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Propagation,Observation, and
Control ofWavesApproximated
by Finite Difference Methods∗

Enrique Zuazua†

Abstract. This paper surveys several topics related to the observation and control of wave propaga-
tion phenomena modeled by finite difference methods. The main focus is on the property
of observability, corresponding to the question of whether the total energy of solutions
can be estimated from partial measurements on a subregion of the domain or boundary.
The mathematically equivalent property of controllability corresponds to the question of
whether wave propagation behavior can be controlled using forcing terms on that subre-
gion, as is often desired in engineering applications. Observability/controllability of the
continuous wave equation is well understood for the scalar linear constant coefficient case
that is the focus of this paper. However, when the wave equation is discretized by finite
difference methods, the control for the discretized model does not necessarily yield a good
approximation to the control for the original continuous problem. In other words, the clas-
sical convergence (consistency + stability) property of a numerical scheme does not suffice
to guarantee its suitability for providing good approximations to the controls that might
be needed in applications. Observability/controllability may be lost under numerical dis-
cretization as the mesh size tends to zero due to the existence of high-frequency spurious
solutions for which the group velocity vanishes. This phenomenon is analyzed and several
remedies are suggested, including filtering, Tychonoff regularization, multigrid methods,
and mixed finite element methods.

We also briefly discuss these issues for the heat, beam, and Schrödinger equations to
illustrate that diffusive and dispersive effects may help to retain the observability/control-
lability properties at the discrete level. We conclude with a list of open problems and
future subjects for research.
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1. Introduction. This article analyzes numerical methods for approximating the
controllability and observability of wave-like equations. These properties can be sum-
marized by the following questions:

• Observability. Can waves satisfying a wave equation and suitable boundary
conditions be fully reconstructed from measurements on a subregion of the
domain or boundary during a given time interval? More precisely, we will
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focus on the question of whether the whole energy of the solution can be
estimated in terms of the energy measured on a subregion during a given
time interval.

• Controllability. Can solutions be driven to a given state at a given final time
by means of a control acting on the system on that subregion?

These properties are equivalent in the appropriate functional setting (see, e.g., [67,
68, 117]).
Here we examine whether discrete numerical approximations preserve the observ-

ability/controllability properties of continuous wave problems in the sense that the
continuous properties are recovered as the mesh interval tends to zero. It is well known
that numerical wave approximations yield dispersion phenomena and spurious1 high-
frequency oscillations [105, 101]. The propagation speed of these nonphysical waves
can be characterized by the group velocity,2 which may converge to zero when the
oscillation wavelength is of the order of the mesh interval and the latter tends to
zero. As a consequence, the time needed to uniformly (with respect to the mesh size)
observe (or control) the numerical waves from a subset of the domain or boundary
may tend to infinity as the mesh is refined. Hence, controlling a discrete version of
a continuous wave model is often a bad way of controlling the continuous wave model
itself.
In essence, the numerical discretization and observation/control do not commute:

[Continuous Model +Observation/Control] +Numerics

�=(1.1)

[Continuous Model +Numerics] +Observation/Control

Our primary objective is to explain this pathological fact, which holds despite the good
control properties of the underlying continuous wave equation and the convergence
of the numerical scheme approximating the PDE. In pursuing this goal, we build
on work by Glowinski, Li, and Lions [41], Glowinski [38], and Asch and Lebeau [2],
among others. After diagnosing the problem pertaining to high-frequency spurious
modes, we will mention several approaches for restoring numerical observation and
control properties using filtering, Tychonoff regularization, multigrid methods, and
mixed finite elements.
It is striking that the instabilities we shall encounter are catastrophic in nature.

Indeed the divergence rate of the controls is not polynomial but exponential in the
number of mesh nodes. Hence, stability cannot be reestablished simply by modifying
the observed quantities or by relaxing the regularity of the controls by a finite number
of derivatives.
Strictly speaking, we are concerned with the problem of exact controllability, in

which the goal is to drive the solution of an evolution problem to a given final state
exactly in a given time. It is in this setting where numerical high-frequency waves may
lead to a pathological lack of convergence. This difficulty does not arise if the control
problem is relaxed to an approximate or optimal control problem [119]. However,

1Spurious is used to designate any component of the numerical solution that does not correspond
to a solution of the underlying PDE. In the context of the wave equation, spurious modes occur at
high frequencies. Hence, the existence of these oscillations is compatible with the convergence (in
the classical sense) of the numerical scheme, which holds for fixed initial data.

2In a numerical setting, it is important to distinguish between phase and group velocities. Phase
velocity characterizes the propagation of individual monochromatic waves, while group velocity char-
acterizes the propagation of wave packets (see, e.g., [101] and section 4.3.)
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even if one is interested in these weaker control problems, the fact that the exact
controllability problem embodies the limiting behavior of these problems raises a
serious warning regarding the instability of numerical controls for wave-like processes.
The implications of this discussion are considerable because expression (1.1) re-

lates the two main alternatives for numerically computing controls to PDEs.3 The
former “continuous” approach, if fully and rigorously developed, provides convergent
algorithms that produce good numerical approximations of the true control of the
continuous PDE [41]. The latter “discrete” approach consists in first discretizing the
continuous model and then computing the control of the discrete system as an approx-
imation to the continuous control. This approach is generally more straightforward
since problem-specific PDE control theory analysis is not required. But this second
black-box procedure may diverge.4

The examination of black-box methods for observability/controllability is relevant
to wide-ranging problem in control theory, optimal design, and inverse problems.
Specific examples (see [34, 66]) involving wave-like phenomena include noise reduction
[4], structural control in response to aerodynamic [95] or seismic [93, 87] forces, laser
control of chemical reactions [10] or waves in crystals [1], biomechanical control [20],
and control of gravity waves in data assimilation [98]. We also refer to the SIAM
Reports [34], [81], or, for more historical and engineering-oriented applications, to
[66].
Our analysis relies mainly on the Fourier decomposition of solutions and classical

results on the theory of nonharmonic Fourier series. We shall also briefly explain how
the tools of discrete Wigner measures (in the spirit of Gérard [35] and Lions and Paul
[70]) have been applied to these problems [72, 73] following previous developments by
Trefethen [101]. These methods allow us to discover the numerical counterpart of the
so-called geometric control condition5 (GCC), which is a sharp sufficient condition for
the controllability of the wave equation.
The paper is organized as follows. Section 2 recalls the basic ingredients of the

finite-dimensional theory we will employ throughout the paper. Section 3 then dis-
cusses observability/controllability for the constant coefficient one-dimensional (1D)
wave equation. The main results on the lack of observability/controllability of finite
difference semidiscretizations are then presented in section 4, which also examines the
use of filtering to restore uniform controllability. Section 5 summarizes the relevant
features of the multidimensional wave equation, and section 6 analyzes observabil-
ity/controllability for finite difference semidiscretizations of the two-dimensional (2D)
wave equation in a square. In section 7 we discuss several additional methods for
curing high-frequency pathologies. Section 8 examines finite difference semidiscretiza-
tions of the heat, beam, and Schrödinger equations to illustrate that dissipative and
dispersive processes can improve the observability/controllability of discrete approx-
imations. Section 9 concludes with further comments and a list of important open
problems.

3See [113, 117] for surveys of the state-of-the-art in the controllability of PDEs and the books of
Lee and Markus [64], Sontag [99], and Fattorini [29] for broader introductions to control theory for
finite- and infinite-dimensional systems.

4There are, however, some other situations in which it works. We refer to [14] for the analysis of
finite element approximations of elliptic optimal control problems and to [23] for an optimal shape
design problem for the Laplace operator.

