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1. Introduction

— In a bounded region 2 C R? with smooth boundary
0f) we consider two different hyperbolic models. One of

them is the system of Maxwell equations and the second

one 1s a vector wave equation with a pressure term.

— Under suitable geometric conditions on {2 we obtain for

cach one of the above models a boundary observability

inequality

— Our main result says that we can collect the above
information together with some new identities and suit-
able relation on the parameters of the models to obtain

“simultaneous” exact boundary control for both systems.

— “Simultaneous” exact control for wave equations, Maxwell
equations and other hyperbolic systems of second order
started with the pioneer work of D. Russell and J.L. Li-
ons in the middle 80’s.

— In the absence of dissipations, almost all authors con-
sidered two models which differed only on the boundary
conditions in order to get “simultaneous” exact controlla-

bility.



— B. Kapitonov

Two systems of elastic waves (Siberian Math. J., 1994).

Two systems of Maxwell equations (Comp. Appl. Math.,
1996)

— B. Kapitonov + G. Perla Menzala

Two quasi-electrostatic piezoelectric systems (Acta Appl.

Mathematicae, 2006).
— B. Kapitonov + M.A. Raupp

Two piezoelectric systems in multilayered media (Comp.
Appl. Math., 2003).

— There are several articles considering some dissipative
effects on the above models or coupled systems obtaining
exact controllability through Russell’s “controlability via

stabilizability” principle.

Description of the problem

Let w =wu(x,t) = (uy(x,t), us(x, t), ug(x,t)) be the dis-
placement vector

p = p(x,t) scalar function, pressure
E = E(x,t) = (Fy(x,t), Ey(x,t), Bs3(x,t)) be the elec-



tric field

H = H(xz,t) = (Hy(z,t), Hy(x,t)), H3(x,t)) be the
magnetic field

Eo, 1o, p and « are strictly positive constants which
represent the permittivity, permeability, scalar density and

elastic property of the material respectively:.

Maxwell equations

)
Eoly = curlH

oH; = —curlE
div £ =0 in Q x (0,7)

< (1)
div H=0

nx E=R(x,t)on dx (0,T)
\E(SIZ,O) = Fy(x), H(x,0) = Hy(x) in €




Vector wave equation
(

puy — aAu + grad p =0

div u = 0 in O x (0,7)
u=S(x,t) on I x (0,T)

u(x,0) = up(x), ux,0) =wui(x)in Q

\

Remark 1

Instead of model (2) we can also treat

3
putt—z 0 (A au)Jrgradp:O

i
c‘?xj ](9562'

ij=1
where A;; are 3 X 3 matrices given by A;; = [C,Zl] 3x3 Where
CP = (1 — Sindn)@irjn + 6irdintinjn
with the symmetry
Qijkh — Ajikh — Qkhij-
The isotropic case will be if
Qijkh = A0;ijOkn + (0;10,n + 0indjr)

where A and « are Lame’s constants. In this case the term
3

0 ou
> ar, (Vo)

1,y=1
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reduces to aAu + (A + «a)grad(div u). In order to simplify

calculations we chose A+ a = 0 to obtain (2).

The problem

Given initial states (Ey, Hp), (ug, u1), a time 7' > 0 and
desired terminal states (g, 1), (¥, 1) we want to find a

vector valued function S = S(z,t) such that the solution
{E, H,u,u:} of (1), (2) satisfies

(Ev H)‘t=T — (9007 901)7 (’U,, ut>|t=T — <¢07 77b1>

S serving as a control function for (2) while the function
R = pgn x (n x S4) is a control function for (1).

As we describe below the answer is YES as long as we
assume a geometric condition on €2 and a suitable relation

between &, o, p and a.

Remark 2.

1) The techniques we use may allow us to consider vari-

able coeffcients &y(x), po(x), p(x) and a(x) smooth and
bounded below by strictly positive constants.
2) We do not want to reduce the Maxwell equations (1) to

a second order vector wave equation (which is usually done
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in the isotropic case) because we want eventually to extend
our discussion to the “anisotropic” Maxwell equations. In
this case & (x) and po(z) are 3 x 3 symmetric matrices,
positive defined. It is well known that the above reduction

can not be done in the anisotropic case.

