Asymptotic behavior of nonautonomous reaction-diffusion equations

Aníbal Rodríguez-Bernal

Departamento de Matemática Aplicada
Universidad Complutense de Madrid

Benasque, 2005
The problem

We study nonautonomous parabolic equations of the form

\[
\begin{aligned}
u_t - \Delta u &= f(t, x, u) \quad \text{in } \Omega, \quad t > s \\
u &= 0, \quad \text{on } \Gamma = \partial \Omega \\
u(s) &= u_0 \geq 0.
\end{aligned}
\]

(1)

- \(f : \mathbb{R} \times \Omega \times \mathbb{R} \rightarrow \mathbb{R} \), Typically logistic nonlinearity:

\[
f(t, x, u) = m(t, x)u - n(t, x)u^\rho
\]

with \(n(t, x) \geq 0, \rho > 1 \).

- the initial data is in \(C(\overline{\Omega}) \)

- solutions \(u_f(t, s, x, u_0) \) defined for all \(t > s \).
The problem

We study nonautonomous parabolic equations of the form

\[
\begin{aligned}
&u_t - \Delta u = f(t, x, u) \quad \text{in } \Omega, \quad t > s \\
&u = 0, \quad \text{on } \Gamma = \partial \Omega \\
&u(s) = u_0 \geq 0.
\end{aligned}
\] (1)

- \(f : \mathbb{R} \times \Omega \times \mathbb{R} \rightarrow \mathbb{R} \), Typically logistic nonlinearity:

\[
f(t, x, u) = m(t, x)u - n(t, x)u^\rho
\]

with \(n(t, x) \geq 0, \rho > 1 \).

- the initial data is in \(C(\overline{\Omega}) \)

- solutions \(u_f(t, s, x, u_0) \) defined for all \(t > s \).
The problem

We study nonautonomous parabolic equations of the form

\[
\begin{cases}
 u_t - \Delta u = f(t, x, u) & \text{in } \Omega, \quad t > s \\
 u = 0, & \text{on } \Gamma = \partial\Omega \\
 u(s) = u_0 \geq 0.
\end{cases}
\] (1)

- \(f : \mathbb{R} \times \Omega \times \mathbb{R} \to \mathbb{R} \), Typically **logistic nonlinearity:**

\[
f(t, x, u) = m(t, x)u - n(t, x)u^\rho
\]

with \(n(t, x) \geq 0, \rho > 1. \)

- the **initial data** is in \(C(\overline{\Omega}) \)

- solutions \(u_f(t, s, x, u_0) \) defined for all \(t > s \).
The problem

We study nonautonomous parabolic equations of the form

\[
\begin{cases}
 u_t - \Delta u = f(t, x, u) \quad \text{in } \Omega, \quad t > s \\
 u = 0, \quad \text{on } \Gamma = \partial \Omega \\
 u(s) = u_0 \geq 0.
\end{cases}
\]

(1)

• \(f : \mathbb{R} \times \Omega \times \mathbb{R} \rightarrow \mathbb{R} \), Typically\ logistic nonlinearity:

\[
f(t, x, u) = m(t, x)u - n(t, x)u^\rho
\]

with \(n(t, x) \geq 0, \ \rho > 1 \).

• the \textbf{initial data} is in \(C(\overline{\Omega}) \)

• solutions \(u_f(t, s, x, u_0) \) defined for all \(t > s \).
The problem

We study nonautonomous parabolic equations of the form

\[
\begin{cases}
 u_t - \Delta u = f(t, x, u) & \text{in } \Omega, \quad t > s \\
 u = 0, & \text{on } \Gamma = \partial \Omega \\
 u(s) = u_0 \geq 0.
\end{cases}
\]
(1)

- \(f : IR \times \Omega \times IR \rightarrow IR \), Typically logistic nonlinearity:

\[
f(t, x, u) = m(t, x)u - n(t, x)u^\rho
\]

with \(n(t, x) \geq 0, \rho > 1 \).

