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1. Introduction

– In a bounded region Ω ⊆ R
3 with smooth boundary

∂Ω we consider two different hyperbolic models. One of

them is the system of Maxwell equations and the second

one is a vector wave equation with a pressure term.

– Under suitable geometric conditions on Ω we obtain for

each one of the above models a boundary observability

inequality

– Our main result says that we can collect the above

information together with some new identities and suit-

able relation on the parameters of the models to obtain

“simultaneous” exact boundary control for both systems.

– “Simultaneous” exact control for wave equations, Maxwell

equations and other hyperbolic systems of second order

started with the pioneer work of D. Russell and J.L. Li-

ons in the middle 80’s.

– In the absence of dissipations, almost all authors con-

sidered two models which differed only on the boundary

conditions in order to get “simultaneous” exact controlla-

bility.
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– B. Kapitonov

Two systems of elastic waves (Siberian Math. J., 1994).

Two systems of Maxwell equations (Comp. Appl. Math.,

1996)

– B. Kapitonov + G. Perla Menzala

Two quasi-electrostatic piezoelectric systems (Acta Appl.

Mathematicae, 2006).

– B. Kapitonov + M.A. Raupp

Two piezoelectric systems in multilayered media (Comp.

Appl. Math., 2003).

– There are several articles considering some dissipative

effects on the above models or coupled systems obtaining

exact controllability through Russell’s “controlability via

stabilizability” principle.

Description of the problem

Let u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) be the dis-

placement vector

p = p(x, t) scalar function, pressure

E = E(x, t) = (E1(x, t), E2(x, t), E3(x, t)) be the elec-
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tric field

H = H(x, t) = (H1(x, t), H2(x, t)), H3(x, t)) be the

magnetic field

E0, µ0, ρ and α are strictly positive constants which

represent the permittivity, permeability, scalar density and

elastic property of the material respectively.

Maxwell equations




E0Et = curlH

µ0Ht = −curlE

div E = 0 in Ω × (0, T )

div H = 0

η × E = R(x, t) on ∂Ω × (0, T )

E(x, 0) = E0(x), H(x, 0) = H0(x) in Ω

(1)
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Vector wave equation



ρutt − α∆u + grad p = 0

div u = 0 in Ω × (0, T )

u = S(x, t) on ∂Ω × (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω

(2)

Remark 1

Instead of model (2) we can also treat

ρutt −
3∑

i,j=1

∂

∂xj

(
Aij

∂u

∂xi

)
+ grad p = 0

where Aij are 3×3 matrices given by Aij = [C ij
kh]3×3 where

C ij
kh = (1 − δihδjk)aikjh + δikδjhaihjk

with the symmetry

aijkh = ajikh = akhij.

The isotropic case will be if

aijkh = λδijδkh + α(δjkδjh + δihδjk)

where λ and α are Lame’s constants. In this case the term
3∑

i,j=1

∂

∂xj

(
Aij

∂u

∂xj

)
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reduces to α∆u+ (λ+α)grad(div u). In order to simplify

calculations we chose λ + α = 0 to obtain (2).

The problem

Given initial states (E0, H0), (u0, u1), a time T > 0 and

desired terminal states (ϕ0, ϕ1), (ψ0, ψ1) we want to find a

vector valued function S = S(x, t) such that the solution

{E,H, u, ut} of (1), (2) satisfies

(E,H)|t=T = (ϕ0, ϕ1), (u, ut)|t=T = (ψ0, ψ1)

S serving as a control function for (2) while the function

R = µ0η × (η × St) is a control function for (1).

As we describe below the answer is YES as long as we

assume a geometric condition on Ω and a suitable relation

between E0, µ0, ρ and α.

Remark 2.

1) The techniques we use may allow us to consider vari-

able coeffcients E0(x), µ0(x), ρ(x) and α(x) smooth and

bounded below by strictly positive constants.

