Missing

Transverse

Energy

Missing ET

Calculated from all Calo Cells within $|\eta \text{ cell}| < 5$

- $E_{x(y)Miss} = \Sigma E_{x(y)}$ cells

$$E_{TMiss} = \sqrt{E_{yMiss}^2 + E_{yMiss}^2}$$

- Calorimeter coverage important for resolution

Tracking

Tracking at LHC

- p-p collision @ $\sqrt{s} = 14 \text{ TeV}$
- bunch spacing of 25 ns
- Luminosity
 - low-luminosity: 2*10³³cm⁻²s⁻¹ (first years)
 - high-luminosity: 10³⁴cm⁻²s⁻¹
 - ~20 minimum bias events per bunch crossing
 - ~1000 charged tracks per event

Radius:2cm10cm25cm60cmNTracks/(cm2*25ns)10.01.00.100.01

 $H \rightarrow bb event$ @ high luminosity

Tracker Requirements

- Efficient & robust Pattern Recognition algorithm
 - Fine granularity to resolve nearby tracks
 - Fast response time to resolve bunch crossings
- Ability to reconstruct narrow heavy object

 1~2% p_t resolution at ~ 100 GeV
- Ability to operate in a crowded environment
 Nch/(cm²*25ns) = 1.0 at 10 cm from PV
- Ability to tag b/τ through secondary vertex

 Good impact parameter resolution
- Reconstruction efficiency
 - 95% for hadronic isolated high p_t tracks
 - 90% for high p_t tracks inside jets

ATLAS Inner Detector

ATLAS Inner Detector ID inside 2T solenoid field Tracking based on many points Precision Tracking:

- Pixel detector (2-3 points)
- Semiconductor Tracker -SCT (4 points)

Continuous Tracking: (for pattern recognition & *e* id)

 Transition Radiation Tracker – TRT (36 points)

ID performance

Muons

Muon System

Muon measurement

Traversing Atlas a μ is detected in

• 2 high precision tracking systems: Inner Detector and μ System

Muon Performance

- Muon Spectrometer resolution dominates for P_T > 100 GeV/c
- Resolution fairly constant over whole eta range
- Coverage $|\eta| < 2.7$

Fake rate increases at high luminosity to $\sim 5\%$

Tau Lepton

τ Decays

- τ decay modes
 - Leptonical decay modes
 - $\tau \rightarrow v_{\tau} + v_{e} + e$
 - $\tau \rightarrow \nu_{\tau} + \nu_{\mu} + \mu$
 - Hadronical decay modes
- 1 prong • $\tau \rightarrow \nu_{\tau} + \pi^{\pm}$ • $\tau \rightarrow \nu_{\tau} + \pi^{\pm} + \pi^{0}$ 77% • $\tau \rightarrow \nu_{\tau} + \pi^{\pm} + \pi^{0} + \pi^{0}$ • $\tau \rightarrow \nu_{\tau} + \pi^{\pm} + \pi^{0} + \pi^{0} + \pi^{0}$ • $\tau \rightarrow \nu_{\tau} + K^{\pm} + \nu\pi^{0}$ • $\tau \rightarrow \nu_{\tau} + K^{\pm} + \nu\pi^{0}$ • $\tau \rightarrow \nu_{\tau} + K^{\pm} + \nu\pi^{0}$

23% • $\tau \rightarrow \nu_{\tau} + 3 \pi^{\pm} + \nu \pi^{0}$

(17.4%)
(17.8%)

How to identify them? 1 track, impact parameter (11.0%) (25.4%)shower shape, (10.8%)energy sharing (1.4%)3 tracks, impact parameter (1.6%)secondary vertex shower shape, (15.2%)energy sharing

τ identification Shower shape, N_{strip}, Charge, N_{track}, Impact parameter, E_T/p_T(1sttrack)

τ id : efficiency vs Background rejection

b-quark jet tagging

Reconstructed primary vertex low luminosity pile-up

<u>signal:</u> WH(120,400)-> bb,uu ttH-> bb <u>background:</u> ttjj -> b l v b jjjj

b-tagging performance is limited by physics:

gluon splitting and occasional coincidence between light jet and b-quark directions.