5Bardos, Lebeau, and Rauch [7] show that the wave equation is exactly controllable in time T
with controls in a given subdomain if all rays of geometric optics enter the control subregion in that
time.
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2. Preliminaries on Finite-Dimensional Systems. Most of this article is de-
voted to analyzing the wave equation and its numerical approximations. Numerical
approximation schemes and, more precisely, those that are semidiscrete (discrete in
space and continuous in time) yield finite-dimensional systems of ODEs. There is
by now an extensive literature on the control of finite-dimensional systems, and the
problem is completely understood for linear ones (see [64, 99]).
As we have mentioned above, the problem of convergence of controls as the mesh

size in the numerical approximation tends to zero is very closely related to passing to
the limit as the dimension of finite-dimensional systems tends to infinity. The latter
topic is widely open, and this article may be considered as a contribution in this
direction.
In this section we briefly summarize the most basic material on finite-dimensional

systems that will be used throughout this article (we refer to [77] for more details).
Consider the finite-dimensional system of dimension N :

x′ +Ax = Bv, 0 ≤ t ≤ T ; x(0) = x0,(2.1)

where x is the N -dimensional state and v is theM -dimensional control, withM ≤ N .
Here A is an N × N matrix with constant real coefficients and B is an N ×M

matrix. The matrix A determines the dynamics of the system and the matrix B
models the way M controls act on it.
In practice, it is desirable to control the N components of the system with a low

number of controls, and the best would be to do it by a single one, in which case
M = 1.
System (2.1) is said to be controllable in time T when every initial datum x0 ∈ RN

can be driven to any final datum x1 in RN in time T . There is a necessary and
sufficient condition for controllability which is purely algebraic in nature. It is the
so-called Kalman condition: System (2.1) is controllable in some time T > 0 if and
only if

rank[B,AB, . . . , AN−1B] = N.(2.2)

There is a direct proof of this result which uses the representation of solutions of
(2.1) by means of the variations of constants formula. However, the methods we shall
develop along this article rely more on the dual (but completely equivalent!) problem
of observability of the adjoint system that we discuss now.
Consider the adjoint system

−ϕ′ +A∗ϕ = 0, 0 ≤ t ≤ T ; ϕ(T ) = ϕ0.(2.3)

Theorem 2.1. System (2.1) is controllable in time T if and only if the adjoint
system (2.3) is observable in time T , i.e., if there exists a constant C > 0 such that,
for every solution ϕ of (2.3),

|ϕ0|2 ≤ C
∫ T

0

|B∗ϕ|2dt.(2.4)

Both properties hold in all time T if and only if the Kalman rank condition (2.2) is
satisfied.
Remark 2.1. The equivalence between the controllability of the state equation

and the observability of the adjoint one is one of the most classical ingredients of
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the controllability theory of finite-dimensional systems (see, for instance, Theorem
1.10.2 in [55]). In general, observability refers to the possibility of recovering the
full solution by means of some partial measurements or observations. Here one is
allowed to measure the output Bϕ during the time interval [0, T ] and wishes to recover
complete information on the initial datum ϕ(0). Since in finite-dimensions all norms
are equivalent, this is equivalent to the observability inequality (2.4).

Sketch of the proof. We shall simply recall the proof of the fact that observability
implies controllability. It is the main property we shall use throughout the paper.
Our proof provides a constructive method for building controls.
We proceed in several steps.
Step 1. Construction of controls as minimizers of a quadratic functional.
Assume (2.4) holds and consider the quadratic functional J : RN → R:

J(ϕ0) =
1

2

∫ T

0

|B∗ϕ(t)|2dt− 〈x1, ϕ0〉+ 〈x0, ϕ(0)〉.(2.5)

If ϕ̃0 is a minimizer for J , since DJ(ϕ̃0) = 0, then the control v = B
∗ϕ̃, where ϕ̃ is

the solution of (2.3) with that datum at time t = T , is such that the solution x of
(2.1) satisfies the control requirement x(T ) = x1. Thus, it is sufficient to minimize
the functional J . We apply the direct method of the calculus of variations (DMCV).
The functional J being continuous, quadratic, and nonnegative, since we are in finite
space dimensions, it is sufficient to prove its coercivity, which holds if and only if the
Kalman condition is satisfied. Indeed, when (2.4) holds, the following variant holds
as well,6 with possibly a different constant C > 0:

|ϕ0|2 + |ϕ(0)|2 ≤ C
∫ T

0

|B∗ϕ|2dt,(2.6)

and the coercivity of J follows.
Step 2. Equivalence between the observability inequality (2.6) and the Kalman

condition.
Since we are in finite-dimensions and all norms are equivalent, (2.6) is equivalent

to the uniqueness property: Does the fact that B∗ϕ vanish for all 0 ≤ t ≤ T imply
that ϕ ≡ 0?
Taking into account that solutions ϕ are analytic in time, B∗ϕ vanishes if and only

if all the derivatives of B∗ϕ of any order at time t = T vanish. Since ϕ = eA
∗(t−T )ϕ0

this is equivalent to B∗[A∗]kϕ0 ≡ 0 for all k ≥ 0. But, according to the Cayley–
Hamilton theorem, this holds if and only if it is satisfied for all k = 0, . . . , N−1. There-
fore Bϕ ≡ 0 is equivalent to ϕ0 ≡ 0 if and only if rank [B∗, B∗A∗, . . . , B∗[A∗]N−1] =
N , which is obviously equivalent to (2.2).
Remark 2.2. The property of observability of the adjoint system (2.3) is equiv-

alent to the inequality (2.4) because of the linear character of the system. In general,
the problem of observability can be formulated as that of determining uniquely the
adjoint state everywhere in terms of partial measurements.

We emphasize that in the finite-dimensional context under consideration the ob-
servability inequality (2.4) is completely equivalent to (2.6). In other words, it is
totally equivalent to formulate the problem of estimating the initial or final data of

6Both inequalities are equivalent. This is so since ϕ(t) = eA
∗(t−T )ϕ0 and the operator eA

∗(t−T )

is bounded and invertible.
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the adjoint system. This is no longer true for time irreversible PDEs, as we shall see
when discussing the heat equation in section 8.2.
Remark 2.3. This proof of controllability also yields explicit bounds on the

controls. Indeed, since the functional J ≤ 0 at the minimizer, and in view of the
observability inequality (2.6), it follows that

||v|| ≤ 2
√
C[|x0|2 + |x1|2]1/2,(2.7)

C being the same constant as in (2.6). Therefore, we see that the observability constant
is, up to a multiplicative factor, the norm of the control map associating to the data
the control of minimal norm.

The reverse is also true. Assume for instance that the system is controllable and
that we have the bound

||v||L2(0,T ) ≤ C∗||x1||
for the initial datum x0 = 0 and for all final targets x1. Then, multiplying the state
equation satisfied by x by the adjoint state ϕ and integrating by parts, it follows that∫ T

0

〈v,B∗ϕ〉 = −〈x1, ϕ0〉.

These two facts imply (2.4) with C = (C∗)2.
Remark 2.4. It is important to note that in this finite-dimensional context, the

time T plays no role. In particular, whether a system is controllable (or its adjoint
observable) is independent of the time T of control. Note that the situation is totally
different for the wave equation. There, due to the finite velocity of propagation, the
time needed to control/observe waves from the boundary needs to be large enough,
of the order of the size of the ratio between the size of the domain and velocity of
propagation.

In fact, the main task to be undertaken in order to pass to the limit in numerical
approximations of control problems for wave equations as the mesh size tends to zero
is to explain why, even though at the finite-dimensional level the control time T is
irrelevant, it may play a key role for PDEs.