2) We do not want to reduce the Maxwell equations (1) to

a second order vector wave equation (which is usually done
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in the isotropic case) because we want eventually to extend

our discussion to the “anisotropic” Maxwell equations. In

this case E0(x) and µ0(x) are 3 × 3 symmetric matrices,

positive defined. It is well known that the above reduction

can not be done in the anisotropic case.

Function spaces

Consider Maxwell’s equations (1) with R ≡ 0. Let

H = [L2(Ω)]3 × [L2(Ω)]3

H(curl,Ω) = {w ∈ [L2(Ω)]3; curl w ∈ [L2(Ω)]3}

with inner products

〈v, w〉H =

∫

Ω

{E0v1 · w1 + µ0v2 · w2} dx

∀ v(v1, v2), w = (w1, w2) ∈ H
and

〈v1, v2〉H(curl,Ω) =

∫

Ω

{v1 · v2 + curl v1 · curl v2} dx.

Finally

H0 = H(curl,Ω) ×H(curl,Ω)

with
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〈v, w〉H0 =

∫

Ω

{E0v1 · w1 + µ0v2 · w2 + curl v1 · curl w1

+curl v2 · curl w2} dx

Consider the closed subspace

H1 = {w = (w1, w2) ∈ H0; η × w1 = 0 on ∂Ω}.

Define

A : D(A) = H1 7→ H
Then, A is skew-selfadjoint. By Stone’s theorem A gener-

ates a one parameter group of unitary operators {U(t)}t∈R

on H. Remains to Prove that the components of U(t)f are

divergente free. Here U(t)f = (w1, w2) = (E,H).

Observe that the condition

div w1 = 0 div w2 = 0

(in the sense of distributions) means to say that w =

(w1, w2) ∈M1 = M⊥ where

M = {(grad ϕ1, grad ϕ2) with ϕ1, ϕ2 ∈ C∞
0 (Ω)}.
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We can prove that U(t) takesM1∩D(A) into itself. There-

fore, problem (1) (with R ≡ 0) is globally well posed for

any initial data in M1 ∩ D(A).

Remark 3. We can check that any element v = (v1, v2) ∈
M1 ∩ D(A) satisfies

η · v2 = 0 on ∂Ω

(in the sense of distributions).

Concerning problem (2) (with S ≡ 0) we can use Galerkin

method to find u and p (defined up to a constant). This is

well known by choosing

V = {ϕ ∈ [C∞
0 (Ω)]3, div ϕ = 0}

V = the closure of V with respect to the norm of [H1
0(Ω)]3

and

W = V ∩ [H2(Ω)]3.

Considering u0 ∈ W , u1 ∈ V we obtain a unique solu-

tion {u, p} of problem (2) with p unique up to an additive

constant.

An alternative would be to use R. Farwing + J. Sohr
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(J. Math. Soc. Japan 46, 1994, 607–643) and write

[L2(Ω)]3 = {v ∈ [C∞
0 (Ω)]3, div v = 0 in Ω}⊕

{grad p ∈ [L2(Ω)]3 with p ∈ L2(Ω)}

=
◦
Y (Ω) ⊕G(Ω)

the closure is in the norm of [L2(Ω)]3.

Let P the continuous projection from [L2(Ω)]3 to
◦
Y (Ω)

and the Stokes operator A = −P∆ with domain

D(A) = {w ∈
◦
Y (Ω) ∩ [H2(Ω)]3; w|∂Ω = 0}

Let

H = {u = (u1, u2), u1 ∈ [H1(Ω)]3, div u1 = 0, u2 ∈
◦
Y (Ω)}

with inner product

〈u,w〉H =

∫

Ω



ρu2 · w2 + α

3∑

j=1

∂u1

∂xj
· ∂w1

∂xj



 dx

whenever u = (u1, u2), w = (w1, w2) ∈ H. In H we define

the operator Ã

Ãu = Ã(u1, u2) = (u2,−ρ−1αAu1)
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with domain

D(Ã) = {u = (u1, u2) ∈ H, u1 ∈ [H2(Ω)]3∩
◦
Y (Ω),

u1 = 0 on ∂Ω, u2 ∈
◦
Y (Ω)}.