- the initial data is in \(C(\overline{\Omega}) \)

- solutions \(u_f(t, s, x, u_0) \) defined for all \(t > s \).
Part I

Some approaches to asymptotic behavior
The autonomous case: $f = f(x, u)$

- **Semigroup:** $X ⊋ u_0 \mapsto u_f(t, u_0) = S(t)u_0 \in X$
- **Smoothing and estimates:** compactness

$$\{S(t)u_0, \quad t \geq 1\} \text{ is compact}$$

- **ω–limit sets:**

$$\omega(u_0) = \{v_0 \in X, \exists t_n \to \infty, S(t_n)u_0 \to v_0\}$$

If $B \subset X$

$$\omega(B) = \{v_0 \in X, \exists t_n \to \infty, u_0^n \in B, S(t_n)u_0^n \to v_0\}$$
The autonomous case: \(f = f(x, u) \)

- **Semigroup:** \(X \ni u_0 \mapsto u_f(t, u_0) = S(t)u_0 \in X \)
- **Smoothing and estimates:** compactness

\[\{S(t)u_0, \quad t \geq 1\} \text{ is compact} \]

- **\(\omega \)-limit sets:**

\[\omega(u_0) = \{v_0 \in X, \exists t_n \to \infty, S(t_n)u_0 \to v_0\} \]

If \(B \subset X \)

\[\omega(B) = \{v_0 \in X, \exists t_n \to \infty, u_0^n \in B, S(t_n)u_0^n \to v_0\} \]
The autonomous case: $f = f(x, u)$

- Semigroup: $X \ni u_0 \mapsto u_f(t, u_0) = S(t)u_0 \in X$
- Smoothing and estimates: compactness
 \[
 \{S(t)u_0, \quad t \geq 1\} \quad \text{is compact}
 \]
- ω–limit sets:
 \[
 \omega(u_0) = \{v_0 \in X, \exists t_n \to \infty, S(t_n)u_0 \to v_0\}
 \]
 If $B \subset X$
 \[
 \omega(B) = \{v_0 \in X, \exists t_n \to \infty, u_0^n \in B, S(t_n)u_0^n \to v_0\}
 \]
The autonomous case: \(f = f(x, u) \)

- **Semigroup**: \(X \ni u_0 \mapsto u_f(t, u_0) = S(t)u_0 \in X \)
- **Smoothing and estimates: compactness**

\[\{S(t)u_0, \quad t \geq 1\} \text{ is compact} \]

- \(\omega \)-limit sets:

\[\omega(u_0) = \{v_0 \in X, \ \exists \ t_n \to \infty, \ S(t_n)u_0 \to v_0\} \]

If \(B \subset X \)

\[\omega(B) = \{v_0 \in X, \ \exists \ t_n \to \infty, \ u_0^n \in B, \ S(t_n)u_0^n \to v_0\} \]
The autonomous case: $f = f(x,u)$

- The global attractor: $\mathcal{A} \subset X$ compact, such that

$$S(t)\mathcal{A} = \mathcal{A}, \quad t \geq 0$$

$$\lim_{t \to \infty} \text{dist}(S(t)B, \mathcal{A}) = 0$$

[Hale, Temam, Ladyzhenskaya]
The autonomous case: $f = f(x, u)$

- The global attractor: $\mathcal{A} \subset X$ compact, such that

$$S(t)\mathcal{A} = \mathcal{A}, \quad t \geq 0$$

$$\lim_{t \to \infty} \text{dist}(S(t)B, \mathcal{A}) = 0$$

[Hale, Temam, Ladyzhenskaya]
The autonomous case: $f = f(x, u)$

- The global attractor: $\mathcal{A} \subset X$ compact, such that

$$S(t)\mathcal{A} = \mathcal{A}, \quad t \geq 0$$

$$\lim_{t \to \infty} \text{dist}(S(t)B, \mathcal{A}) = 0$$

[Hale, Temam, Ladyzhenskaya]
The periodic case: \(f(t + T, x, u) = f(t, x, u) \)

For given \(t_0 \in \mathbb{R} \) one can use the **Poincaré map**

\[
P: X \to X, \quad P(u_0) = u_f(t_0 + T, t_0, \cdot, u_0)
\]

- Inherits strong compactness and positivity properties.

[Smale, Matano, Alikakos ...]
[Hess, Pitman (1991)]
The periodic case: \(f(t + T, x, u) = f(t, x, u) \)

For given \(t_0 \in \mathbb{R} \) one can use the Poincaré map

\[
P : X \rightarrow X, \quad P(u_0) = u_f(t_0 + T, t_0, \cdot, u_0)
\]

- Inherits strong compactness and positivity properties.

