Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

Testing the Standard Model

Gauge boson masses and couplings
 The Used body

The Higgs boson

Arcadi Santamaria (Arcadi.Santamaria@uv.es), 2005

The line-shape of the Z

Close to the Z peak the cross section for $e^+e^- \rightarrow f\bar{f}$ is

Universitat

de València Dept. de Física Teòrica IFIC (UV-CSIC)

completely dominated by the resonance, photon exchange diagrams and box diagrams can be neglected.

$$\sigma^0(e^+e^- \to f\bar{f}) \approx \frac{12\pi\Gamma_e\Gamma_f}{m_Z^2} \frac{s}{(s-m_Z^2)^2 + s^2\,\Gamma_Z^2/m_Z^2}$$

where $\Gamma_f, \Gamma_e, \Gamma_Z$ include the appropriate radiative corrections. Including ISR as commented before one obtains

$$\sigma_{ISR}(s) \approx \left(1 + \frac{3}{4}\beta\right) \left(\frac{(s - m_Z^2)^2 + s^2 \Gamma_Z^2 / m_Z^2}{s^2}\right)^{\beta/2} \sigma^0(s)$$

with $\beta = rac{4lpha}{\pi} \ln rac{m_Z}{m_e}$. This amounts to 26% on the peak.

Arcadi Santamaria (Arcadi.Santamaria@uv.es), 2005

The Standard Model of Electroweak Interactions, Taller de Altas Energías, Benasque, 2005 – p.2/25

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

LEP gives:

Decay widths of gauge bosons

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

The decay widths of the weak gauge bosons can be easily computed:

$$\Gamma\left(Z \to \bar{f}f\right) = \frac{\hat{\alpha}}{12s_Z^2 c_Z^2} C_f\left(|v_f|^2 + |a_f|^2\right)$$

 C_f takes into account the color of quarks, QCD corrections and final state QED corrections

$$C_f = \begin{cases} \delta_{f\text{QED}} & \text{leptons} \\ 3\left(1 + \alpha_s(m_Z)/\pi + \cdots\right)\delta_{f\text{QED}} & \text{quarks} \end{cases}$$

 $\delta_{fQED} = 1 + Q_f^2 3\alpha/(4\pi)$ and v_f and a_f are the tree-level neutral-current couplings written in terms of s_Z . For the *b*-quark additional corrections needed. Similar expressions obtained for the *W* decay widths

Arcadi Santamaria (Arcadi.Santamaria@uv.es), 2005

Asymmetries

Dept. de Física Teòrica IFIC (UV-CSIC)

Universitat

de València

Since parity violation comes comes from the axial-vector couplings it is customary to define the combination of the vector and axial couplings of the fermions as

$$\mathcal{A}_f = \frac{2v_f a_f}{v_f^2 + a_f^2}$$

In $e^+e^- \rightarrow f^+f^-$ collisions one can define the forward-backward asymmetry

$$\mathcal{A}_{FB} \equiv \frac{N_F - N_B}{N_F + N_B}$$

with N_F (N_B) denote the number of f emerging in the **forward (backward)** directions.

Universitat de València Dept. de Física Teòrica

IFIC (UV-CSIC)

At the Z pole, it is given by

$$\mathcal{A}_{FB}^{0\,,\,f} = \frac{3}{4}\mathcal{A}_e\mathcal{A}_f$$

The measurement of $\mathcal{A}_{FB}^{0,f}$ for charged leptons, and c and b quarks give us information only on the product of A_e and A_f . On the other hand, the measurement of the τ lepton polarization is able to determine the values of A_e and A_{τ}

separately. The longitudinal τ polarization is defined as

$$\mathcal{P}_{\tau} \equiv rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

Dept. de Física Teòrica IFIC (UV-CSIC)

where $\sigma_{R(L)}$ is the cross section for tau-lepton pair production of a right (left) handed τ^- . At the Z pole, \mathcal{P}_{τ} can be written in terms of scattering (e^-, τ^-) angle θ as,

$$\mathcal{P}_{\tau} = -\frac{\mathcal{A}_{\tau}(1 + \cos^2 \theta) + 2\mathcal{A}_e \cos \theta}{1 + \cos^2 \theta + 2\mathcal{A}_e \mathcal{A}_{\tau} \cos \theta}$$

Another interesting asymmetry that can be measured by using polarized beams (in SLD) is the left-right cross section asymmetry,

$$\mathcal{A}_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\mathcal{P}_e$$

where $\sigma_{L(R)}$ is the cross section for (left-) right-handed incident electron with the positron kept unpolarized.