Using results in the above article we deduce that Ã gener-

ates a one-parameter group of unitary operators {U(t)}t∈R

on H.

Observation. In the standard way we could obtain more

regular solutions of either problem (1) or (2).

Boundary observability

Let h = h(x) smooth scalar function on Ω

M1 = M1(E,H) = tE + µ0∇h×H

M2 = M2(E,H) = tH − E0∇h× E.

If {E,H} regular solution of problem (1) (with R ≡ 0).

Then

0 = 2M1 · {E0Et − curl H} + 2M2 · {µ0Ht + curl E}

+2E0(∇h · E)div E + 2µ0(∇h ·H)div H.
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Rearranging terms in the identity to obtain

∂A

∂t
= div ~B +D (3)

(Fundamental Identity)

where

A = t(E0|E|2 + µ0|H|2) + 2E0µ0∇h · (H × E)

~B = 2tH × E + ∇h{E0|E|2 + µ0|H|2}
− 2E0E(E · ∇h) − 2µ0H(H · ∇h)

and

D = 2

3∑

i,j=1

∂2h

∂xi∂xj
{E0EiEj + µ0HiHj}

− (∆h− 1){E0|E|2 + µ0|H|2}.
Similarly, let {u, p} regular solution of problem (2) (with
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S ≡ 0) and consider

M3 = M3(u) = tut + (∇h · ∇)u + u

M4 = M4(p) = tp
∂

∂t
+ p(∇h · ∇) + p

then

0 = 2M3 · {ρutt − α∆u + ∇p} + 2M4(p)div u.

Rearranging terms in the above identity we obtain

∂A1

∂t
= div ~G +D1 (4)

(Fundamental Identity)

where

A1 = t{ρ|ut|2 + α

3∑

i=1

| ∂u
∂xi

|2} + 2ρut · [(∇h · ∇)u + u]

~G = (G1, G2, G3) + (−2ρ[tut + (∇h · ∇)u + u])

Gi = 2[tut + (∇h · ∇)u + u] · α ∂u
∂xi

+
∂h

∂xi

(
ρ|ut|2 − α

3∑

k=1

∣∣∣∣
∂u

∂xk

∣∣∣∣
2
)
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and

D1 = (3 − ∆h)ρ|ut|2 + (∆h− 1)α

3∑

k=1

∣∣∣∣
∂u

∂xk

∣∣∣∣
2

− 2α

3∑

i,q=1

∂2h

∂xq∂xi

(
∂u

∂xi
· ∂u
∂xq

)
+ 2p

3∑

i,k=1

∂2h

∂xk∂xi

∂uk
∂xi

.

Integration over Ω × (0, T ) of identity (3) give us

T

∫

Ω

{E0|E|2 + µ0|H|2} dx + 2E0µ0

∫

Ω

∇h · (H × E) dx
∣∣∣
t=T

t=0

=

∫ T

0

∫

∂Ω

J(E,H, h) dΓ dt|
∫ T

0

∫

Ω

Ddxdt

(5)

where

J = 2tη · (H × E) +
∂h

∂η
(E0|E|2 + µ0|H|2)

− 2E0(E · η)(E · ∇h) − 2µ0(H · η)(H · ∇h)

We use the boundary condition of problem (1) (with

R ≡ 0) i.e. η × E = 0 on ∂Ω × (0, T ) and obtain

J =
∂h

∂η
{µ0|H × η|2 − E0(E · η)2}

Next, we want to find appropiate bounds for
∫ T

0

∫
ΩDdxdt.
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Consider the problem



∆Φ = 1 in Ω

∂Φ
∂η =

Vol(Ω)
Area(∂Ω)

on ∂Ω

which admits solution Φ ∈ C2(Ω) ∩ C1(Ω).

Let 0 < δ < 1 and define

h(x) = δΦ(x) +
1

2
|x− x0|2

for some x0 ∈ R
3.