[Smale, Matano, Alikakos ...]
[Hess, Pitman (1991)]
The almost periodic case

- Denote $H(f) = \text{cl}\{f_\tau(\cdot, \cdot, \cdot), \ \tau \in \mathbb{R}\}$ which is **compact** where
 \[f_\tau(t, x, u) = f(t + \tau, x, u), \quad \text{time shift} \]

- Now for $g \in H(f)$ let $u_g(t, x, u_0)$ be the solution of
 \[
 \begin{cases}
 u_t - \Delta u = g(t, x, u) & \quad \text{in } \Omega, \quad t > 0 \\
 u = 0, & \quad \text{in } \Gamma = \partial\Omega \\
 u(0) = u_0 \geq 0.
 \end{cases}
 \]

- and consider the **semigroup** $S(t) : X \times H(f) \to X \times H(f)$
 \[
 S(t)(u_0, g) = (u_g(t, \cdot, u_0), g_t) \quad t \geq 0
 \]

 skew product flow
The almost periodic case

- Denote $H(f) = \text{cl}\{f_\tau(\cdot, \cdot, \cdot), \ \tau \in \mathbb{R}\}$ which is compact where

$$f_\tau(t, x, u) = f(t + \tau, x, u), \quad \text{time shift}$$

- Now for $g \in H(f)$ let $u_g(t, x, u_0)$ be the solution of

$$
\begin{cases}
 u_t - \Delta u = g(t, x, u) & \text{in } \Omega, \quad t > 0 \\
 u = 0, & \text{in } \Gamma = \partial \Omega \\
 u(0) = u_0 \geq 0.
\end{cases}
$$

- and consider the semigroup $S(t) : X \times H(f) \to X \times H(f)$

$$S(t)(u_0, g) = (u_g(t, \cdot, u_0), g_t) \quad t \geq 0.$$

skew product flow
The almost periodic case

- Denote $H(f) = \text{cl}\{f_\tau(\cdot, \cdot, \cdot), \ \tau \in \mathbb{R}\}$ which is \textbf{compact} where

 $$f_\tau(t, x, u) = f(t + \tau, x, u), \ \text{time shift}$$

- Now for $g \in H(f)$ let $u_g(t, x, u_0)$ be the solution of

 $$\begin{cases}
 u_t - \Delta u = g(t, x, u) & \text{in } \Omega, \quad t > 0 \\
 u = 0, & \text{in } \Gamma = \partial \Omega \\
 u(0) = u_0 \geq 0.
 \end{cases}$$

- and consider the \textbf{semigroup} $S(t) : X \times H(f) \to X \times H(f)$

 $$S(t)(u_0, g) = (u_g(t, \cdot, u_0), g_t) \quad t \geq 0$$

 \textbf{skew product flow}
The general case: pullback attraction

For a given time t and a state u_0
the evolution that started some time before

The state ω pullback attracts the state u_0: $\lim_{s \to -\infty} u_f(t, s, \cdot; u_0) = \omega$
The general case: pullback attraction

For a given time t and a state u_0, the evolution that started some time before

The state ω pullback attracts the state u_0:

$$\lim_{s \to -\infty} u_f(t, s, \cdot, u_0) = \omega$$
The general case: pullback attraction

For a given time t and a state u_0, the evolution that started some time before

the state ω pullback attracts the state u_0: \[\lim_{s \to s_0} u_f(t, s, \cdot, u_0) = \omega \]
The general case: pullback attraction

For a given time t and a state u_0, the evolution that started some time before

The state ω pullback attracts the state u_0: $\lim_{s \to s_0} u_f(t, s, \cdot, u_0) = \omega$
The general case: pullback attraction

For a given time t and a state u_0, the evolution that started some time before

The state ω pullback attracts the state u_0: $\lim_{s \to -\infty} u_f(t, s, \cdot, u_0) = \omega$
The general case: pullback attraction

The pullback attractor is a family

$$\mathcal{A} = \{\mathcal{A}(t)\}_{t \in \mathbb{R}}$$

such that for each $t \in \mathbb{R}$ and $B \subset X$ bounded

$$\lim_{s \to -\infty} \text{dist}(u(t, s; B), \mathcal{A}(t)) = 0$$
Theorem Assume f satisfies

$$u f(t, x, u) \leq C(t, x)u^2 + D(t, x)|u| \quad \forall u \in \mathbb{R}$$

and $U_{\Delta + C}(t, s)$ is exponentially stable. Then there exist $\varphi_m(t) \leq \varphi_M(t)$ minimal and maximal complete trajectories, such that

