique entropy solution.
We also introduce the set of admissible initial dataUad ⊂ L1(R).
We consider the inverse design problem: Findu0,min ∈ Uad such that

J(u0,min) = min
u0∈Uad

J(u0). (9)
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Main questions

1. Existence of minimizers.We include conditions on the admissible set to guarantee
compactness of minimizing sequences. We can consider

Uad = {f ∈ L∞, supp(f) ⊂ K, ‖f‖L∞ ≤ C} .

2. Uniqueness.A unique minimizer does not exists in general for such problems. More-
over we can have many local minima.

3. Numerical approximation.

(a) Introduce a suitable discretization for the functionalJ , J∆, the equations, etc.

(b) Solve the discrete optimization problem: Findu0,min
∆ s.t.

J∆(u0,min
∆ ) = min

u0
∆∈U∆

J∆(u0),

4. Convergence of discrete minimizers when∆ → 0 (conservative monotone schemes
satisfying the discrete one-side Lipschitz condition OSLC).
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Discrete problem

Assume that we discretize the Burgers equation using one of the convergent conservative
numerical scheme (Lax-Friedrichs, upwind, etc.) and we take

J∆(u0
∆) =

∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )
2, (10)

whereu0
∆x = {u0

j} andud
∆ = {ud

j} are numerical approximations ofu0(x) andud(x) at the
nodesxj , respectively. For example, we can take

u0
j =

1
∆x

∫ xj+1/2

xj−1/2

u0(x)dx,

wherexj±1/2 = xj ±∆x.
Let us introduce an approximation of the spaceUad, U∆

ad constituted by sequencesu∆ =
{vj}j∈Z for which the function obtained by piecewise constant interpolationu∆, defined by

u∆(x) = uj , xj−1/2 < x < xj+1/2,

satisfiesu∆ ∈ Uad.
Problem: Findu0,min

∆ such that

J∆(u0,min
∆ ) = min

u0
∆∈U∆

ad

J∆(u0
∆). (11)
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Methods to approximate the gradient

• The discrete approach: differentiable schemes.

• The discrete approach: non-differentiable schemes.

• The continuous approach: Internal boundary conditions on the shock.

• The continuous approach: The alternating descent method.
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The discrete approach: Differentiable numerical schemes

Assume that the Burgers equation is approximated by a differentiable conservative numer-
ical scheme

un+1
j = un

j − λ(gn
j+1/2 − gn

j−1/2), j ∈ Z, n = 0, ..., N.

u0
j = uj,0, λ = ∆t/∆x

where

gn
j+1/2 = g(un

j , un
j+1)

and the numerical fluxg(u, v) is differentiable. For example,

gLF (u, v) =
u2 + v2

4
− v − u

2λ
, or gEO(u, v) = u

u + |u|
4

+ v
v − |v|

4

The linearized scheme is well-defined as

δun+1
j = δun

j − λ
(
∂1g

n
j+1/2δu

n
j + ∂2g

n
j+1/2δu

n
j+1 − ∂1g

n
j−1/2δu

n
j−1 − ∂2g

n
j−1/2δu

n
j

)
= 0,

j ∈ Z, n = 0, ..., N.
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The derivative of the cost functional

δJ∆ =
∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )
2, (12)

is given by

δJ∆ = ∆x
∞∑

j=−∞
(uN+1

j − ud
j )δu

N+1
j , (13)

whereδun
j solves the above linearized system. If we introduce the following adjoint system

pn
j = pn+1

j + λ
(
∂1g

n
j+1/2(p

n+1
j+1 − pn+1

j ) + ∂2g
n
j−1/2(p

n+1
j − pn+1

j−1 )
)

,

pN+1
j = (uN+1

j − ud
j ), j ∈ Z, n = 0, ..., N.

it is easy to check that

δJ∆ = ∆x
∑
j∈Z

(uN+1
j − ud

j )δu
N+1
j = ∆x

∑
j∈Z

p0
jδu

0
j .