Direct calculations proves that

D = 2δ

3∑

i,j=1

∂2Φ

∂xi∂xj
(E0EiEj+µ0HiHj)−δ(E0|E|2+µ0|H|2)

Let C = C(Φ) be

C(Φ) = max
x∈Ω

i,j=1,2,3

∣∣∣∣∣
∂2Φ(x)

∂xi∂xj

∣∣∣∣∣ .

We can verify that C(Φ) ≥ 1
3 and obtain the bound

|D| ≤ δ{6C(Φ) − 1}{E0|E|2 + µ0|H|2}
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which give us the estimate
∫ T

0

∫

Ω

Ddxdt ≤ δ(6C(Φ) − 1)T

∫

Ω

(E0|E|2 + µ0|H|2) dx.
(6)

Finally we want to get bounds for the term

2E0µ0

∫

Ω
∇h · (H × E) dx

∣∣∣
t=T

t=0

in (5). Let

C1(Φ) = max
x∈Ω

{|∇Φ| + |x− x0|}.

Then we can verify that

2

∫

Ω

E0µ0∇h · (H × E) dx

≤ 4
√
E0µ0C1(Φ)

∫

Ω

{E0|E|2 + µ0|H|2}.
(7)

Hence, we obtain the estimate

[1 − δ(6C(Φ) − 1)](T − T0)

∫

Ω

{E0|E|2 + µ0|H|2} dx

≤
∫ T

0

∫

∂Ω

∂h

∂η
{µ0|H × η|2 − E0(E · η)2} dΓ

(8)

where

T0 =
4
√E0µ0C1(Φ)

1 − δ(6C(Φ) − 1)
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In the same line of ideas, using identity using (4), we find

that the solution of problem (2) (with S ≡ 0) satisfies

[1 − δc̃1](T − T̃0)

∫

Ω

{
ρ|ut|2 + α

3∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
2
}
dx

≤
∫ T

0

∫

∂Ω

∂h

∂η
α

∣∣∣∣η ×
∂u

∂η

∣∣∣∣
2

dΓ dt

(9)

for some c̃1 > 0, T̃0 > 0 and T > T̃0.

To use conveniently inequalities (8) and (9) we will choose

δ = δ1 > 0 such that

1 − δ1(6C(Φ) − 1) > 0, 1 − δ1c̃1 > 0

and a geometric condition on Ω:

Hipothesis

There exists x0 ∈ Ω such that

δ1
Vol(Ω)

Area(∂Ω)
+(x−x0)·η > 0 for all x ∈ ∂Ω.

Observe that since h(x) = δ1Φ(x) + 1
2|x− x0|2 then

∂h

∂η
(x) = δ1

∂Φ

∂η
+ (x− x0) · η = δ1

Vol(Ω)

Area(∂Ω)
+ (x− x0) · η
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for any x ∈ ∂Ω.

From (8) and (9) we deduce

(1 − δ1c2(T − T1)

∫

Ω

{
E0|E|2 + µ0|H|2

+ ρ|ut|2 + α

3∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
2}
dx (10)

≤
∫ T

0

∫

∂Ω

∂h

∂η

{
α
∣∣∣η × ∂u

∂η

∣∣∣
2

+ µ0|H × η|2 − E0(E · η)2
}
dΓ

where c2 = max{6c(Φ) − 1, c̃1} and T1 = max{T0, T̃0}
We need additional identities :

Let {E,H, u, ut} solution of (1), (2). We have

µ0H · {ρutt − α∆u + grad p}
+ ρE−1

0 curl u · {E0Et − curl H}
+ ρut · {µ0Ht + curl E} + (µ0p− αµ0div u)div H

+ (ρE−1
0 − αµ0)curl u · curl H (11)

=
∂

∂t
[ρut · E0H + ρcurl u · E]

− div[ρut × E + αµ0(div u)H

+ αµ0H × curl u− µ0pH ]

Observe that identity (11) represents a conservation law
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for the Maxwell system and the hyperbolic system with

pressure term if ρE−1
0 = αµ0.