1. Any complete trajectory ψ satisfies

$$\varphi_m(t) \leq \psi(t) \leq \varphi_M(t);$$

2. $$\varphi_m(t) \leq \liminf_{s \to -\infty} u(t, s; v_0) \leq \limsup_{s \to -\infty} u(t, s; v_0) \leq \varphi_M(t)$$

uniformly in Ω for $v_0 \in B \subset X.$
[Robinson, Vidal-López, R-B, (2005)]

Theorem Assume f satisfies

$$u f(t, x, u) \leq C(t, x)u^2 + D(t, x)|u| \quad \forall u \in \mathbb{R}$$

and $U_{\Delta+C}(t, s)$ is exponentially stable.

Moreover

3. $\varphi_m(t)$ is stable from below in the pullback sense and $\varphi_M(t)$ is stable from above

4. there exists a pullback attractor and

$$\mathcal{A}(t) \subset [\varphi_m(t), \varphi_M(t)], \quad \varphi_m(t), \varphi_M(t) \in \mathcal{A}(t);$$

5. the interval $[\varphi_m(t), \varphi_M(t)]$ is positively invariant
The autonomous case

The periodic case

The almost-periodic case

The general case

Asymptotic behavior of nonautonomous reaction-diffusion equations
Part II

Positive solutions
The autonomous case: \(f = f(x, u) \)

Assume \(f(x, u) \) continuous in \(u \geq 0 \)

Theorem (Brezis, Oswald)

\[
\frac{f(x, u)}{u} \text{ is nonincreasing in } u \geq 0.
\]

Then there exists at most a positive solution.
The autonomous case: \(f = f(x, u) \)

Assume \(f(x, u) \) continuous in \(u \geq 0 \)

Theorem (Brezis, Oswald)

\[
\frac{f(x, u)}{u} \text{ is nonincreasing in } u \geq 0.
\]

Then there exists at most a positive solution.
The autonomous case: \(f = f(x, u) \)

Assume \(f(x, u) \) continuous in \(u \geq 0 \)

Theorem (Brezis, Oswald)

\[
\frac{f(x, u)}{u} \quad \text{is nonincreasing in } u \geq 0.
\]

Then there exists at most a positive solution.
The autonomous case: $f = f(x, u)$

Theorem
(Brezis, Oswald)

Assume for $0 \leq u \leq \delta$, $f(x, u) \geq -C_\delta u$

\[f(\cdot, u) \in L^\infty(\Omega), \quad f(x, u) \leq C(u + 1) \]

\[a_0(x) = \limsup_{u \to 0^+} \frac{f(x, u)}{u} \quad \text{and} \quad a_\infty(x) = \liminf_{u \to +\infty} \frac{f(x, u)}{u}. \]

Assume

\[\lambda_1(-\Delta - a_0) < 0 < \lambda_1(-\Delta - a_\infty). \]

Then there exist at least a positive solution.
The autonomous case: $f = f(x, u)$

Theorem (Brezis, Oswald)

Assume for $0 \leq u \leq \delta$, $f(x, u) \geq -C_\delta u$

$$f(\cdot, u) \in L^\infty(\Omega), \quad f(x, u) \leq C(u + 1)$$

$$a_0(x) = \limsup_{u \to 0^+} \frac{f(x, u)}{u} \quad \text{and} \quad a_\infty(x) = \liminf_{u \to +\infty} \frac{f(x, u)}{u}.$$

Assume

$$\lambda_1(-\Delta - a_0) < 0 < \lambda_1(-\Delta - a_\infty).$$

Then there exist at least a positive solution.
The autonomous case: \(f = f(x, u) \)

Theorem (Brezis, Oswald)

Assume for \(0 \leq u \leq \delta \), \(f(x, u) \geq -C\delta u \)

\[
f(\cdot, u) \in L^\infty(\Omega), \quad f(x, u) \leq C(u + 1)
\]

\[
a_0(x) = \limsup_{u \to 0^+} \frac{f(x, u)}{u} \quad \text{and} \quad a_\infty(x) = \liminf_{u \to +\infty} \frac{f(x, u)}{u}.
\]