3. The Constant CoefficientWave Equation.

3.1. ProblemFormulation. Let us first consider the constant coefficient 1D wave
equation: 


utt − uxx = 0, 0 < x < 1, 0 < t < T,
u(0, t) = u(1, t) = 0, 0 < t < T,
u(x, 0) = u0(x), ut(x, 0) = u

1(x), 0 < x < 1.
(3.1)

In (3.1) u = u(x, t) describes the displacement of a vibrating string occupying (0, 1).
The energy of solutions of (3.1) is conserved in time, i.e.,

E(t) =
1

2

∫ 1

0

[
|ux(x, t)|2 + |ut(x, t)|2

]
dx = E(0) ∀0 ≤ t ≤ T.(3.2)

The problem of boundary observability of (3.1) can be formulated as follows: To
give sufficient conditions on T such that there exists C(T ) > 0 for which the following
inequality holds for all solutions of (3.1):

E(0) ≤ C(T )
∫ T

0

|ux(1, t)|2 dt.(3.3)
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Inequality (3.3), when it holds, guarantees that the total energy of solutions can
be “observed” from the boundary measurement on the extreme x = 1. The best
constant C(T ) in (3.3) is the so-called observability constant.7

As in finite space dimensions, the observability problem above is equivalent to the
following boundary controllability property: For any

(
y0, y1

) ∈ L2(0, 1) ×H−1(0, 1)
there exists v ∈ L2(0, T ) such that the solution of the controlled wave equation


ytt − yxx = 0, 0 < x < 1, 0 < t < T,
y(0, t) = 0; y(1, t) = v(t), 0 < t < T,
y(x, 0) = y0(x), yt(x, 0) = y

1(x), 0 < x < 1,
(3.4)

satisfies

y(x, T ) = yt(x, T ) = 0, 0 < x < 1.(3.5)

Let us explain below why controllability is a consequence of (3.3) by the minimiza-
tion method we developed in the previous section in the finite-dimensional setting,
which yields the control of the minimal L2(0, T )-norm.8

Given
(
y0, y1

) ∈ L2(0, 1)×H−1(0, 1), the control v ∈ L2(0, T ) is

v(t) = u∗x(1, t),(3.6)

where u∗ is the solution of (3.1) corresponding to initial data (u0,∗, u1,∗) ∈ H1
0 (0, 1)×

L2(0, 1) minimizing the functional9

J((u0, u1)) =
1

2

∫ T

0

|ux(1, t)|2dt+
∫ 1

0

y0u1dx−
∫ 1

0

y1u0dx(3.7)

in the space H1
0 (0, 1)× L2(0, 1).

Note that J is convex. The continuity of J in H1
0 (0, 1) × L2(0, 1) is guaranteed

by the fact that the solutions of (3.1) satisfy ux(1, t) ∈ L2(0, T ) (a fact that holds
also for the Dirichlet problem for the wave equation in several space dimensions; see
[57, 67, 68]). More, precisely, for all T > 0 there exists a constant C∗(T ) > 0 such
that, for all solution of (3.1),∫ T

0

[
|ux(0, t)|2 + |ux(1, t)|2

]
dt ≤ C∗(T )E(0).(3.8)

Thus, to apply the DMCV and to prove the existence of a minimizer for J , it is
sufficient to prove that it is coercive. This is guaranteed by the observability inequality
(3.3).
Let us see that the minimum of J provides the control. The functional J is of

class C1. Consequently, the gradient of J at the minimizer vanishes:

〈DJ((u0,∗, u1,∗)), (w0, w1)〉 =
∫ T

0

u∗x(1, t)wx(1, t)dt

+

∫ 1

0

y0w1dx− 〈y1, w0〉H−1×H1
0
= 0(3.9)

7Inequality (3.3) is just an example of a variety of similar observability problems: (a) one could
observe the energy concentrated on the extreme x = 0 or in the two extremes x = 0 and 1 simulta-
neously; (b) the L2(0, T )-norm of ux(1, t) could be replaced by some other norm; (c) one could also
observe the energy concentrated in a subinterval (α, β) of (0, 1), etc.

8We refer to Lions [67, 68] for a systematic analysis of the equivalence between controllability
and observability through the so-called Hilbert uniqueness method (HUM).

9The integral
∫ 1

0
y1u0dx represents the duality 〈y1, u0〉H−1×H1

0
.
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for all (w0, w1) ∈ H1
0 (0, 1) × L2(0, 1), where w stands for the solution of (3.1) with

initial data (w0, w1). By choosing the control as in (3.6) this identity yields

∫ T

0

v(t)wx(1, t)dt+

∫ 1

0

y0w1dx− 〈y1, w0〉H−1×H1
0
= 0.(3.10)

On the other hand, multiplying in (3.4) by w and integrating by parts, we get

∫ T

0

v(t)wx(1, t)dt+

∫ 1

0

y0w1dx− 〈y1, w0〉H−1×H1
0

−
∫ 1

0

y(T )wt(T )dx+ 〈yt(T ), w(T )〉H−1×H1
0
= 0.(3.11)

Combining these two identities we get
∫ 1

0
y(T )wt(T )dx − 〈yt(T ), w(T )〉H−1×H1

0
= 0

for all (w0, w1) ∈ H1
0 (0, 1) × L2(0, 1), which is equivalent to the exact controllability

condition (3.5).
This argument shows that observability implies controllability. The reverse is also

true. If controllability holds, then the linear map that to all initial data
(
y0, y1

) ∈
L2(0, 1)×H−1(0, 1) of the state equation (3.4) associates the control v of the minimal
L2(0, T )-norm is bounded. Multiplying the state equation (3.4) with that control by
u, solution of (3.1), and using (3.5), we obtain

∫ T

0

v(t)ux(1, t)dt+

∫ 1

0

y0u1dx− 〈y1, u0〉H−1×H1
0
= 0.(3.12)

Consequently,

∣∣∣∣
∫ 1

0

[y0u1 − y1u0]dx

∣∣∣∣ =
∣∣∣∣∣
∫ T

0

v(t)ux(1, t)dt

∣∣∣∣∣ ≤ ||v||L2(0,T )||ux(1, t)||L2(0,T )

≤ C||(y0, y1)||L2(0,1)×H−1(0,1)||ux(1, t)||L2(0,T )(3.13)

for all
(
y0, y1

) ∈ L2(0, 1)×H−1(0, 1), which implies the observability inequality (3.3).
Throughout this paper we shall mainly focus on the problem of observability.

However, in view of the equivalence above, all the results we present have immediate
consequences for controllability. The most important ones will also be stated. Note,
however, that controllability is not the only application of the observability inequali-
ties, which are also of systematic use in the context of inverse problems (Isakov [52]).
We shall discuss this issue briefly in open problem 9 in section 9.2.

3.2. Observability. The following holds.
Proposition 3.1. For any T ≥ 2, system (3.1) is observable. In other words,

for any T ≥ 2 there exists C(T ) > 0 such that (3.3) holds for any solution of (3.1).
Conversely, if T < 2, (3.1) is not observable, or, equivalently,

sup
u solution of (3.1)

[
E(0)∫ T

0
| ux(1, t) |2 dt

]
=∞.(3.14)

The proof of observability for T ≥ 2 can be carried out in several ways, includ-
ing Fourier series, multipliers (Komornik [57]; Lions [67, 68]), Carleman inequalities
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(Zhang [108]), and microlocal10 tools (Bardos, Lebeau, and Rauch [7]; Burq and
Gérard [12]). Let us explain how it can be proved using Fourier series. Solutions of
(3.1) can be written in the form

u =
∑
k≥1

(
ak cos(kπt) +

bk
kπ
sin(kπt)

)
sin(kπx),(3.15)

u0(x) =
∑
k≥1

ak sin(kπx), u1(x) =
∑
k≥1

bk sin(kπx).

It follows that E(0) = 1
4

∑
k≥1

[
a2kk

2π2 + b2k
]
.

On the other hand, ux(1, t) =
∑

k≥1(−1)k [kπak sin(kπt) + bk cos(kπt)] . Using
the orthogonality properties of sin(kπt) and cos(kπt) in L2(0, 2), it follows that∫ 2

0
|ux(1, t)|2 dt =

∑
k≥1

(
π2k2a2k + b

2
k

)
. The two identities above show that the ob-

servability inequality holds when T = 2 and therefore for any T > 2 as well. In fact,
in this particular case, we have

E(0) =
1

4

∫ 2

0

|ux(1, t)|2 dt.(3.16)

On the other hand, for T < 2 the observability inequality does not hold. Indeed,
suppose that T ≤ 2− 2δ with δ > 0. Solve

utt − uxx = 0, 0 < x < 1, 0 < t < T ; u(0, t) = u(1, t) = 0, 0 < t < T,(3.17)

with data at time t = T/2 with support in the subinterval (0, δ). This solution is
such that ux(1, t) = 0 for δ < t < T − δ since the segment x = 1, t ∈ (δ, T − δ)
remains outside the domain of influence of the space segment t = T/2, x ∈ (0, δ) (see
Figure 1).
Note that the observability time (T = 2) is twice the length of the string. This is

due to the fact that an initial disturbance concentrated near x = 1 may propagate to
the left (in the space variable) as t increases and only reach the extreme x = 1 of the
interval after bouncing at the left extreme x = 0 (as described in Figure 1).
As we have seen, in one dimension and with constant coefficients, the observability

inequality is easy to understand. The same results are true for sufficiently smooth
coefficients (BV -regularity suffices). However, when the coefficients are simply Hölder
continuous, these properties may fail, thereby contradicting an initial intuition (see
[18]).