Function spaces
Consider Maxwell’s equations (1) with R = 0. Let

H = [LA(Q) x [LA(Q)
H(curl, Q) = {w € [L*(Q)]*; curl w € [L*(Q)]°}
with inner products
(v, W)y = /Q{Sovl - Wy + foVs - We t dx
V v(vy,v9), w = (wy,ws) € H
and
(U1, V2) H(cwl,0) = /Q{vl - v9 + curl vy - curl vy} d.

Finally
Ho = H(curl, Q) x H(curl, )

with



(v, W)y, = /{50?)1 - w1 + ovs - wy + curl vy - curl wy
QO

+curl vy - curl wy} dx

Consider the closed subspace

Hi = {w = (w1, ws) € Hy; 1 x wy =0 on 0}.

Define

A: D(A) = Hy — H
Then, A is skew-selfadjoint. By Stone’s theorem A gener-
ates a one parameter group of unitary operators {U () }scr

on ‘H. Remains to Prove that the components of U(t) f are
divergente free. Here U(t)f = (w1, wq) = (F, H).

Observe that the condition
divw; =0 divwy =0

(in the sense of distributions) means to say that w =
(w1, wy) € My = M+ where

M = {(grad @1, grad @) with 1,95 € ()}



We can prove that U(t) takes M1ND(A) into itself. There-
fore, problem (1) (with R = 0) is globally well posed for
any initial data in My N D(A).

Remark 3. We can check that any element v = (vy, v9) €
M, ND(A) satisfies

n-vo=0 on 0f)
(in the sense of distributions).

Concerning problem (2) (with S = 0) we can use Galerkin
method to find v and p (defined up to a constant). This is

well known by choosing

V ={pe[CQ)°, dive =0}
V = the closure of V with respect to the norm of [Hj(£)]*

and

W =V N[H*Q).

Considering ug € W, u; € V we obtain a unique solu-
tion {u, p} of problem (2) with p unique up to an additive
constant.

An alternative would be to use R. Farwing 4+ J. Sohr
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(J. Math. Soc. Japan 46, 1994, 607-643) and write

[LA(Q)° = {v € [CR(Q)3, dive=0in Q}D
{grad p € [LA(Q)° with p € L*(Q)}
—Y(Q) @ G(Q)
the closure is in the norm of [L?(£2)]°.

Let P the continuous projection from [L*(Q2)]° to Y(Q)
and the Stokes operator A = —IPA with domain

D(A) = {w € V() N [HAQP; w]an = 0}
Let

H={u=(u,u), uy € [H'(Q)]?, divau; =0, up € }O/(Q)}

with inner product

B Oouyp Owy
<u,w>H/Q U9 - w2+ozzax] oz, dx

whenever u = (uy, us), w = (w1, wse) € H. In 'H we define

the operator A

~

Ay = A(uy, us) = (uo, —p_lozAul)

10



with domain

~ O

D(A) = {u = (u1,us) € H, uj € [HH(Q)PNY(L),

up = 0on 99, us € Y(§2)}.

Using results in the above article we deduce that A gener-

ates a one-parameter group of unitary operators {U (t)}teR

on H.

Observation. In the standard way we could obtain more

regular solutions of either problem (1) or (2).

Boundary observability

Let h = h(zx) smooth scalar function on €2

My =M (E,H)=tE+ unwVhx H
M2 = MQ(E,H) =tH _EOVh X F.

If {E, H} regular solution of problem (1) (with R = 0).
Then

0=2M, -{&Fy —curl H} +2Ms - {poH; + cwrl E'}

+2(€0<Vh : E)di\/ E + 2,u0(Vh . H)div H.
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Rearranging terms in the identity to obtain

%—f:dwéﬂ) (3)

(Fundamental Identity)

where

A = t(&|EI* + pol HIP) + 2E0uoVh - (H x E)

B =2tH x FE+ Vh{&E|E? + uo|H|?}
— 280E(E - Vh) — 2ugH(H - Vh)

and
S 92
D=2 EnE:E H:H:
Z;lamzax]{ 0L~ ]—|—/LO 1 ]}

— (AR — D{&|E)? + ol H|*}.

Similarly, let {u, p} regular solution of problem (2) (with
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S = 0) and consider

0

My = My(p) = tpa

+p(Vh-V)+p
then
0=2Mjs - {puy — aAu+ Vp} + 2My(p)div u.