Assume

\[
\lambda_1(-\Delta - a_0) < 0 < \lambda_1(-\Delta - a_\infty).
\]

Then there exist at least a positive solution.
The autonomous case: $f = f(x, u)$

Theorem (Brezis, Oswald)

Assume for $0 \leq u \leq \delta$, $f(x, u) \geq -C\delta u$

$$f(\cdot, u) \in L^\infty(\Omega), \quad f(x, u) \leq C(u + 1)$$

$$a_0(x) = \limsup_{u \to 0^+} \frac{f(x, u)}{u} \quad \text{and} \quad a_\infty(x) = \liminf_{u \to +\infty} \frac{f(x, u)}{u}.$$

Assume

$$\lambda_1(-\Delta - a_0) < 0 < \lambda_1(-\Delta - a_\infty).$$

Then there exist at least a positive solution.
The autonomous case: \(f = f(x, u) \)

Theorem (Brezis, Oswald)

Assume for \(0 \leq u \leq \delta \), \(f(x, u) \geq -C_\delta u \)

\[
f(\cdot, u) \in L^\infty(\Omega), \quad f(x, u) \leq C(u + 1)
\]

\[
a_0(x) = \limsup_{u \to 0^+} \frac{f(x, u)}{u} \quad \text{and} \quad a_\infty(x) = \liminf_{u \to +\infty} \frac{f(x, u)}{u}.
\]

Assume

\[
\lambda_1(-\Delta - a_0) < 0 < \lambda_1(-\Delta - a_\infty).
\]

Then there exist at least a positive solution.
The autonomous case: $f = f(x, u)$

Theorem (Brezis, Oswald)

Assume for $0 \leq u \leq \delta$, $f(x, u) \geq -C\delta u$

$$f(\cdot, u) \in L^\infty(\Omega), \quad f(x, u) \leq C(u + 1)$$

$$a_0(x) = \limsup_{u \to 0^+} \frac{f(x, u)}{u} \quad \text{and} \quad a_\infty(x) = \liminf_{u \to +\infty} \frac{f(x, u)}{u}.$$

Assume

$$\lambda_1(-\Delta - a_0) < 0 < \lambda_1(-\Delta - a_\infty).$$

Then there exist at least a positive solution.

The proof is based on energy arguments using

\[\lambda_1(-\Delta - a) = \inf_{v \in H^1_0(\Omega)} \frac{\int_{\Omega} |\nabla v|^2 - \int_{\Omega, v \neq 0} a(x)|v|^2}{\int_{\Omega} |v|^2} \]

\[V(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u) \]

\[F(x, u) = \int_0^u f(x, r) \, dr \]

[Brezis, Oswald, NATMA (1986)]
The proof is based on energy arguments using

\[
\lambda_1(-\Delta - a) = \inf_{\nu \in H_0^1(\Omega)} \frac{\int_{\Omega} |\nabla \nu|^2 - \int_{[\nu \neq 0]} a(x)|\nu|^2}{\int_{\Omega} |\nu|^2}
\]

\[
V(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u)
\]

\[
F(x, u) = \int_0^u f(x, r) \, dr
\]

[Brezis, Oswald, NATMA (1986)]
The proof is based on energy arguments using

\[
\lambda_1(-\Delta - a) = \inf_{v \in H^1_0(\Omega)} \frac{\int_{\Omega} |\nabla v|^2 - \int_{[v \neq 0]} a(x)|v|^2}{\int_{\Omega} |v|^2}
\]

\[
V(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u)
\]

\[
F(x, u) = \int_0^u f(x, r) \, dr
\]

[Brezis, Oswald, NATMA (1986)]
The proof is based on energy arguments using

$$
\lambda_1(-\Delta - a) = \inf_{v \in H_0^1(\Omega)} \frac{\int_{\Omega} |\nabla v|^2 - \int_{[v \neq 0]} a(x)|v|^2}{\int_{\Omega} |v|^2}
$$

$$
V(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u)
$$

$$
F(x, u) = \int_{0}^{u} f(x, r) \, dr
$$

[Brezis, Oswald, NATMA (1986)]
The periodic case: \(f(t + T, x, u) = f(t, x, u) \)

For given \(t_0 \in \mathbb{R} \) one can use the Poincaré map

\[
P : X \to X, \quad P(u_0) = u_f(t_0 + T, t_0, \cdot, u_0)
\]

• Inherits strong compactness and positivity properties.
• If

\[
\frac{f(t, x, u)}{u} \quad \text{is nonincreasing in } u \geq 0.
\]

then \(P \) has a unique positive globally attractive fixed point.