The Global Fit

Universitat de València Dept. de Física Teòrica IFIC (UV-CSIC)

Observables can be expressed in terms of a few parameters G_F , $\hat{\alpha}(m_Z)$, m_Z , m_t , m_H , $\alpha_s(m_Z)$. G_F well known from muon decay. The hadronic contributions to $\hat{\alpha}(m_Z)$ are not so well known and one leaves them also free in the global fit. Thus

$$\chi^2(\text{parameters}) = \sum_i \left(\frac{\mathcal{O}_{\text{th}}^i(\text{parameters}) - \mathcal{O}_{\text{exp}}^i}{\Delta \mathcal{O}^i}\right)^2$$

by minimizing χ^2 one determines the parameters and gives predictions for the rest of the observables which can be compared back with measured values using the "Pull"

$$Pull_{i} = \frac{\mathcal{O}_{th}^{i}(fitted - parameters) - \mathcal{O}_{exp}^{i}}{\Delta \mathcal{O}^{i}}$$

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

To be compared with the recent measurement of m_t at Fermilab

 $172.7\pm2.9\,\mathrm{GeV}$

Number of Neutrino Species

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

We can extract information on the number of light neutrino species by assuming that they are the only particles responsible for the invisible width, i.e. $\Gamma_{inv} = N_{\nu}\Gamma_{\nu}$. The LEP data gives the ratio of the invisible and leptonic Z partial widths, $\Gamma_{inv}/\Gamma_{\ell} = 5.941 \pm 0.016$ and the SM predicts $(\Gamma_{\nu}/\Gamma_{\ell})_{SM} = 1.9912 \pm 0.0008$. Γ_{ℓ} cancels out and then

 $N_{\nu} = 2.984 \pm 0.008$

 N_{ν} is the number of neutrino flavors that are accessible kinematically to the Z. This result indicates that there exist only three families of fermions. If we assume $N_{\nu} = 3$ we can put bounds on additional contributions to $\Gamma_{\rm inv}$.

 $\Delta \Gamma_{\rm inv} = -2.7 \pm 1.7 \,\mathrm{MeV} \rightarrow \Delta \Gamma_{\rm inv} < 2 \,\mathrm{MeV} \quad 95\% \,\mathrm{CL}$

The couplings of leptons and universal to Fisica Teorice

The partial Z widths in the different lepton flavors together with the asymmetries allows for a determination of all lepton neutral-current couplings, $v_{\ell} \equiv g_{V\ell}$ and $a_{\ell} \equiv g_{A\ell}$. The values of $g_{V\ell}$ and $g_{A\ell}$ can be plotted for $\ell = e$, μ , τ .

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

The couplings of heavy quarks

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

top-quark, W, and Higgs masses

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

10³

LEP2 and the non-Abelian couplings

Universitat de València Dept. de Física Teòrica

IFIC (UV<u>-CSIC)</u>

The unitarity problems of the IVB and the need for non-Abelian couplings were one of the main points that triggered the development of the SM. These have been tested at LEP2

The Higgs Couplings

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

also couples

orders with

	Intensity	Coupling
The Higgs also cou at higher orders other gauge bosons $H\gamma\gamma$, $HZ\gamma$, Hgg	$\begin{array}{c} M_{f}/v \\ 2M_{W}^{2}/v \\ M_{Z}^{2}/v \\ M_{Z}^{2}/v \\ M_{W}^{2}/v^{2} \\ M_{Z}^{2}/2v^{2} \\ M_{H}^{2}/2v \\ M_{H}^{2}/2v \\ M_{H}^{2}/8v^{2} \end{array}$	$Hf\bar{f}$ HW^+W^- HZ^0Z^0 HHW^+W^- HHZ^0Z^0 HHH $HHHH$
	H/OU	

Higgs coupling proportional to particle masses:

Produced in association with heavy particles **Decay** into the **heaviest** accessible **particles**

Direct searches and global fit

Universitat de València Dept. de Física Teòrica

IFIC (UV-CSIC)

 $114 < M_H < 285 \,\mathrm{GeV} - 95\% \,\mathrm{CL}$

Arcadi Santamaria (Arcadi.Santamaria@uv.es), 2005

Unitarity and perturbativity bounds

de València Dept. de Física Teòrica IFIC (UV-CSIC)

Universitat

Decay widths of the Higgs into gauge bosons grow like the Higgs mass

$$\Gamma(H \to W^+ W^-) = \frac{G_F m_H^3}{8\pi\sqrt{2}}, \quad \Gamma(H \to Z Z) = \frac{G_F m_H^3}{16\pi\sqrt{2}}$$

Requiring $\Gamma_{tot}(H) \leq m_H$ gives

 $m_H \le 1.6 \,\mathrm{TeV}$

Requiring that tree-level unitarity is not violated in $W^+W^- \rightarrow W^+W^-$ leads to a slightly better bound

 $m_H \leq 1.2 \,\mathrm{TeV}$

These are not strict bounds, just say that for larger m_H one should not trust perturbation theory.