4. 1D Finite Difference Semidiscretizations.

4.1. Orientation. In section 3 we showed how the observability/controllability
problem for the constant coefficient wave equation can be solved by Fourier series
expansions. We now address the problem of the continuous dependence of the observ-
ability constant C(T ) in (3.3) with respect to finite difference space semidiscretizations

10Microlocal analysis deals, roughly speaking, with the possibility of localizing functions and its
singularities not only in the physical space but also in the frequency domain. Localization in the
frequency domain may be done according to the size of frequencies but also to sectors in the euclidean
space in which they belong to. This allows introducing the notion of microlocal regularity; see, for
instance, [47].
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Fig. 1 Wave localized at t = 0 near the endpoint x = 1 that propagates with velocity 1 to the left,
bounces at x = 0, and reaches x = 1 again in a time of the order of 2.

as the parameter h of the discretization tends to zero. This problem arises naturally
in the numerical implementation of the controllability and observability properties of
the continuous wave equation but is of independent interest in the analysis of discrete
models for vibrations.
There are several important facts and results that deserve emphasis and that we

shall discuss below:
• The observability constant for the semidiscrete model tends to infinity for
any T as h → 0. This is related to the fact that the velocity of propagation
of solutions tends to zero as h→ 0 and the wavelength of solutions is of the
same order as the size of the mesh.

• As a consequence of this fact and of the Banach–Steinhaus theorem, there are
initial data for the wave equation for which the controls of the semidiscrete
models diverge. This proves that one cannot simply rely on the classical
convergence (consistency + stability) analysis of the underlying numerical
schemes to design algorithms for computing the controls.

• The observability constant may be made uniform if the high frequencies are
filtered in an appropriate manner.

4.2. Finite Difference Approximations. Given N ∈ N we define h = 1/(N +
1) > 0. We consider the mesh {xj = jh, j = 0, . . . , N + 1} which divides [0, 1] into
N + 1 subintervals Ij = [xj , xj+1], j = 0, . . . , N.
Consider the following finite difference approximation of the wave equation (3.1):



u′′j − 1

h2 [uj+1 + uj−1 − 2uj ] = 0, 0 < t < T, j = 1, . . . , N,
uj(t) = 0, j = 0, N + 1, 0 < t < T,
uj(0) = u

0
j , u

′
j(0) = u

1
j , j = 1, . . . , N,

(4.1)

which is a coupled system of N linear differential equations of second order. In it
the function uj(t) provides an approximation of u(xj , t) for all j = 1, . . . , N, u being
the solution of the continuous wave equation (3.1). The conditions u0 = uN+1 = 0
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take account of the homogeneous Dirichlet boundary conditions, and the second order
differentiation with respect to x has been replaced by the three-point finite difference.
We shall use a vector notation to simplify the expressions. In particular, the

column vector

,u(t) =



u1(t)
...

uN (t)


(4.2)

will represent the whole set of unknowns of the system. Introducing the matrix

Ah =
1

h2



2 −1 0 0

−1 . . .
. . . 0

0
. . .

. . . −1
0 0 −1 2


 ,(4.3)

the system (4.1) reads as follows:

,u′′(t) +Ah,u(t) = 0, 0 < t < T ; ,u(0) = ,u0, ,u′(0) = ,u1.(4.4)

The solution ,u of (4.4) depends also on h, but we shall denote it by ,u for simplicity.
The energy of the solutions of (4.1) is

Eh(t) =
h

2

N∑
j=0

[
| u′j |2 +

∣∣∣∣uj+1 − uj
h

∣∣∣∣
2
]
,(4.5)

and it is constant in time. It is also a natural discretization of the continuous energy
(3.2).
The problem of observability of system (4.1) can be formulated as follows: To

find T > 0 and Ch(T ) > 0 such that

Eh(0) ≤ Ch(T )

∫ T

0

∣∣∣∣uN (t)h
∣∣∣∣
2

dt(4.6)

holds for all solutions of (4.1).
Observe that | uN/h |2 is a natural approximation11 of | ux(1, t) |2 for the solution

of the continuous system (3.1). Indeed ux(1, t) ∼ [uN+1(t) − uN (t)]/h and, taking
into account that uN+1 = 0, it follows that ux(1, t) ∼ −uN (t)/h.
System (4.1) is finite-dimensional. Therefore, if observability holds for some T >

0, then it holds for all T > 0, as we have seen in section 3.
We are interested mainly in the uniformity of the constant Ch(T ) as h → 0. If

Ch(T ) remains bounded as h → 0, we say that system (4.1) is uniformly observable
as h → 0. Taking into account that the observability of the limit system (3.1) holds
only for T ≥ 2, it would be natural to expect T ≥ 2 to be a necessary condition for
the uniform observability of (4.1). This is indeed the case but, as we shall see, the
condition T ≥ 2 is far from being sufficient. In fact, uniform observability fails for all
T > 0. In order to explain this fact it is convenient to analyze the spectrum of (4.1).

11Here and in what follows uN refers to the Nth component of the solution �u of the semidiscrete
system, which obviously depends also on h.



208 ENRIQUE ZUAZUA

Let us consider the eigenvalue problem

− [wj+1 + wj−1 − 2wj ] /h
2 = λwj , j = 1, . . . , N ; w0 = wN+1 = 0.(4.7)

The spectrum can be computed explicitly in this case (Isaacson and Keller [51]):

λhk =
4

h2
sin2

(
kπh

2

)
, k = 1, . . . , N,(4.8)

and the corresponding eigenvectors are

,wh
k = (wk,1, . . . , wk,N )

T
: wk,j = sin(kπjh), k, j = 1, . . . , N.(4.9)

Obviously, λhk → λk = k2π2, as h → 0 for each k ≥ 1, λk = k2π2 being the kth
eigenvalue of the continuous wave equation (3.1). On the other hand we see that
the eigenvectors ,wh

k of the discrete system (4.7) coincide with the restriction to the
meshpoints of the eigenfunctions wk(x) = sin(kπx) of the continuous wave equation
(3.1).12

According to (4.8) we have
√
λhk =

2
h sin

(
kπh
2

)
, and therefore, in a first approxi-

mation, we have ∣∣∣∣
√
λhk − kπ

∣∣∣∣ ∼ k3π3h2

24
.(4.10)

This indicates that the spectral convergence is uniform only in the range k � h−2/3.
Thus, one cannot solve the problem of uniform observability for the semidiscrete
system (4.1) as a consequence of the observability property of the continuous wave
equation and a perturbation argument with respect to h.

4.3. Nonuniform Observability. The following identity holds (see [48, 49]).
Lemma 4.1. For any h > 0 and any eigenvector of (4.7) associated with the

eigenvalue λ,

h
N∑
j=0

∣∣∣∣wj+1 − wj

h

∣∣∣∣
2

=
2

4− λh2

∣∣∣wN

h

∣∣∣2 .(4.11)

We now observe that the largest eigenvalue λhN of (4.7) is such that λ
h
Nh

2 →
4 as h→ 0 and note the following result on nonuniform observability.
Theorem 4.2. For any T > 0 it follows that, as h→ 0,

sup
u solution of (4.1)

[
Eh(0)∫ T

0
| uN/h |2 dt

]
→ ∞.(4.12)

Proof of Theorem 4.2. We consider solutions of (4.1) of the form ,uh = cos(
√
λhN t),w

h
N ,

where λhN and ,w
h
N are the Nth eigenvalue and eigenvector of (4.7), respectively. We

have

Eh(0) =
h

2

N∑
j=0

∣∣∣∣∣w
h
N,j+1 − wh

N,j

h

∣∣∣∣∣
2

(4.13)

12This is a nongeneric fact that occurs only for the constant coefficient 1D problem with uniform
meshes.
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Fig. 2 Left: Square roots of the eigenvalues in the continuous and discrete cases (finite difference
semidiscretization). The gaps are clearly independent of k in the continuous case and of
order h for large k in the discrete one. Right: Dispersion diagram for the piecewise linear
finite element space semidiscretization versus the continuous wave equation.

and

∫ T

0

∣∣∣∣uhNh
∣∣∣∣
2

dt =

∣∣∣∣∣w
h
N,N

h

∣∣∣∣∣
2 ∫ T

0

cos2
(√

λhN t

)
dt.(4.14)

Taking into account that λhN → ∞ as h→ 0, it follows that

∫ T

0

cos2
(√

λhN t

)
dt→ T/2 as h→ 0.(4.15)

By combining (4.11), (4.13), (4.14), and (4.15), (4.12) follows immediately.
It is important to note that the solution we have used in the proof of this theorem

is not the only impediment for the uniform observability inequality to hold.
Indeed, let us consider the following solution of the semidiscrete system (4.1),

constituted by the last two eigenvectors:

,u =
1√
λN

[
exp(i

√
λN t),wN − exp(i

√
λN−1t),wN−1

]
.(4.16)

This solution is a simple superposition of two monochromatic semidiscrete waves
corresponding to the last two eigenfrequencies of the system. The total energy of this
solution is of the order 1 (because each of both components has been normalized in
the energy norm and the eigenvectors are orthogonal one to each other). However,
the trace of its discrete normal derivative is of the order of h in L2(0, T ). This is due
to two facts.