Rearranging terms in the above identity we obtain

DA,
= divG+D 4
5 1 (4)
(Fundamental Identity)
where
3
ou

Ay = t{plw]* + Z ’al'-’Q} + 2puy - [(Vh - V)u + u]

G = (G1,Gs, G3) + (—2p[tus + (Vh - V)u + u])
ou
(9:1:Z

/)

Gi =2tuy + (Vh-V)u+ul - o

( |ut|2—az

13
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and

3
Dy = (3= Ah)plug* + (Ah — )y

2h [ Ou  Ou L 8h Oy
-2 21 Ox,0x; (&m . (‘933) 2P 21 Ox.0x; Ox;

Integration over €2 x (0,T) of identity (3) give us

t=T

T/{80|E’2+MO|H’2} dx+280M0/Vh° (H X E) dx
Q Q

T T
= / / J(E, H, h)dl dt] / / D dzdt
0 o1 0 Q

where

=0

(5)

Oh
J=2tn-(Hx E) + a—n(&)!E\Q + pol H?)

—2&(E - n)(E - Vh) = 2u(H - n)(H - Vh)

We use the boundary condition of problem (1) (with
R=0)ie. nx E=0o0n0d x (0,7) and obtain

Oh
J = 8—77{'LL0|H x n|* — E(E - n)*}

Next, we want to find appropiate bounds for fOT Jo D dzdt.
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Consider the problem

AP =1 1n ()

ob  Vol(Q)
In — Area(00) on 0t

which admits solution ® € C?(Q2) N C1(Q).
Let 0 < 0 < 1 and define

1
hiz) =0d(x) + 5]:1: — :z:o\Q

for some zy € R5.

Direct calculations proves that

O>P
D =20 Z (50EzEj+,Lbon‘Hj>—5(50|E|2+M0‘H‘2)

= (932'@(933]
Let C' = C(P) be
0%z
C(®) = max ) .
i =123

We can verify that C'(®) > £ and obtain the bound

ID| < 6{6C(D) — 1H{E|E]® + pol HI?}

15



which give us the estimate
T
/ /Ddxdt < §(6C/(®) — 1)T/(80|E|2+NO|H\2) iz
0o Jo QO
(6)

Finally we want to get bounds for the term

t=T
25(),&()/ Vh-(H x FE) d:lj‘
0O t=0
n (5). Let
Ci(P) = max{|VP| + |z — x| }.

xel)
Then we can verify that

2/ g()/i()Vh . (H X E) dx
Q

s4¢&mcww/$MEP+mmmy
Q)

Hence, we obtain the estimate

1 - 6(6C(®) — D)(T ﬂJ/&ME|+muﬂbm

/’LQ—MMHxn|—&< )2} dr

(7)

(8)
where
4/ EppinCr(P)
1 —46(6C(P)—1)

16
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In the same line of ideas, using identity using (4), we find

that the solution of problem (2) (with S = 0) satisfies

3 2
[1 —(551]<T—T0>/ {p|ut|2+ozz 0 } dx
= (9)

U
) (9562
/ / 0u
an X —
89

for some ¢; > 0, Ty>0and T > TO.

To use conveniently inequalities (8) and (9) we will choose
0 = 01 > 0 such that

dl’ dt

1—51(60() )>O 1—5151>O

and a geometric condition on {2

Hipothesis

There exists z( € () such that
Vol(?)

o1 Area(0S?)

+(x—x9)m >0 for all x € 0.

Observe that since h(z) = 01 (x) + 3| — x¢|? then

oh oD Vol(€Q)

5'77< )—518—n+(:1:—x0) 77:51Area(8§2) +(x —x9) 7
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for any = € 0f).
From (8) and (9) we deduce
(1 — 5162(T — T1> /

{80|E|2 + o H
Q

+p\ut|2+ozz ‘5332 } (10)

T
< —oznx—‘ +,u0H><772—50E-772}dF
/0 /em@n n | | e
where ¢y = max{6¢(®) — 1,¢&} and Ty = max{Tp, T}

We need additional 1dentities:
Let {E, H, u, us} solution of (1), (2). We have

poH - {pus — aAu + grad p}
+p&; ! curl w - {&E, — curl H}
+ pug - {poHy + curl B} + (pop — apodiv w)div H

+ (pE;t — apg)curl u - curl H (11)
e,
= a[put - EH + peurl u - E]

— divlpus x E + apo(div u)H
+ apgH x curl u — popH|

Observe that identity (11) represents a conservation law

18



for the Maxwell system and the hyperbolic system with
pressure term if p&, ' = auy.