Triviality

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

The λ coupling in the scalar potential grows with energy

$$\frac{d\lambda}{d\ln q^2} = \frac{3\lambda^2}{4\pi^2} + \cdots$$

then, λ diverges at some scale Λ , unless it is strictly zero. Taking $\lambda(\Lambda) = \infty$ (the theory only makes sense up to $q^2 \sim \Lambda^2$) one finds

$$\lambda(q^2) = \frac{4\pi^2}{3\log(\Lambda^2/q^2)} \qquad m_H^2 = 2\lambda(v^2)v^2 \approx \frac{4\pi^2}{3\log(\Lambda^2/v^2)}$$

Since Λ should be larger than m_H one finds

$$m_H \le \frac{4\pi^2}{3\sqrt{2}G_F \log(m_H^2/v^2)} \approx 850 \,\mathrm{GeV}$$

Stability of the Higgs Potential

Radiative corrections modify the shape of the Higgs potential and could destabilize it. Requiring this does not happen gives a lower bounds on the Higgs mass (at one loop).

 $m_H > 100 \,\mathrm{GeV}$ (Stability) $m_H < 850 \,\mathrm{GeV}$ (Triviality)

Universitat

de València Dept. de Física Teòrica IFIC (UV-CSIC)

The Decay Modes of the Higgs Boson de València Dept. de Física Teòrica

IFIC (UV-CSIC)

IFIC (UV-CSIC)

95 GeV $< m_H < 130$ GeV, $\Gamma_H < 10$ MeV

 $BR(H \to b\bar{b}) \sim 90\%,$ $BR(H \to c\bar{c}) \simeq BR(H \to \tau^+\tau^-) \sim 5\%$ $BR(H \to gg) \sim 5\% \text{ for } m_H \sim 120 \text{ GeV}$

 $m_H > 130 \; {\rm GeV}$

 $BR(H \to W^+W^-) \sim 65\%, \ BR(H \to Z^0 \overline{Z}^0) \sim 35\%$ $m_H \simeq 500 \ \text{GeV} \qquad BR(H \to t\overline{t}) \sim 20\%$

Production at e^+-e^- Colliders

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

- **•** Bjorken: $e^+e^- \rightarrow Z \rightarrow Z H$
- WW fusion: $e^+e^- \rightarrow \nu \bar{\nu}(WW) \rightarrow \nu \bar{\nu}H$
- ZZ fusion: $e^+e^- \rightarrow e^+e^-(ZZ) \rightarrow e^+e^-H$

At LEP1 and 2, where $\sqrt{s} \simeq M_Z$ or $2 M_W$ the Higgs production is dominated by the Bjorken mechanism. Present bounds come from the analysis of LEP2 results. At the future e^+e^- accelerators, like the Next Linear Collider, where $\sqrt{s} = 500$ GeV, the production of a Higgs with $100 < M_H < 200$ GeV will be dominated by the WW fusion. One expects $M_H \sim 350$ GeV.

Production at Hadron Colliders

Universitat de València

Dept. de Física Teòrica IFIC (UV-CSIC)

At proton-(anti)proton collisions

- **9** Gluon fusion: $p p \rightarrow g g \rightarrow H$
- **9** VV fusion: $pp \to VV \to H$
- Association with $V: pp \rightarrow qq' \rightarrow VH$

Fermilab Tevatron , with $\sqrt{s} = 1.8$ (2) TeV: better produced in association with vector bosons, look for the $VH(\rightarrow b\overline{b})$ signature. Will be able to explore to explore up to $M_H \sim 100$ GeV.

CERN Large Hadron Collider (LHC), with $\sqrt{s} = 14$ TeV: the dominant mechanism is gluon fusion and the best signature $H \rightarrow ZZ \rightarrow 4 \,\ell^{\pm}$ for $M_H > 130$ GeV. For $M_H < 130$ GeV rely on the small $BR(H \rightarrow \gamma \gamma) \sim 10^{-3}$. Will explore up to

 $M_H \sim 700~{\rm GeV}.$ Arcadi Santamaria (Arcadi.Santamaria@uv.es), 2005