Summary of particle identification

- Good identification capability of detectors

 - $\epsilon_{\tau} \sim 50\% R_{j} \sim 200 \epsilon_{\tau} \sim 60\% R_{j} \sim 60$ **
 - $\epsilon_b \sim 50\% R_u \sim 320 \epsilon_b \sim 60\% R_u \sim 160 **$
 - $\epsilon_{\mu} \sim 90\%$ fakes <<% ****
- Always some trade-off between efficiency and rejection (except muons)
- Every analysis has its optimum "working point" depending on the background

Is that all you need?

• Do not forget, you have to trigger on the interesting events!!!

• Otherwize, you will only keep QCD background

Physics and Trigger

• High p_T Physics

Production of heavy objects may be detected via one or more of the following signatures:

One or more isolated, high- p_T charged leptons

Large missing E_T (from neutrinos, dark matter candidates)

High multiplicity of large p_T jets

Isolated high-pT photons

Copious b production relative to QCD

Inclusive Selection Signatures

- To select an extremely broad spectrum of "expected" and "unexpected" Physics signals (hopefully!).
- The selection of Physics signals requires the identification of **objects**

that can be **distinguished** from the high particle density environment.

Object	Examples of physics coverage			Nomenclature
Electrons	Higgs (SM, MSSM), extra dimension	e25i, 2e15i		
Photons	Higgs (SM, MSSM), extra dimensions, SUSY			γ 60i, 2 γ <mark>20i</mark>
Muons	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W/Z, top			μ 20i, 2 μ 10
Jets	SUSY, compositeness, resonances			j360, 3j150, 4j100
Jet+missing E _T	SUSY, leptoquarks, "large" extra dimensions			j60 + xE60
Tau+missing E _T	Extended Higgs models (e.g. MSSM), SUSY			τ 30 + xE40
also inclusive missingET, SumET, SumET_jet			& many prescaled and mixed triggers	

The list must be non-biasing, flexible, include some redundancy,

extendable, to account for the "unexpected".

Region of Interest (RoI) Mechanism

Hardware

40 Mhz

- LVL1 triggers on high p_T objects
- calorimeter cells and muon chambers to find e/γ,τ,jet,μ candidates above thresholds
- identifies Regions of Interest
- fixed latency 2.5 μs

Software

LVL2 uses Regions of Interest

- local data acces, reconstruction & analysis
- sub-detector matching of RoI data
- produces LVL2 result
- average latency ~10 ms

Software

2 khz

Event Filter

- can be "seeded" by LVL2 result
- potential full event access,
- offline-like Algorithms O(1 s) latency

LVL1 Trigger Rates Illustrative menu

Selection	2*10 ³³ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹
MU20 (20)	0.8	4.0
2MU6	0.2	1.0
EM25I (30)	12.0	22.0
2EM15I (20)	4.0	5.0
J 200 (290)	0.2	0.2
3 J90 (130)	0.2	0.2
4J 65 (90)	0.2	0.2
J60 + xE60 (100+100)	0.4	0.5
TAU25 + xE30 (60+60)	2.0	1.0
MU10 + EM15I	0,1	0.4
Others (pre-scales, calibration,)	5.0	5.0
Total	~ 25	~ 40

• Rates given in kHz

No safety factor included!

 \rightarrow E_T values imply 95% efficiency w.r.t. to asymptotic value

LVL1 rate is dominated by candidate electromagnetic clusters: 78% of physics triggers

Inclusive High Level Trigger Event Selection

Selection 2x10³³ cm⁻²s⁻¹ Rates (Hz) e25i, 2e15i Electron ~40 γ60i, 2γ20i ~40 Photon μ20ί, 2μ10 Muon ~40 Jets j400, 3j165, 4j110 ~25 Jet & E_T^{miss} j70 + xE70 ~20 tau & E_T^{miss} $\tau 35 + xE45$ ~5 $2\mu 6$ with m_B/m_{J/w} **B**-physics ~10 pre-scales, calibration, ... Others ~20 Total ~200

Current global understanding of trigger rates

Summary

- Detectors have been built following the requirements of LHC physics
- A lot of effort went into R&D, test beam, simulation
- Still, it will not be easy to get the detector to work at their nominal performance levels
- In the next lectures we will see examples of physics channels that rely on the properties that were shown: resolution, efficiency, rejection
- It will not be enough to try to get the detector to work as well as possible, one needs also to quantify resolution, reconstruction efficiency and trigger efficiciencies
 - \rightarrow to calculate cross-sections, to substract backgrounds, etc...
- It will take a while untill the detector is at its best and fully understood