Assume p&; ' = app. Integration of identity (11) in
() x (0,7T) give us

=T
/{put cEoH +pcurlu- E}dx
0 t=0

— /OT /m[p(ut x F)-n (12)

+ apg(H x curl w) - n — popH - n]dl dt

T
:—@HO/ / (H xn)-curl udldt
0 o0

due to the boundary condition n x £ = 0 and the fact that
H-n=0o0n 0 x (0,T) as we saw in the function space

framework.

We use the identity
lpio(H x 1) — a curl ul?

= ps|H x n|* — 200(H x 1) - curl w4 o?|curl ul?

19



in (12) to obtain

(=T
/{put EoH + pcurl u- B} de

t=0

1
[ (St <o) — et = L
0 o002

042 ou |2
— — dl dt 13
" 377‘ } (13)
because u’an(o T = 0 tell us that
Ou, Ouy; 0
8?:;- = nja—l:?, curl u = n x a—:; on 0§2 x (0,T)

We multiply identity (13) by a convenient positive con-
stant C5 and add te resulting identity with (10) to obtain

(1= 8,Co) (T —T) /

LB+ ol H> + plu
Q

t=T
+ C} /{put -EoH 4+ pcurl u- B} dr (14)
0

T
1
S/ / —C3IM0(H><77)—OZCUT1U\2
0 Joo

ah
~ Gy ElE ) } dr dt

t=0

20



We obtain a lower bound for the left hand side of (14) to

write

(1= 6,C)(T — T2> /

Q

T
< / / Culpo(H x 1) — a curl ul?
0 Joo
Oh

~ g6 )2} dr dt
for some T > 0 and T" > T,. We can choose T, =
Ty + csca(1 — 6169) 7! where ¢y = max{ pov/a&y, & Dy aly}.
We claim that the term |uo(H X 1) — « curl u| on the

right hand side of (15) equals to

0
‘ 8U+MOH‘ for any (z,t) € 02 x (0,7T)
n
In fact, using the boundary conditions we konw that
Ju  Ou

curl u =n X — X 1. Thus

on
ou

\oH x n — « curl u| = |,u0[—l><77+oz(677 n)|.
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SinceH-n:Oand@-n:OonE?Qx(O T') we have that

0 ou
‘(,LLQH+04—:7L)X77| (,LLQH—l—Oé—) 77) —‘ n+,LLOH‘

where we used the identity |[v x n|* + (v - n)? = |v|?. This

proves our claim. Therefore (15) can be written as

(1= 6,C)(T — T) /

Q

3
+ozz \3;\2} dz (16)

oh
H + 2_ 7 2\ dr dt
/ /agz R Gl +a 77| 87780( >}

We have proved the following

(B + ol H> + plu

Theorem. Let {E, H,u,u;} be the solution of prob-

lems (1) and (2) with zero boundary conditions. Assume
the geometric condition on {2 given above and p = Eyupa.

If the condition

,uoHJrozg—u—O on 09 x (0,7T)
U

holds, then, for any T' > T5 we will have

F=H=u=0 in Qx(0,7)
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It follows by the above theorem that for T > T3 the

expression

1(F. 9)l1F = //aQ‘MoHJrOé “Farar) (7

defines a norm on the set of initial data f = (vg, 1) and

g = (W, 1) of problems (1) and (2) with zero boundary
conditins. We denote by F the Hilbert space obtained by
completing M; N D(A) x D(A) with respect to the norm
(17). If we denote by

3
ou |2
EoE P+ o H+ plu+a ‘—
/Q{ = Ox;

Then, we have

FCYy and [|(f, 93 < Clf 9%

Let us denote by F’ the dual space of F with respect to
Y.