• First, the trace of the discrete normal derivative of each eigenvector is very
small compared to its total energy.

• Second, and more important, the gap between √
λN and

√
λN−1 is of the

order of h, as is shown in Figure 2, left. This wave packet then has a group
velocity of the order of h.
By Taylor expansion, the difference between the two time-dependent complex
exponentials exp(i

√
λN t) and exp(i

√
λN−1t) is of the order Th, and we need

a time T of the order of 1/h to guarantee an observation independent of h.
This fact is represented in Figure 3.
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Fig. 3 Time evolution of solution (4.16) for h = 1/61 (N = 60) and 0 ≤ t ≤ 120. It is clear that,
according to the figure, the solution seems to exhibit a time-periodicity property with period
τ of the order of τ ∼ 50. Note, however, that all solutions of the wave equation are time-
periodic of period 2. In the figure it is also clear that fronts propagate in space at velocity of
the order of 1/50. This is in agreement with the prediction of the theory in the sense that
high-frequency wave packets travel at a group velocity of the order of h.

This idea of building wave packets may be used to show that the observability con-
stant has to blow up at infinite order as h→ 0. To do this it is sufficient to proceed as
above but combining an increasing number of eigenfrequencies. Actually, Micu in [75]
proved that the constant Ch(T ) blows up exponentially by means of a careful analysis
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of the biorthogonal sequences to the family of exponentials {exp(i√λkt)}k=1,...,N as
h→ 0.
All these high-frequency pathologies are in fact very closely related to the notion

of group velocity. We refer to [105, 101] for an in-depth analysis of this notion that
we discuss briefly in the context of this example.
Since the eigenvectors ,wk are sinusoidal functions (see (4.9)) the solutions of the

semidiscrete system may be written as linear combinations of complex exponentials

(in space-time): exp[±ikπ[
√
λk

kπ t− x]].
In view of this, we see that each monochromatic wave propagates at a speed

√
λk
kπ

=
2sin(kπh/2)

kπh
=
ωh(ξ)

ξ

∣∣∣∣
{ξ=kπh}

= ch(ξ)

∣∣∣∣
{ξ=kπh}

,(4.17)

with ωh(ξ) = 2sin(ξ/2). This is the so-called phase velocity. The velocity of propaga-
tion of monochromatic semidiscrete waves (4.17) turns out to be bounded above and
below by positive constants, independently of h, i.e., 0 < α ≤ ch(ξ) ≤ β < ∞ for all
h > 0, ξ ∈ [0, π]. Note that [0, π] is the relevant range of frequencies. Indeed, ξ = jπh
and j = 1, . . . , N , Nh = 1− h.
But wave packets may travel at a different speed because of the cancellation

phenomena we discussed above. The corresponding speed for those semidiscrete wave
packets is given by the derivative of ωh(·) (see [101]). At high frequencies (j ∼ N)
the derivative of ωh(ξ) at ξ = Nπh = π(1− h) is of the order of h and therefore the
wave packet propagates with velocity of the order of h.
Note that the fact that this group velocity is of the order of h is equivalent13 to

the fact that the gap between
√
λN−1 and

√
λN is of order h.

According to this analysis, the group velocity being bounded below is a necessary
condition for the uniform observability inequality to hold. Moreover, this is equivalent
to a uniform spectral gap condition.
The convergence property of the numerical scheme guarantees only that the group

velocity is correct for low-frequency wave packets.14 The negative results we have
mentioned above are a new reading of well-known pathologies of finite difference
schemes for the wave equation.
The careful analysis of this negative example is useful to design possible remedies,

i.e., to modify the numerical scheme in order to reestablish the uniform observability
inequality. The first remedy is very natural: To cut off the high frequencies or, in
other words, to ignore the high-frequency components of the numerical solutions. This
method is analyzed in the following section.

4.4. Fourier Filtering. Filtering works as soon as we deal with solutions where
the only Fourier components are those corresponding to the eigenvalues λ ≤ γh−2

with 0 < γ < 4 or with indices 0 < j < δh−1 with 0 < δ < 1, and the observability

13Defining group velocity as the derivative of ωh, i.e., of the curve in the dispersion diagram (see
Figure 2), is a natural consequence of the classical properties of the superposition of linear harmonic
oscillators with close but not identical phases (see [24]). There is a one-to-one correspondence
between the group velocity and the spectral gap which may be viewed as a discrete derivative of this
diagram. In particular, when the group velocity decreases, the gap between consecutive eigenvalues
also decreases.

14Note that in Figure 2, both for finite differences and elements, the semidiscrete and continuous
curves are tangent at low frequencies. This is in agreement with the convergence property of the
numerical algorithm under consideration and with the fact that low-frequency wave packets travel
essentially with the velocity of the continuous model.
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inequality becomes uniform. Note that these classes of solutions correspond to taking
projections of the complete solutions by cutting off all frequencies with γh−2 < λ <
4h−2.
It is important to observe that the high-frequency pathologies cannot be avoided

by simply taking, for instance, a different approximation of the discrete normal deriva-
tive since the fact that the group velocity vanishes is due to the scheme itself and,
therefore, cannot be compensated by suitable boundary measurements.
The following classical result due to Ingham in the theory of nonharmonic Fourier

series (see Ingham [50] and Young [106]) is useful for proving the uniform observability
of filtered solutions.
Ingham’s theorem. Let {µk}k∈Z be a sequence of real numbers such that µk+1−

µk ≥ γ > 0 for all k ∈ Z. Then for any T > 2π/γ there exists a positive constant
C(T, γ) > 0 such that

1

C(T, γ)

∑
k∈Z

| ak |2≤
∫ T

0

∣∣∣∣∣
∑
k∈Z

ake
iµkt

∣∣∣∣∣
2

dt ≤ C(T, γ)
∑
k∈Z

| ak |2(4.18)

for all sequences of complex numbers {ak} ∈ 42.
Remark 4.1. Ingham’s inequality can be viewed as a generalization of the or-

thogonality property of trigonometric functions we used to prove the observability of
the 1D wave equation in section 3.
Ingham’s inequality allows showing that, as soon as the gap condition is satisfied,

there is uniform observability provided the time is large enough.
All these facts confirm that a suitable cutoff or filtering of the spurious numerical

high frequencies may be a cure for these pathologies. Let us now describe the basic
Fourier filtering mechanism. We recall that solutions of (4.1) can be developed in

Fourier series as follows: ,u =
∑N

k=1(ak cos(
√
λhkt) +

bk√
λh
k

sin(
√
λhkt)),w

h
k , where ak, bk

are the Fourier coefficients of the initial data, i.e., ,u0 =
∑N

k=1 ak ,w
h
k , ,u

1 =
∑N

k=1 bk ,w
h
k .