Thus, the gradient ofJ∆ is given byp0
j .
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Lax-Friedrichs{
un+1

j −
un

j−1+un
j+1

2
∆t + f(un

j+1)−f(un
j−1)

2∆x = 0, n = 0, ..., N,
u0

j = u0,j , j ∈ Z,
(14)

Adjoint:  pn
j −

p
n+1
j+1 +p

n+1
j−1

2
∆t + un

j

pn+1
j−1−pn+1

j+1
2∆x = 0, n = 0, ..., N

pN+1
j = pT

j , j ∈ Z,
(15)

with pT
j = (uN+1

j − ud
j ).
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The discrete approach: Non-differentiable numerical schemes

Assume now that the Burgers equation is approximated by a non-differentiable conserva-
tive numerical scheme

un+1
j = un

j − λ(gn
j+1/2 − gn

j−1/2), j ∈ Z, n = 0, ..., N.

u0
j = uj,0

where

gn
j+1/2 = g(un

j , un
j+1)

and the numerical fluxg(u, v) is non-differentiable. For example,

gUp(u, v) =
1
4
(u2 + v2 − |u + v|(v − u))

In this case non-smooth optimization techniques are necessary.
A proposed linearization (Godlewski-Raviart, 1995),

δg(u, v) =
1
4
((2u + 2v)(δu + δv)− |u + v|(δv − δw))
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The continuous approach in presence of a single shock
Assume thatu(x, t) is a weak entropy solution of Burgers equation with a discontinuity

along a regular curveΣ = {(t, ϕ(t)), t ∈ [0, T ]}, which is Lipschitz continuous outsideΣ. In
particular, it satisfies the Rankine-Hugoniot condition onΣ

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

. (16)

Figure 2: SubdomainsQ− andQ+.
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Then the pair(u, ϕ) satisfies the system
∂tu + ∂x(u2

2 ) = 0, in Q− ∪Q+,
ϕ′(t)[u]ϕ(t) =

[
u2/2

]
ϕ(t)

, t ∈ (0, T ),
ϕ(0) = ϕ0,
u(x, 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.

(17)

Thegeneralized tangent vector(δu, δϕ) satisfies the following linearized system (Bres-
san and Marson, Ulbrich, Godlewski and Raviart, etc.):

∂tδu + ∂x(uδu) = 0, in Q− ∪Q+,
δϕ′(t)[u]ϕ(t) + δϕ(t)

(
ϕ′(t)[ux]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0, T ),

δu(x, 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

(18)

with the initial data(δu0, δϕ0).
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Figure 3: Characteristic lines entering on a shock
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Variation of the functionalJ :

J(u0) =
∫

R
|u(x, T )− ud|2dx

δJ =
∫
{x<ϕ(T )}∪{x>ϕ(T )}

(u(x, T )− ud(x))δu(x, T )−
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

δϕ(T ).

Lemma The Gateaux derivative ofJ can be written as

δJ =
∫
{x<ϕ0}∪{x>ϕ0}

p(x, 0)δu0(x) dx+q(0)[u0]ϕ0δϕ0, (19)

where the adjoint state pair(p, q) satisfies the system

−∂tp− u∂xp = 0, in Q− ∪Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0, T )
q′(t) = 0, in t ∈ (0, T )
p(x, T ) = u(x, T )− ud, in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x,T )−ud)2]

ϕ(T )

[u]ϕ(T )
.

(20)
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Figure 4: Solutionu(x, t) of the Burgers equation with an initial datum having a disconti-
nuity (left) and adjoint solution which takes a constant value in the region occupied by the
characteristics that meet the shock (right).

Numerical approximation of optimal control problems for conservation laws - C. Castro, F. Palacios and E. Zuazua



The new initial datum is (δϕ0 > 0)

u0,new
j =

{
u0

j + εδu0
j , if j < ϕ0 or j > ϕ0 + εδϕ0/∆x,

u0
j + εδu0

j + [u0
j ]ϕ0 , if ϕ0 ≤ j ≤ ϕ0 + εδϕ0/∆x.

The main drawbacks of this approach are the following:

1. At any step of the descent algorithm, a numerical approximation of the position of the
shock is required.

2. The first component in(p(x, 0), q(0)) has two discontinuities which are not at the same
place at the discontinuity ofu0. Thus, an iterative gradient method based on this gra-
dient generates increasingly complex initial data. Numerical experiments confirm that
this actually occurs.

3. A pure displacement of the discontinuity will never be a descent direction computed by
this method.
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The alternating descent method

Let
x− = ϕ(T )− u−(ϕ(T ))T, x+ = ϕ(T )− u+(ϕ(T ))T,

and consider the following subsets ,

Q̂− = {(x, t) ∈ R× (0, T ) such thatx < ϕ(T )− u−(ϕ(T ))t},

Q̂+ = {(x, t) ∈ R× (0, T ) such thatx > ϕ(T )− u+(ϕ(T ))t}.