We consider P(z,t) € [L*(0Q x (0,T))]°  and

(f.9) e F.
Let { E, H} be the solution of problem (1) with boundary

bde = |(F, 9}
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condition
nxFE=pumx(nxP) onddx(0,T) (18)
and {u, u;} be the solution of problem (2) with boundary
condition
up =P on 00 x (0,T) (19)
Definition. We say that
(E(-,t), H(-,t),u(-, t), us(-, 1)) € L=(0,T; F")

is a solution of problems (1) and (2) with boundary condi-

tions (18) and (19) respectively if the identity
<<E<t>, H (), u(t), wi()), (B(E), H(2), a(t), alt)) )
9007901 o, 1), (@0, P1, 1@071;1)>Y (20)

/ / ,uoﬁ + Oé@ — pn) dl’ dr
) on

holds for any (f,§) € F and t € (0,T).
In (20),

<(800, P1, Zp()a ¢1)7 (@Oa 9517 77207 7721>>Y

/Q{gos@o Po+ popr - %00+0428¢0 ' 8% +pir- %}

0,
1=1 g
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and (F, H, @, ;) is the solution of problems (1) and (2)
with zero boundary conditions. Also, p denotes the pres-
sure term for the solution @ (of problem (2)) with zero

boundary conditions

Definition. We say that

(E(t), H(t), ult), u(t)) € L>(0, T; F)

is a solution of problem (1) and (2) with boundary condi-
tions (18) and (19) respectively with zero initial data
at t=71 i

~

((B(E), H®), ult), w(), (B(e), (L), a(t), (t)

Y

/ / ,uoﬁ + oza—u — pn) dl'dr (21)
09 on

for any (f,g) € F and t € (0,T).

Theorem. Assume the geometric assumption on the

geometry of €2 and the relation p = Eypoa. It T > T
(with T3 as above), then for any initial data (f, g) € F' of
problems (1) and (2) there exists a control P = P(x,t) €
H(0,T;[L*(Q))]?) such that the corresponding solution of

25



problem (2) satisfies
(u, uy) }t - = (0,0)

while the vector-valued function

Q = pon X (1 X B
drives system (1) to the state of rest at the same time T

(E,H)|,_,=(0,0)

Idea of Proof. Weuse HUM.
Let (h,q) = (h1, h2, q1, q2) be an (arbitrary) element of F

and (y, 1, v, v;) the solution of problems (1) and (2) with

zero boundary conditions and initial data at ¢ = 0 equal to

90 %D |t 0 h17h2>

22
U , Ut |t 0 — (QI QQ) ( )

Let (E, H,u,u;) be the solution of problems (1) and (2)
with boundary conditions (18) and (19) with zero initial

data at t =T > T5 where P is chosen to be

—P = poyp + ozg—:; on 00 x (0,T). (23)
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We consider the map
A Fr— F/
given by

A(h, q) = A(hi, ho, @1, o) = (E, H7u7ut)‘t:0

Claim: A is an isomorphism from JF onto F’. From (21)
(with £ = 0) and (23) it follows

</\ hi,ha, 1, @2), (ha, ha, i, Q2>>Y

/ / : oz—+,u0H pn) dl'dr (24)
o0

8 ot .
/ / ,uo@b + oz—v : (oz—u + poH — pn) dl'dr.
00 on

Observe that <M0¢ +ag—z) .pn = 0on 90 x (0, T). In fact

using the boundary conditions, we know that

Ov

Y-n=0 and —-n=20
n

on 02 x (0,7T).
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Hence, (24) can be written as

< (h1, hoyq1, @), (h1,h2791792>>y

8@ ou
/ /8(2 uow—FOz— : ( an +,uoH> dl'dr  (25)

hl,hz,ql Q2), (h1,h2,(11 C]2>>J,E
for any (h,q) = (h1, ha, q1,q2) € F.

Clearly (25) implies that A is an isomorphism from F
onto the whole . Now, we return to problems (1) and

(2) with boundary conditions (18) and (19) respectively.
Suppose that the initial data (f, g) belongs to F’. Here

f = (f1, f2) = (Eo, Hy) and g = (g1, 92) = (uo,u1). We

set

(h,q) = A" (f, 9)

and

P=— (o +a5")
on
where (¢, 1, v, v;) is a solution of (1)—(2) with zero bound-
ary conditions and initial conditions at ¢ = 0 as in (22).
Using identity (21) with ¢t =T > T, we obtain
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for any (f, §) € F. Using (25) we conclude that the right
hand side of the above identity equals to zero. This means
that (E(T), H(T),u(T),us(T)) generates the zero func-
tional em F. Now that conclusion of the Theorem follows

because we construct P as in (23) and set

t
S(:L‘,t)—/o P(x,7)dt + g1(x)

consequently, u = S and n X E = pon X (n X S;) = R on
02 x (0,T). In view of the linearity it suffices to consider

controls that reduces both systems to the state of rest.
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