Given 0 < δ < 1, we introduce the following classes of solutions of (4.1):

Cδ(h)=

,u sol. of (4.1) s.t. ,u =

[δ/h]∑
k=1


ak cos

(√
λhkt

)
+
bk√
λhk

sin

(√
λhkt

),wh
k


 ,

(4.19)
in which the high frequencies corresponding to the indices j > [δ(N + 1)] have been
cut off. As a consequence of Ingham’s inequality and the analysis of the gap of the
spectra of the semidiscrete systems we have the following result.15

Theorem 4.3 (see [48, 49]). For any δ > 0 there exists T (δ) > 0 such that for
all T > T (δ) there exists C = C(T, δ) > 0 such that

1

C
Eh(0) ≤

∫ T

0

∣∣∣∣uN (t)h
∣∣∣∣
2

dt ≤ CEh(0)(4.20)

for every solution u of (4.1) in the class Cδ(h) and for all h > 0. Moreover, the
minimal time T (δ) for which (4.20) holds is such that T (δ) → 2 as δ → 0 and
T (δ)→ ∞ as δ → 1.
Remark 4.2. Theorem 4.3 guarantees the uniform observability in each class

Cδ(h) for all 0 < δ < 1, provided the time T is larger than T (δ).

15These results may also be obtained using discrete multiplier techniques [48, 49].
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The last statement in the theorem shows that when the filtering parameter δ tends
to zero, i.e., when the solutions under consideration contain fewer and fewer frequen-
cies, the time for uniform observability converges to T = 2, which is the corresponding
one for the continuous equation. This is in agreement with the observation that the
group velocity of the low-frequency semidiscrete waves coincides with the velocity of
propagation in the continuous model.

By contrast, when the filtering parameter increases, i.e., when the solutions under
consideration contain more and more frequencies, the time of uniform control tends
to infinity. This is in agreement and explains further the negative result showing that,
in the absence of filtering, there is no finite time T for which the uniform observability
inequality holds.

The proof of Theorem 4.3 below provides an explicit estimate on the minimal
observability time in the class Cδ(h): T (δ) = 2/ cos(πδ/2).
Remark 4.3. In the context of the numerical computation of the boundary control

for the wave equation the need of an appropriate filtering of the high frequencies was
observed by Glowinski [38] and further investigated numerically by Asch and Lebeau
in [2].

4.5. Conclusion and Controllability Results. We have shown that the uniform
observability property of the finite difference approximations (4.1) fails for any T > 0
due to high-frequency wave packets with zero group velocity. On the other hand,
we have proved that by filtering the high frequencies or, in other words, considering
solutions in the classes Cδ(h) with 0 < δ < 1, the uniform observability holds in a
minimal time T (δ) that satisfies T (δ)→ ∞ as δ → 1, T (δ)→ 2 as δ → 0.
Observe that, as δ → 0, we recover the minimal observability time T = 2 of

the continuous wave equation (3.1). This allows us to obtain, for all T > 2, the
observability property of the continuous wave equation (3.1) as the limit h → 0 of
uniform observability inequalities for the semidiscrete systems (4.1). Indeed, given
any T > 2 there exists δ > 0 such that T > T (δ) and, consequently, by filtering the
high frequencies corresponding to the indices k > δN , the uniform observability in
time T is guaranteed.
Before describing the consequences of these results in the context of controllabil-

ity, it is important to distinguish two notions on the controllability of any evolution
system, regardless of whether it is finite- or infinite-dimensional:

• to control exactly to zero the whole solution for initial data in a given sub-
space;

• to control the projection of the solution over a given subspace for all initial
data.

In the present case, the controlled state equation under consideration is as follows:

y′′j − 1

h2 [yj+1 + yj−1 − 2yj ] = 0, 0 < t < T, j = 1, . . . , N,
y0(t) = 0; yN+1(t) = v(t), 0 < t < T,
yj(0) = y

0
j , y

′
j(0) = y

1
j , j = 1, . . . , N.

(4.21)

As we shall see below, for any given T > 0 and initial data (,y0, ,y1), there exists a
control vh ∈ L2(0, T ) such that

,y(T ) = ,y ′(T ) = 0.(4.22)

However, this does not mean that the controls will be bounded as h tends to zero.
In fact they are not, even if T ≥ 2, as one could predict from the previous results on
observability.
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We have the following main results:
• Taking into account that for all h > 0 the Kalman rank condition is satisfied,
for all T > 0 and all h > 0 the semidiscrete system (4.21) is controllable.
In other words, for all T > 0, h > 0 and initial data (,y0, ,y1), there exists
v ∈ L2(0, T ) such that the solution ,y of (4.21) satisfies (4.22). Moreover,
the control v of the minimal L2(0, T )-norm can be built as in section 3 by
minimizing the functional

Jh((,u
0, ,u1)) =

1

2

∫ T

0

∣∣∣∣uN (t)h
∣∣∣∣
2

dt+ h

N∑
j=1

y0ju
1
j − h

N∑
j=1

y1ju
0
j(4.23)

over the space of all initial data (,u0, ,u1) for the adjoint semidiscrete system
(4.1).
This strictly convex and continuous functional is coercive thanks to the ob-
servability inequality (4.6) and, consequently, has a unique minimizer. The
control we are looking for is then

vh(t) = u
∗
N (t)/h, 0 < t < T,(4.24)

where ,u∗ is the solution of the semidiscrete adjoint system (4.1), correspond-
ing to the initial data (,u0,∗, ,u1,∗) minimizing the functional Jh.
In view of Remark 2.2 and the observability inequality (4.6), we deduce that

||vh||L2(0,T ) ≤ 2
√
Ch(T )||(y0, y1)||∗,h,(4.25)

where || · ||∗,h denotes the norm

||(y0, y1)||∗,h = sup
(u0

j
,u1

j
)j=1,...,N



∣∣∣∣∣∣h

N∑
j=1

y0ju
1
j − h

N∑
j=1

y1ju
0
j

∣∣∣∣∣∣
/
E

1/2
h (u0, u1)


 .

(4.26)
This norm converges as h → 0 to the norm in L2(0, 1) × H−1(0, 1). It can
also be written in terms of the Fourier coefficients and becomes a weighted
euclidean norm whose weights are uniformly (with respect to h) equivalent
to those of the continuous L2 ×H−1-norm.

• For all T > 0 the constant Ch(T ) diverges as h → 0. This shows that there
are initial data for the wave equation in L2(0, 1) × H−1(0, 1) such that the
controls of the semidiscrete systems vh = vh(t) diverge as h → 0. There are
different ways of making this result precise. For instance, given initial data
(y0, y1) ∈ L2(0, 1) × H−1(0, 1) for the continuous system, we can consider
in the semidiscrete control system (4.21) the initial data that take the same
Fourier coefficients as (y0, y1) for the indices j = 1, . . . , N . It then follows
by the Banach–Steinhaus theorem that, because of the divergence of the
observability constant Ch(T ), there is necessarily some initial data (y

0, y1) ∈
L2(0, 1) × H−1(0, 1) for the continuous system such that the corresponding
controls vh for the semidiscrete system diverge in L

2(0, T ) as h→ 0. Indeed,
assume that for any initial data (y0, y1) ∈ L2(0, 1) ×H−1(0, 1), the controls
vh remain uniformly bounded in L

2(0, T ) as h → 0. Then, according to the
uniform boundedness principle, we would deduce that the maps that associate
the controls vh to the initial data are also uniformly bounded. But, according
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to Remark 2.2, this implies the uniform boundedness of the observability
constant Ch(T ), which we know blows up.
This lack of convergence is in fact easy to understand. As we have shown
above, the semidiscrete system generates a lot of spurious high-frequency
oscillations. The control of the semidiscrete system has to take these into
account. When doing this it gets further and further away from the true
control of the continuous wave equation, as the numerical experiments in the
following section illustrate.

• The observability inequality is uniform in the class of filtered solutions Cδ(h)
for T > T (δ). As a consequence of this, one can control uniformly the projec-
tion of the solutions of the semidiscretized systems over subspaces in which
the high frequencies have been filtered. More precisely, if the control require-
ment (4.22) is weakened to

πδ,y(T ) = πδ,y
′(T ) = 0,(4.27)

where πδ denotes the projection of the solution of the semidiscrete system
(4.21) over the subspace of the eigenfrequencies involved in the filtered space
Cδ(h), then the corresponding control remains uniformly bounded as h → 0,
provided T > T (δ). The control that produces (4.27) can be obtained by
minimizing the functional Jh in (4.23) over the subspace Cδ(h). Note that the
uniform (with respect to h) coercivity of this functional and, consequently,
the uniform bound on the controls hold as a consequence of the uniform
observability inequality.