Assume ρE−1
0 = αµ0. Integration of identity (11) in

Ω × (0, T ) give us
∫

Ω

{ρut · E0H + ρ curl u · E} dx
∣∣∣
t=T

t=0

=

∫ T

0

∫

∂Ω

[ρ(ut × E) · η (12)

+ αµ0(H × curl u) · η − µ0pH · η] dΓ dt

= −αµ0

∫ T

0

∫

∂Ω

(H × η) · curl u dΓ dt

due to the boundary condition η×E = 0 and the fact that

H · η = 0 on ∂Ω × (0, T ) as we saw in the function space

framework.

We use the identity

|µ0(H × η) − α curl u|2

= µ2
0|H × η|2 − 2αµ0(H × η) · curl u + α2|curl u|2
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in (12) to obtain
∫

Ω

{ρut · E0H + ρ curl u · E} dx
∣∣∣
t=T

t=0

=

∫ T

0

∫

∂Ω

{1

2
|µ0(H × η) − α curl u|2 − 1

2
µ2

0|H × η|2

− α2

2

∣∣∣η × ∂u

∂η

∣∣∣
2}
dΓ dt (13)

because u
∣∣
∂Ω×(0,T )

= 0 tell us that

∂ui
∂xj

= ηj
∂ui
∂η

, curl u = η × ∂u

∂η
on ∂Ω × (0, T )

We multiply identity (13) by a convenient positive con-

stant C3 and add te resulting identity with (10) to obtain

(1 − δ1C2)(T − T1)

∫

Ω

{
E0|E|2 + µ0|H|2 + ρ|ut|2

+ α
3∑

i=1

| ∂u
∂xi

|2
}
dx

+ C3

∫

Ω

{ρut · E0H + ρ curl u · E} dx
∣∣∣
t=T

t=0

≤
∫ T

0

∫

∂Ω

{1

2
C3|µ0(H × η) − α curl u|2

− ∂h

∂η
E0(E · η)2

}
dΓ dt

(14)
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We obtain a lower bound for the left hand side of (14) to

write

(1 − δ1C2)(T − T2)

∫

Ω

{
E0|E|2 + µ0|H|2 + ρ|ut|2

+ α

3∑

i=1

| ∂u
∂xi

|2
}
dx

≤
∫ T

0

∫

∂Ω

{
C4|µ0(H × η) − α curl u|2

− ∂h

∂η
E0(E · η)2

}
dΓ dt

(15)

for some T2 > 0 and T > T2. We can choose T2 =

T1 + c3c4(1 − δ1c2)
−1 where c4 = max{µ0

√
αE0,

E0
2

√
αE0}.

We claim that the term |µ0(H × η) − α curl u| on the

right hand side of (15) equals to
∣∣∣α
∂u

∂η
+ µ0H

∣∣∣ for any (x, t) ∈ ∂Ω × (0, T )

In fact, using the boundary conditions we konw that

curl u = η × ∂u

∂η
= −∂u

∂η
× η. Thus

|µ0H × η − α curl u| =
∣∣∣µ0H × η + α(

∂u

∂η
× η)

∣∣∣.
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Since H · η = 0 and ∂u
∂η · η = 0 on ∂Ω× (0, T ) we have that

∣∣∣
(
µ0H+α

∂u

∂η

)
×η
∣∣∣
2

+
(
µ0H+α

∂u

∂η

)
·η
∣∣∣
2

=
∣∣∣α
∂u

∂η
+µ0H

∣∣∣
2

where we used the identity |v × η|2 + (v · η)2 = |v|2. This

proves our claim. Therefore (15) can be written as

(1 − δ1C2)(T − T2)

∫

Ω

{
E0|E|2 + µ0|H|2 + ρ|ut|2

+α

3∑

i=1

| ∂u
∂xi

|2
}
dx (16)

≤
∫ T

0

∫

∂Ω

{1

2
C3|µ0H + α

∂u

∂η
|2 − ∂h

∂η
E0(E · η)2

}
dΓ dt

We have proved the following

Theorem. Let {E,H, u, ut} be the solution of prob-

lems (1) and (2) with zero boundary conditions. Assume

the geometric condition on Ω given above and ρ = E0µ0α.