[Hess, Pitman (1991)]
The periodic case: $f(t + T, x, u) = f(t, x, u)$

For given $t_0 \in \mathbb{R}$ one can use the Poincaré map

$$P : X \rightarrow X, \quad P(u_0) = u_f(t_0 + T, t_0, \cdot, u_0)$$

- Inherits strong compactness and positivity properties.
- If
 $$\frac{f(t, x, u)}{u} \text{ is nonincreasing in } u \geq 0.$$
 then P has a unique positive globally attractive fixed point.

[Hess, Pitman (1991)]
The periodic case: \(f(t + T, x, u) = f(t, x, u) \)

For given \(t_0 \in \mathbb{R} \) one can use the \textbf{Poincaré} map

\[
P : X \to X, \quad P(u_0) = u_f(t_0 + T, t_0, \cdot, u_0)
\]

- Inherits strong compactness and positivity properties.
- If

\[
\frac{f(t, x, u)}{u} \quad \text{is nonincreasing in } u \geq 0.
\]

then \(P \) has a \textbf{unique} positive globally attractive fixed point.

[Hess, Pitman (1991)]
The almost periodic case

- Denote \(H(f) = \text{cl}\{f_\tau(\cdot, \cdot, \cdot), \; \tau \in \mathbb{R}\} \) which is **compact** where

 \[
 f_\tau(t, x, u) = f(t + \tau, x, u), \quad \text{time shift}
 \]

- Now for \(g \in H(f) \) let \(u_g(t, x, u_0) \) be the solution of

 \[
 \begin{cases}
 u_t - \Delta u = g(t, x, u) & \text{in } \Omega, \quad t > 0 \\
 u = 0, & \text{in } \Gamma = \partial \Omega \\
 u(0) = u_0 \geq 0.
 \end{cases}
 \]

- and consider the **semigroup** \(S(t) : X \times H(f) \to X \times H(f) \)

 \[
 S(t)(u_0, g) = (u_g(t, \cdot, u_0), g_t) \quad t \geq 0
 \]

 skew product flow
The almost periodic case

- Denote $H(f) = cl\{ f_\tau(\cdot, \cdot, \cdot), \tau \in \mathbb{R} \}$ which is \textbf{compact} where

 $$f_\tau(t, x, u) = f(t + \tau, x, u), \text{ time shift}$$

- Now for $g \in H(f)$ let $u_g(t, x, u_0)$ be the solution of

\[
\begin{cases}
 u_t - \Delta u = g(t, x, u) & \text{in } \Omega, \quad t > 0 \\
 u = 0, & \text{in } \Gamma = \partial\Omega \\
 u(0) = u_0 \geq 0.
\end{cases}
\]

- and consider the \textbf{semigroup} $S(t) : X \times H(f) \rightarrow X \times H(f)$

\[S(t)(u_0, g) = (u_g(t, \cdot, u_0), g_t) \quad t \geq 0\]

\textbf{skew product flow}
The almost periodic case

- Denote $H(f) = \overline{\{f_\tau(\cdot, \cdot, \cdot), \ \tau \in \mathbb{R}\}}$ which is **compact** where

 \[f_\tau(t, x, u) = f(t + \tau, x, u), \quad \text{time shift} \]

- Now for $g \in H(f)$ let $u_g(t, x, u_0)$ be the solution of

 \[
 \begin{cases}
 u_t - \Delta u = g(t, x, u) & \text{in } \Omega, \quad t > 0 \\
 u = 0, & \text{in } \Gamma = \partial \Omega \\
 u(0) = u_0 \geq 0.
 \end{cases}
 \]

- and consider the **semigroup** $S(t) : X \times H(f) \rightarrow X \times H(f)$

 \[S(t)(u_0, g) = (u_g(t, \cdot, u_0), g_t) \quad t \geq 0 \]

 skew product flow
The almost periodic case

- If

\[
\frac{f(t, x, u)}{u}
\]

is nonincreasing in \(u \geq 0 \).

then \(S \) has a unique positive globally attractive fixed point.