Figure 5: SubdomainŝQ− andQ̂+



Theorem 1 Assume that we restrict the generalized tangent vectors(δu0, δϕ0) ∈ Tu0 to those
that satisfy,

δϕ0 =

∫ ϕ0

x−
δu0 +

∫ x+

ϕ0 δu0

[u]ϕ0
. (21)

Then, the solution(δu, δϕ) of the linearized system satisfiesδϕ(T ) = 0 and the generalized
Gateaux derivative ofJ in the direction(δu0, δϕ0) can be written as

δJ =
∫
{x<x−}∪{x>x+}

p(x, 0)δu0(x) dx, (22)

wherep satisfies the system{
−∂tp− u∂xp = 0, in Q̂− ∪ Q̂+,
p(x, T ) = u(x, T )− ud, in {x < ϕ(T )} ∪ {x > ϕ(T )}. (23)

Analogously, if we restrict the set of paths inΣu0 to those for which the associated generalized
tangent vectors(δu0, δϕ0) ∈ Tu0 satisfyδu0 = 0, thenδu(x, T ) = 0 and the generalized
Gateaux derivative ofJ in the direction(δu0, δϕ0) can be written as

δJ = −
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·, T )]ϕ(T )
δϕ0. (24)
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Numerical experiments
Experiment 1. We first consider a piecewise constant target profileud given by

ud =
{

1 if x < 0,
0 if x ≥ 0,

(25)

and the timeT = 1. Note that in this case one solution of the optimization problem is obviously
given by

u0,min =
{

1 if x < −1/2,
0 if x ≥ 0.

(26)

This means that the optimal valueu0,min can be attained and the minimum value ofJ in this
case is zero.
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log(J∆) −3 −4 −5 −6 −7
Lax-Friedrichs 14 39 > 1000
Engquist-Osher 26 85 288 > 1000
Roe 18 33 54 114 > 1000
Imposing b.c. 5 6 9 21 > 1000
Alternating descent 3 3 3 Not attained

log(J∆) −3 −4 −5 −6 −7
Lax-Friedrichs 15 49 > 1000
Engquist-Osher 115 673 > 1000
Roe 185 > 1000
Imposing b.c. 5 6 52 440 > 1000
Alternating descent 3 3 3 3 Not attained

Table 1: Experiment 1. Number of iterations needed for a descent algorithm to obtain the
value of log(J) indicated in the upper row, by the different methods presented above. The
upper table corresponds to∆x = 1/20 and the lower one to∆x = 1/80. In both cases
λ = ∆t/∆x = 1/2.
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Figure 6: Experiment 1. Initialization (dashed line) and initial data obtained after 30 iterations
(solid line) with Lax-Friedrichs (upper left) , Engquist-Osher (upper right), Roe (middle left),
the continuous approach imposing a boundary condition on the shock (middle right) and the
generalized tangent vectors decomposition method schemes (lower left). A minimizeru0 of
the continuous functional is given in the lower right figure.
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Figure 7: Experiment 1. Log of the value of the functional versus the number of iterations in
the descent algorithm for the Lax-Friedrichs, Engquist-Osher and Roe schemes, the continuous
approach imposing the internal boundary condition on the shock and the alternating descent
method proposed in this article. The upper figure corresponds to∆x = 1/20 and the lower
one to∆x = 1/80. We see that the last method stabilizes in a few iterations and it is much
more efficient when consider small enoughvalues of∆x in order to be able to resolve the shock
sufficiently well.
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We observe the following:

1. Different numerical approximation and descent methods lead to different solutions.

2. For the first four methods the initial datumu0 we obtain after the iteration process
presents strong oscillations. That is not the case for the alternating descent method.

3. Numerical methods that ignore the presence of the shock (Lax-Friedrichs, Engquist-
Osher and Roe) descend more slowly than those that take into account the sensitivity
with respect to the shock position (by imposing the boundary condition on the shock or
the alternating descent method).

4. For fixed∆x the alternating descent method stabilizes quickly in a few iterations. This
is due to the fact that the descent direction is computed for the continuos system and
not for the discrete one, and therefore∆x needs to be small for that computation to be
valid at the discrete level as well.

5. For smaller values of∆x the only method that remains effective is the alternating de-
scent method. The other methods descent more slowly.

Numerical approximation of optimal control problems for conservation laws - C. Castro, F. Palacios and E. Zuazua



Experiment 2. We consider the same targetud as in the previous experiment but with
different initial data. We see that different initialization functionsu0, with more or less discon-
tinuities, do not alter the efficiency of the alternating descent method. The numerical results
are presented in Figure 8.



Figure 8: Experiment 2. The four upper figures and the lower left one show the initial data ob-
tained once the descent iteration stops (solid) with different initialization functionsu0 (dashed)
with the alternating descent method proposed in this article. In the lower right figure, the target
ud(x) (dashed) and the solutionu(x, T ) (hereT = 1) corresponding to the obtainedu0 are
drawn for the last initialization. The functionu(x, T ) one obtains for the other initializations
is very similar to this one.