If the condition

µ0H + α
∂u

∂η
= 0 on ∂Ω × (0, T )

holds, then, for any T > T2 we will have

E ≡ H ≡ u ≡ 0 in Ω × (0, T )
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It follows by the above theorem that for T > T2 the

expression

||(f, g)||F =
(∫ T

0

∫

∂Ω

∣∣∣µ0H + α
∂u

∂η

∣∣∣
2

dΓdt
)1/2

(17)

defines a norm on the set of initial data f = (ϕ0, ϕ1) and

g = (ψ0, ψ1) of problems (1) and (2) with zero boundary

conditins. We denote by F the Hilbert space obtained by

completing M1 ∩ D(A) ×D(Ã) with respect to the norm

(17). If we denote by

∫

Ω

{
E0|E|2+µ0|H|2+ρ|ut|2+α

3∑

j=1

∣∣∣
∂u

∂xj

∣∣∣
2}
dx = ||(f, g)||2Y .

Then, we have

F ⊆ Y and ||(f, g)||2Y ≤ C||(f, g)||2F .
Let us denote by F ′ the dual space of F with respect to

Y .

We consider P (x, t) ∈ [L2(∂Ω × (0, T ))]3 and

(f, g) ∈ F ′.

Let {E,H} be the solution of problem (1) with boundary
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condition

η × E = µ0η × (η × P ) on ∂Ω × (0, T ) (18)

and {u, ut} be the solution of problem (2) with boundary

condition

ut = P on ∂Ω × (0, T ) (19)

Definition. We say that

(E(·, t), H(·, t), u(·, t), ut(·, t)) ∈ L∞(0, T ;F ′)

is a solution of problems (1) and (2) with boundary condi-

tions (18) and (19) respectively if the identity
〈

(E(t), H(t), u(t), ut(t)), (Ẽ(t), H̃(t), ũ(t), ũt(t))
〉
Y

=
〈

(ϕ0, ϕ1, ψ0, ψ1), (ϕ̃0, ϕ̃1, ψ̃0, ψ̃1)
〉
Y

(20)

+

∫ t

0

∫

∂Ω

P ·
(
µ0H̃ + α

∂ũ

∂η
− p̃η

)
dΓ dτ

holds for any (f̃ , g̃) ∈ F and t ∈ (0, T ).

In (20),
〈

(ϕ0, ϕ1, ψ0, ψ1), (ϕ̃0, ϕ̃1, ψ̃0, ψ̃1)
〉
Y

∫

Ω

{
E0ϕ0 · ϕ̃0 +µ0ϕ1 · ϕ̃0 +α

3∑

i=1

∂ψ0

∂xi
· ∂ψ̃0

∂xi
+ρψ1 · ψ̃1

}
dx
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and (Ẽ, H̃, ũ, ũt) is the solution of problems (1) and (2)

with zero boundary conditions. Also, p̃ denotes the pres-

sure term for the solution ũ (of problem (2)) with zero

boundary conditions

Definition. We say that

(E(t), H(t), u(t), ut(t)) ∈ L∞(0, T ;F ′)

is a solution of problem (1) and (2) with boundary condi-

tions (18) and (19) respectively with zero initial data

at t = T if
〈

(E(t), H(t), u(t), ut(t)), (Ẽ(t), H̃(t), ũ(t), ũt(t))
〉
Y

= −
∫ T

t

∫

∂Ω

P ·
(
µ0H̃ + α

∂ũ

∂η
− p̃η) dΓdτ (21)

for any (f̃ , g̃) ∈ F and t ∈ (0, T ).