The special positive solution

The trivial state and the special solution
At each time the state $u_S(t)$ is the important one because it is the pullback attractor.
But also u_S attracts forwards.

$u = 0$

time
The special positive solution

The trivial state and the special solution
At each time the state $u_S(t)$ is the important one because it is the pullback attractor.
But also u_S attracts forwards.
The special positive solution

At each time the state $u_S(t)$ is the important one because it is the pullback attractor.
But also u_S attracts forwards.
The special positive solution

At each time the state $u_S(t)$ is the important one because it is the pullback attractor.

But also u_S attracts forwards.

A. Rodríguez-Bernal

Asymptotic behavior of nonautonomous reaction-diffusion equations
The special positive solution

At each time the state $u_S(t)$ is the important one because it is the pullback attractor.

But also u_S attracts forwards.
A result with restrictions

[Langa, Robinson, Suarez, Int.J.Bif.Chaos (2005)]

\[f(t, x, u) = \lambda u - n(x, t)u^\rho \]

\[\lambda > \lambda_1^D(\Omega) \]

\[0 < a_0 \leq n(x, t) \leq A_0, \quad \text{with} \quad A_0 \leq \rho a_0. \]
A result with restrictions

\[f(t, x, u) = \lambda u - n(x, t)u^\rho \]

\[\lambda > \lambda_1^D(\Omega) \]

\[0 < a_0 \leq n(x, t) \leq A_0, \quad \text{with} \quad A_0 \leq \rho a_0. \]
A result with restrictions

[Langa, Robinson, Suarez, Int.J.Bif.Chaos (2005)]

\[f(t, x, u) = \lambda u - n(x, t)u^\rho \]

\(\lambda > \lambda_1^D(\Omega) \)

\(0 < a_0 \leq n(x, t) \leq A_0, \quad \text{with} \quad A_0 \leq \rho a_0. \)
Warning for uniqueness: autonomous case

A positive equilibrium: u_E and a connection from 0 to u_E
Hence there are two complete positive trajectories
Warning for uniqueness: autonomous case

A positive equilibria: u_E and a connection from 0 to u_E

Hence there are two complete positive trajectories
Warning for uniqueness: autonomous case

A positive equilibrium: u_E and a connection from 0 to u_E

Hence there are two complete positive trajectories
Warning for uniqueness: autonomous case

A positive equilibrium: u_E and a connection from 0 to u_E

Hence there are two complete positive trajectories
Uniqueness of CBNDS: complete bounded nondegenerate solution

\[\varphi_0, \varphi_1 \in C^1_0(\Omega), \quad 0 < \varphi_0 \leq u_S(t) \leq \varphi_1, \quad t << -1 \]
Theorem (ARB-A.Vidal–López, 2005)

Assume

\[f(t, x, u) = m(x, t)u - n(x, t)u^p, \quad n(x, t) \geq 0 \]

\[n(x, t) \geq a_0 > 0 \quad \text{in} \quad \bar{\Omega} \times \mathbb{R} \quad (\text{can be weakened}) \]

\[m \in L^\infty(\mathbb{R}, L^p(\Omega)) \quad \text{with} \quad p > N \]

for \(t << -1 \)

\[m(x, t) \geq M(x) \quad n(x, t) \leq N(x) \]

such that

\[f_0(x) = M(x)u - N(x)u^p \leq f(t, x, u) \]

is of “Brezis-Oswald” type. Then there exists a unique CBPND trajectory

\[0 \leq u_s \in C_b(\mathbb{R}, C^0(\bar{\Omega})) \]
Theorem (ARB-A.Vidal–López, 2005)

Assume

\[f(t, x, u) = m(x, t)u - n(x, t)u^p, \quad n(x, t) \geq 0 \]

\[n(x, t) \geq a_0 > 0 \quad \text{in} \quad \overline{\Omega} \times \mathbb{R} \quad (\text{can be weakened}) \]

\[m \in L^\infty(\mathbb{R}, L^p(\Omega)) \quad \text{with} \quad p > N \]

for \(t \ll -1 \)

\[m(x, t) \geq M(x) \quad n(x, t) \leq N(x) \]

such that

\[f_0(x) = M(x)u - N(x)u^p \leq f(t, x, u) \]

is of “Brezis-Oswald” type. Then there exists a unique CBPND trajectory

\[0 \leq u_s \in C_b(\mathbb{R}, C_0(\overline{\Omega})) \]
Theorem (ARB-A.Vidal–López, 2005)