Back-up slidesCross sections @ LHC and Tevatron

Tevatron	ratio	LHC	Process
		~ few mb	>20 GeV Jet
10 nb	1/2000	~20 μb	>100 GeV Jet
		~ 200 nb	> 250 GeV Jet
~ 1 nb	1/10	~ 10 nb	$\mathbf{W} \rightarrow \ell v$
	1/10	~ 1.5 nb	Z→ℓℓ
Few pb	1/500	~ 1 nb	ttbar
0.1 pb	1/200	~ 20 pb	Higgs(100GeV)
-		~ 20 pb	Gluino(500 GeV)

0.001 Hz for $L = 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ 1 Hz for $L = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

LHC phenomenology – problem I

Simple numerology TEVATRON L=10³¹cm⁻²s⁻¹ 10³²cm⁻²s⁻¹

L=10³³cm⁻²s⁻¹ 10³⁴cm⁻²s⁻¹

One year (30%)= 10⁷s

Calculate integrated luminosity in one year

Event rates for cross-section σ = 1nb

LHC phenomenology – problem I

Simple nu							
	VAIRUN	LHC					
L=10 ³¹ cm ⁻² s	⁻¹ 10 ³² cm ⁻² s ⁻¹	L=10 ³³ cm ⁻	² s ⁻¹ 10 ³⁴ cm ⁻² s ⁻¹				
One year (30%)= 10⁷s							
1	$1 \text{ barn} = 10^{-24} \text{ cm}^2$	1 pb = 10 ⁻¹² barn	L fb = 10 ⁻¹⁵ barn				
		1 pb ⁻¹ = 10 ³⁶ cm ⁻²	1 fb ⁻¹ = 10 ³⁹ cm ⁻²				
Integrated luminosity in one year:							
100 pb ⁻¹	1 fb ⁻¹	10 fb ⁻¹	100 fb ⁻¹				
Event rates:	σ = 1nb						
0.01 Hz	0.1 Hz	1 Hz	10 Hz				
Event collected in one year:							
10° events	10° events	10' event	s 10° events				

LHC phenomenology – problem II

QCD as a background for SM Higgs searches:

- Higgs production cross-section dominated by gluon-gluon fusion: gg \rightarrow H $\,\sigma H(100GeV){\sim}20pb$
- Light SM Higgs Br(H \rightarrow bb) ~ 40%
- QCD cross-section for jets with pT>20GeV is 10⁸ x Higgs production cross-section
- pT jets from H decays >~ 20 GeV
- Jet rejection in b-tagging ε_b~50% R_j~320

Se puede observar $H \rightarrow bb$?

LHC phenomenology – problem II

QCD as a background for searches:

- Higgs production cross-section dominated by gluon-gluon fusion: gg \rightarrow H: $\sigma H(100GeV){\sim}20pb$
- Light SM Higgs $Br(H \rightarrow bb) \sim 40\%$
- QCD cross-section for jets with pT>20GeV is 10⁸ x Higgs production cross-section
- pT jets from H decays >~ 20 GeV
- Jet rejection in b-tagging $\varepsilon_b \sim 50\%$ R_j ~ 320

Se puede observar $H \rightarrow bb$?

- identify 2 b-jets: rejection factor $(1/R_i)^2 \sim 10^{-5}$
- branching fraction for $H \rightarrow bb$ is ~ 40% ~ 0.4
- efficiency for identifying 2 b-jets ($\sim 50\%$)² ~ 0.25

\Rightarrow S/B ~ BRxEff(b-tagging)² / (q/g jet rejection)²

 \Rightarrow S/B ~ (0.4 X 0.25) / (10⁸ x 10⁻⁵) ~ 10⁻⁴

LHC phenomenology – problem II

QCD as a background for searches:

- Higgs production cross-section dominated by gluon-gluon fusion: gg \rightarrow H : $\sigma H(150GeV){\sim}10pb$
- one year at L=10³³cm⁻²s⁻¹ \rightarrow 10⁵ Higgs produced
- 10⁴bb decays tagged 10⁸ background jets

Significance ~ 1 to reach 5, needs factor 25 in statistics!

And what do you trigger on ?????