Theorem. Assume the geometric assumption on the

geometry of Ω and the relation ρ = E0µ0α. If T > T2

(with T2 as above), then for any initial data (f, g) ∈ F ′ of

problems (1) and (2) there exists a control P = P (x, t) ∈
H1(0, T ; [L2(Ω))]3) such that the corresponding solution of
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problem (2) satisfies

(u, ut)
∣∣
t=T

= (0, 0)

while the vector-valued function

Q = µ0η × (η × Pt)

drives system (1) to the state of rest at the same time T

(E,H)
∣∣
t=T

= (0, 0)

Idea of Proof. We use HUM.

Let (h, q) = (h1, h2, q1, q2) be an (arbitrary) element of F

and (ϕ, ψ, v, vt) the solution of problems (1) and (2) with

zero boundary conditions and initial data at t = 0 equal to

(ϕ, ψ)
∣∣
t=0 = (h1, h2)

(v, vt)
∣∣
t=0 = (q1, q2)

(22)

Let (E,H, u, ut) be the solution of problems (1) and (2)

with boundary conditions (18) and (19) with zero initial

data at t = T > T2 where P is chosen to be

−P = µ0ψ + α
∂v

∂η
on ∂Ω × (0, T ). (23)
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We consider the map

Λ: F 7−→ F ′

given by

Λ(h, q) = Λ(h1, h2, q1, q2) = (E,H, u, ut)
∣∣
t=0

Claim: Λ is an isomorphism from F onto F ′. From (21)

(with t = 0) and (23) it follows

〈
Λ(h1, h2, q1, q2), (h̃1, h̃2, q̃1, q̃2)

〉
Y

=

∫ T

0

∫

∂Ω

−P ·
(
α
∂ũ

∂η
+ µ0H̃ − p̃η

)
dΓdτ (24)

=

∫ T

0

∫

∂Ω

(
µ0ψ + α

∂v

∂η

)
·
(
α
∂ũ

∂η
+ µ0H̃ − p̃η

)
dΓdτ.

Observe that
(
µ0ψ+α∂v∂η

)
· p̃η = 0 on ∂Ω× (0, T ). In fact

using the boundary conditions, we know that

ψ · η = 0 and
∂v

∂η
· η = 0 on ∂Ω × (0, T ).
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Hence, (24) can be written as
〈

Λ(h1, h2, q1, q2), (h̃1, h̃2, q̃1, q̃2)
〉
Y∫ T

0

∫

∂Ω

(
µ0ψ + α

∂v

∂η

)
·
(
α
∂ũ

∂η
+ µ0H̃

)
dΓdτ (25)

=
〈

(h1, h2, q1, q2), (h̃1, h̃2, q̃1, q̃2)
〉
F

for any (h, q) = (h1, h2, q1, q2) ∈ F .

Clearly (25) implies that Λ is an isomorphism from F
onto the whole F ′. Now, we return to problems (1) and

(2) with boundary conditions (18) and (19) respectively.

Suppose that the initial data (f, g) belongs to F ′. Here

f = (f1, f2) = (E0, H0) and g = (g1, g2) = (u0, u1). We

set

(h, q) = Λ−1(f, g)

and

P = −
(
µ0ψ + α

∂v

∂η

)

where (ϕ, ψ, v, vt) is a solution of (1)–(2) with zero bound-

ary conditions and initial conditions at t = 0 as in (22).

Using identity (21) with t = T > T2 we obtain
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〈
(E(T ), H(T ), ut(T ), ut(T )), (Ẽ(T ), H̃(T ), ũ(T ), ũt(T ))

〉
Y

=
〈

Λ(h, q), (f̃ , g̃)
〉
Y
−
〈

(h, q), f̃ , g̃)
〉
F

for any (f̃ , g̃) ∈ F . Using (25) we conclude that the right

hand side of the above identity equals to zero. This means

that (E(T ), H(T ), u(T ), ut(T )) generates the zero func-

tional em F . Now that conclusion of the Theorem follows

because we construct P as in (23) and set

S(x, t) =

∫ t

0
P (x, τ ) dτ + g1(x)

consequently, u = S and η × E = µ0η × (η × St) = R on

∂Ω × (0, T ). In view of the linearity it suffices to consider

controls that reduces both systems to the state of rest.
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