Assume
\[f(t, x, u) = m(x, t)u - n(x, t)u^p, \quad n(x, t) \geq 0 \]

\[n(x, t) \geq a_0 > 0 \quad \text{in} \quad \overline{\Omega} \times \mathbb{R} \quad (\text{can be weakened}) \]

\[m \in L^\infty(\mathbb{R}, L^p(\Omega)) \quad \text{with} \quad p > N \]

for \(t << -1 \)

\[m(x, t) \geq M(x) \quad n(x, t) \leq N(x) \]

such that

\[f_0(x) = M(x)u - N(x)u^p \leq f(t, x, u) \]

is of “Brezis-Oswald” type. Then there exists a unique CBPND trajectory

\[0 \leq u_s \in C_b(\mathbb{R}, C_0(\overline{\Omega})) \]
Theorem (ARB-A. Vidal–López, 2005)

Assume

\[f(t, x, u) = m(x, t)u - n(x, t)u^p, \quad n(x, t) \geq 0 \]

\[n(x, t) \geq a_0 > 0 \quad \text{in} \quad \overline{\Omega} \times \mathbb{R} \quad (\text{can be weakened}) \]

\[m \in L^\infty(\mathbb{R}, L^p(\Omega)) \quad \text{with} \quad p > N \]

for \(t \ll -1 \)

\[m(x, t) \geq M(x) \quad n(x, t) \leq N(x) \]

such that

\[f_0(x) = M(x)u - N(x)u^p \leq f(t, x, u) \]

is of “Brezis-Oswald” type. Then there exists a unique CBPND trajectory

\[0 \leq u_s \in C_b(\mathbb{R}, C_0(\overline{\Omega})) \]
Theorem (ARB-A.Vidal–López, 2005)

Assume

\[f(t, x, u) = m(x, t)u - n(x, t)u^p, \quad n(x, t) \geq 0 \]

\[n(x, t) \geq a_0 > 0 \quad \text{in} \quad \overline{\Omega} \times \mathbb{R} \quad (\text{can be weakened}) \]

\[m \in L^\infty(\mathbb{R}, L^p(\Omega)) \quad \text{with} \quad p > N \]

for \(t << -1 \)

\[m(x, t) \geq M(x) \quad n(x, t) \leq N(x) \]

such that

\[f_0(x) = M(x)u - N(x)u^p \leq f(t, x, u) \]

is of “Brezis-Oswald” type. Then there exists a unique CBPND trajectory

\[0 \leq u_s \in C_b(\mathbb{R}, C_0(\overline{\Omega})) \]
Theorem (ARB-A.Vidal–López, 2005)

Assume

\[f(t, x, u) = m(x, t)u - n(x, t)u^p, \quad n(x, t) \geq 0 \]

\[n(x, t) \geq a_0 > 0 \quad \text{in} \quad \overline{\Omega} \times \mathbb{R} \quad (\text{can be weakened}) \]

\[m \in L^\infty(\mathbb{R}, L^p(\Omega)) \quad \text{with} \quad p > N \]

for \(t << -1 \)

\[m(x, t) \geq M(x) \quad n(x, t) \leq N(x) \]

such that

\[f_0(x) = M(x)u - N(x)u^p \leq f(t, x, u) \]

is of “Brezis-Oswald” type. Then there exists a unique CBPND trajectory

\[0 \leq u_s \in C_b(\mathbb{R}, C_0(\overline{\Omega})). \]
Definition

i) If X a Banach space, the family $T(t, s) \in \mathcal{L}(X)$, is an evolution operator

 a) $T(t, t) = I$ for all $t \in \mathbb{R}$,

 b) $T(t, s)T(s, r)u = T(t, r)u$ for all $r \leq s \leq t$, $u \in X$, and

 c) $u \mapsto T(t, r)u$ is continuous in X for $t > r$.

ii) $T(t, s)$ is exponentially stable of exponent $\beta > 0$ if for some $M > 0$

\[
\|T(t, s)\|_{\mathcal{L}(X)} \leq Me^{-\beta(t-s)} \quad \text{for all } t > s.
\]