• Moreover, one may recover the controllability property of the continuous wave
equation as a limit of this partial controllability results since, as h → 0, the
projections πδ end up covering the whole range of frequencies.
Theorem 4.4. Assume that T > T (δ) as in Theorem 4.3 for some 0 < δ < 1.
Fix initial data (y0, y1) ∈ L2(0, 1)×H−1(0, 1) for the wave equation. For any
h > 0 consider the initial data (y0h, y

1
h) whose first N Fourier coefficients

coincide with those of (y0, y1).
Then
(a) the corresponding controls vh in the semidiscrete system (4.21) satisfying
(4.27) are bounded in L2(0, T );

(b) the controls vh converge as h → 0 to a control v ∈ L2(0, T ) of the
minimal L2(0, T )-norm of the wave equation (3.4) such that (3.5) holds.

It is important to note that the time of control depends on the filtering
parameter δ in the projections πδ. But, as we mentioned above, for any
T > 2 there is a δ ∈ (0, 1) for which T > T (δ) and such that the uniform
(with respect to h) results apply.
We refer to [65] for the details of the proof of a similar convergence result in
the context of the space semidiscretization by finite differences of the beam
equation. The proof combines standard arguments in Γ-convergence [28] and
the numerical analysis of PDEs.

Remark 4.4. In [48] and [49], in one space dimension, similar results were
proved for the finite element space semidiscretization of the wave equation (3.1) as
well. This is in agreement with the plot of the dispersion diagram in Figure 4, right.
This time the discrete spectrum and, consequently, the dispersion diagram lie above
the one corresponding to the continuous wave equation. However, the group velocity
of high-frequency numerical solutions vanishes again. This is easily seen on the slope
of the discrete dispersion curve.
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Fig. 4 Plot of the initial datum to be controlled for the string occupying the space interval 0 < x < 1
(left) and of the time evolution of the exact control for the wave equation in time T = 4 with
this initial data (right).

4.6. Numerical Experiments. In this section we briefly illustrate by some simple
but convincing numerical experiments the theory provided along this section. These
experiments have been developed by Rasmussen [91] using MATLAB.
We consider the wave equation in the space interval (0, 1) with control time T = 4.
We address the case of continuous and piecewise constant initial data y0 of the

form in Figure 4 (left) together with y1 ≡ 0. In this simple situation and when
the control time T = 4 the Dirichlet control can be computed at the endpoint x =
1 explicitly (Figure 4, right). This can be done using Fourier series and the time
periodicity of solutions of the adjoint system (with time period = 2) which guarantees
complete time orthogonality of the different Fourier components when T = 4.
Obviously the time T = 4 is sufficient for exact controllability to hold, the minimal

control time being T = 2.
We now consider the finite difference semidiscrete approximation of the wave

equation by finite differences. First of all, we ignore all discussion of the present
section concerning the need for filtering. Thus, we merely compute the exact control
of the semidiscrete system (4.21). This is done as follows. As described in section
4.5, the control is characterized through the minimization of the functional Jh in
(4.23) over the space of all solutions of the adjoint equation (3.1). This allows writing
the control vh as the solution of an equation of the form Λh(vh) = {−y1, y0}, where
{y0, y1} is the initial datum to be controlled.
The operator Λh can be computed by first solving the adjoint system and then

the state equation with the normal derivative of the adjoint state as boundary datum
and starting from equilibrium at time t = T (see [67, 68]). Of course, in practice,
we do not deal with the continuous adjoint equation but rather with a fully discrete
approximation. We simply take the centered discretization in time with time step
∆t = 0.99∆x (∆x = h), which, of course, guarantees the convergence of the scheme
and the fact that our computations yield results which are very close to the semidis-
crete case. Applying this procedure to the initial datum under consideration, we get
the exact control.
In Figure 5 we show the evolution of the control of the discrete problem as the

number of meshpoints N increases, or, equivalently, when the mesh size h tends to
zero. We see that when N = 20, a low number of meshpoints, the control captures
essentially the form of the continuous control in Figure 4 (right) but with some extra
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Fig. 5 Divergent evolution of the control, in the absence of filtering, when the number N of mesh-
points increases.

unwanted oscillations. The situation is very similar when N = 40. But when N = 100
we see that these oscillations become wild, and forN = 160 the dynamics of the control
is completely chaotic. This is a good example of lack of convergence in the absence
of filtering and confirms the predictions of the theory.
We do the same experiment but now with filtering parameter = 0.6, which has

been chosen in order to guarantee the uniform observability of the filtered solutions
of the adjoint semidiscrete and fully discrete (with ∆t = 0.99∆x) schemes in time
T = 4 and, consequently, the convergence of controls as h→ 0 as well. The decay of
the error as the number of meshpoints N increases, or, equivalently, when h → 0, is
obvious in the figure.
The control for the filtered problem is obtained by restricting and inverting the

operator Λh above to the solutions of the adjoint system that involve only the Fourier
components that remain after filtering. Theory predicts convergence of controls in
L2(0, T ). The numerical experiments we draw in Figure 6 confirm this fact. These
figures exhibit a mild Gibbs phenomenon which is compatible with L2-convergence.

5. The MultidimensionalWave Equation. In several space dimensions the ob-
servability problem for the wave equation is much more complex and cannot be solved
using Fourier series. The velocity of propagation is still one for all solutions but energy
propagates along bicharacteristic rays.
However, before going further let us give the precise definition of bicharacter-

istic ray. Consider the wave equation with a scalar, positive, and smooth variable
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Fig. 6 Convergent evolution of the control, with filtering parameter = 0.6, when the number N of
meshpoints increases.

coefficient a = a(x):

utt − div(a(x)∇u) = 0.(5.1)

Bicharacteristic rays solve the Hamiltonian system{
x′(s) = −a(x)ξ; t′(s) = τ,
ξ′(s) = ∇a(x)|ξ|2; τ ′(s) = 0.(5.2)

Rays describe the microlocal propagation of energy. The projections of the bicharac-
teristic rays in the (x, t) variables are the rays of geometric optics that play a fun-
damental role in the analysis of the observation and control properties through the
GCC. As time evolves, the rays move in the physical space according to the solutions
of (5.2). Moreover, the direction in the Fourier space (ξ, τ) in which the energy of
solutions is concentrated as they propagate is given precisely by the projection of the
bicharacteristic ray in the (ξ, τ) variables. When the coefficient a = a(x) is constant,
the ray is a straight line and carries the energy outward, which is always concentrated
in the same direction in the Fourier space, as expected. But for variable coefficients
the dynamics is more complex. This Hamiltonian system describes the dynamics of
rays in the interior of the domain where the equation is satisfied. When rays reach
the boundary they are reflected according to the laws of geometric optics.16

When the coefficient a = a(x) varies in space, the dynamics of this system may
be quite complex and can lead to some unexpected behavior [74].

16Note, however, that tangent rays may be diffractive or even enter the boundary. We refer to [7]
for a deeper discussion of these issues.
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Fig. 7 Ray that propagates inside the domain Ω following straight lines that are reflected on the
boundary according to the laws of geometric optics.

Let us now address the control problem for smooth domains17 in the constant
coefficient case.
Let Ω be a bounded domain of Rn, n ≥ 1, with boundary Γ of class C2, let ω

be an open and nonempty subset of Ω, and let T > 0. Consider the linear controlled
wave equation in the cylinder Q = Ω× (0, T ):


ytt −∆y = f1ω in Q,
y = 0 on Σ,
y(x, 0) = y0(x), yt(x, 0) = y

1(x) in Ω.
(5.3)

In (5.1) Σ represents the lateral boundary of the cylinder Q, i.e., Σ = Γ × (0, T ), 1ω
is the characteristic function of the set ω, y = y(x, t) is the state, and f = f(x, t) is
the control variable. Since f is multiplied by 1ω the action of the control is localized
in ω.
When (y0, y1) ∈ H1

0 (Ω) × L2(Ω) and f ∈ L2(Q), the system (5.1) has a unique
solution y ∈ C ([0, T ];H1

0 (Ω)
) ∩ C1

(
[0, T ];L2(Ω)

)
.

The problem of controllability, generally speaking, is as follows: Given (y0, y1) ∈
H1

0 (Ω)× L2(Ω), find f ∈ L2(Q) such that the solution of system (5.1) satisfies

y(T ) ≡ yt(T ) ≡ 0.(5.4)

The method of section 3, the so-called HUM, shows that the exact controllability
property is equivalent to the following observability inequality:

∣∣∣∣(u0, u1
)∣∣∣∣2

L2(Ω)×H−1(Ω)
≤ C

∫ T

0

∫
ω

u2dxdt(5.5)

for every solution of the adjoint uncontrolled system

utt −∆u = 0 in Q,
u = 0 on Σ,
u(x, 0) = u0(x), ut(x, 0) = u

1(x) in Ω.
(5.6)

17We refer to Grisvard [42] for a discussion of these problems in the context of nonsmooth domains.
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Fig. 8 A geometric configuration in which the GCC is not satisfied, whatever T > 0 is. The domain
where waves evolve is a square. The control is located on a subset of two adjacent sides of
the boundary, leaving a small vertical subsegment uncontrolled. There is a horizontal line
that constitutes a ray that bounces back and forth for all time perpendicularly on two points
of the vertical boundaries where the control does not act.

Roughly speaking, the observability inequality holds if and only if the GCC is
satisfied (see, for instance, Bardos, Lebeau, and Rauch [7] and Burq and Gérard
[12]). For instance, when the domain is a ball, the subset of the boundary where the
control is being applied needs to contain a point of each diameter. Otherwise, if a
diameter skips the control region, it may support solutions that are not observed (see
Ralston [88]). In the case of the square domain Ω, observability/controllability fail if
the control is supported on a set which is strictly smaller than two adjacent sides, as
shown in Figure 8.
Several remarks are in order.
Remark 5.1.
(a) Since we are dealing with solutions of the wave equation, for the GCC to

hold, the control time T has to be sufficiently large due to the finite speed
of propagation, the trivial case ω = Ω being the exception. However, the
time being large enough does not suffice, since the control subdomain ω needs
to satisfy a geometric condition for the GCC to be fulfilled in finite time.
Figure 8 provides an example of this fact.

(b) Most of the literature on the controllability of the wave equation has been
written in the framework of the boundary control problem discussed in the
previous section. The control problems formulated above for (5.1) are usu-
ally referred to as internal controllability problems since the control acts on
the subset ω of Ω. The latter is easier to deal with since it avoids consider-
ing nonhomogeneous boundary conditions, in which case solutions have to be
defined in the sense of transposition [67, 68].

Let us now discuss what is known about (5.5):
(a) Using multiplier techniques, Ho [46] proved that if one considers subsets of
Γ of the form Γ(x0) =

{
x ∈ Γ : (x− x0) · n(x) > 0} for some x0 ∈ Rn (we

denote by n(x) the outward unit normal to Ω in x ∈ Γ and by · the scalar
product in Rn) and if T > 0 is large enough, the following boundary observ-
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ability inequality holds:

∣∣∣∣(u0, u1
)∣∣∣∣2

H1
0 (Ω)×L2(Ω)

≤ C
∫ T

0

∫
Γ(x0)

∣∣∣∣∂u∂n
∣∣∣∣
2

dσdt(5.7)

for all
(
u0, u1

) ∈ H1
0 (Ω)×L2(Ω), which is the observability inequality that is

required to solve the boundary controllability problem.
Later, (5.7) was proved in [67, 68] for any T > T (x0) = 2 ‖ x − x0 ‖L∞(Ω).
This is the optimal observability time that one may derive by means of this
multiplier (see Osses [86] for other variants).
Proceeding as in [67], one can easily prove that (5.7) implies (5.5) when ω is
a neighborhood of Γ(x0) in Ω, i.e., ω = Ω ∩Θ, where Θ is a neighborhood of
Γ(x0) inRn, with T > 2 ‖ x−x0 ‖L∞(Ω\ω). In particular, exact controllability
holds when ω is a neighborhood of the boundary of Ω.

(b) Bardos, Lebeau, and Rauch [7] proved that, in the class of C∞ domains, the
observability inequality (5.5) holds if and only if the pair (ω, T ) satisfies the
GCC in Ω: Every ray of geometric optics that propagates in Ω and is reflected
on its boundary Γ intersects ω in time less than T .
This result was proved by means of microlocal analysis. Recently the mi-
crolocal approach was greatly simplified by Burq [11] by using the microlocal
defect measures introduced by Gérard [35] in the context of homogenization
and kinetic equations. In [11] the GCC was shown to be sufficient for exact
controllability for domains Ω of class C3 and equations with C2 coefficients.
The result for variable coefficients is the same: The observability inequality
and, thus, the exact controllability property hold if and only if all rays of ge-
ometric optics intersect the control region before the control time. However,
it is important to note that, although in the constant coefficient equation all
rays are straight lines, in the variable coefficient case this is no longer the
case, which makes it harder to have an easy intuition about the GCC.

6. Space Discretizations of the 2DWave Equations. In this section we briefly
discuss the results in [114] on the space finite difference semidiscretizations of the 2D
wave equation in the square Ω = (0, π)× (0, π) of R2:


utt −∆u = 0 in Q = Ω× (0, T ),
u = 0 on Σ = ∂Ω× (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u

1(x) in Ω.
(6.1)

Obviously, the fact that classical finite differences provide divergent results for 1D
problems in what concerns observability and controllability indicates that the same
should be true in two dimensions as well. This is indeed the case. However, the multi-
dimensional case exhibits some new features and deserves additional analysis, in par-
ticular in what concerns filtering techniques. Given

(
u0, u1

) ∈ H1
0 (Ω)×L2(Ω), system

(6.1) admits a unique solution u ∈ C ([0, T ];H1
0 (Ω)

) ∩ C1
(
[0, T ];L2(Ω)

)
. Moreover,

the energy

E(t) =
1

2

∫
Ω

[| ut(x, t) |2 + | ∇u(x, t) |2] dx(6.2)

remains constant, i.e.,

E(t) = E(0) ∀0 < t < T.(6.3)
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Let Γ0 denote a subset of the boundary of Ω constituted by two consecutive sides, for
instance,

Γ0 = {(x1, π) : x1 ∈ (0, π)} ∪ {(π, x2) : x2 ∈ (0, π)} .(6.4)

It is well known (see [67, 68]) that for T > 2
√
2π there exists C(T ) > 0 such that

E(0) ≤ C(T )
∫ T

0

∫
Γ0

∣∣∣∣∂u∂n
∣∣∣∣
2

dσdt(6.5)

holds for every finite-energy solution of (6.1). In (6.5), n denotes the outward unit
normal to Ω, ∂ · /∂n the normal derivative, and dσ the surface measure.
We can now address the standard five-point finite difference space semidiscretiza-

tion scheme for the 2D wave equation.
As in one dimension we may perform a complete description of both the contin-

uous solutions and those of the semidiscrete system in terms of Fourier series. One
can then deduce the following:

• The semidiscrete system is observable for all time T and mesh size h;
• The observability constant Ch(T ) blows up as h tends to 0 because of the
spurious high-frequency numerical solutions.

• The uniform (with respect to h) observability property may be reestablished
by a suitable filtering of the high frequencies. There is, however, an important
difference at this level with respect to the 1D case that we mention now.

The upper bound on the spectrum of the semidiscrete system in two dimensions is
8/h2. However, in two dimensions it is not sufficient to filter by a constant 0 < γ < 8,
i.e., to consider solutions that do not contain the contribution of the high frequencies
λ > γ h−2, to guarantee uniform observability.
In fact, one has to filter by means of a constant 0 < γ < 4. This is due to the

existence of solutions corresponding to high-frequency oscillations in one direction and
very slow oscillations in the other. Roughly speaking, one needs to filter efficiently in
both space directions, and this requires taking γ < 4 (see [114]).
In order to better understand the necessity of filtering and getting sharp observ-

ability times it is convenient to adopt the approach of [72, 73] based on the use of
discrete Wigner measures. The symbol of the semidiscrete system for solutions of
wavelength h is

τ2 − 4 (sin2(ξ1/2) + sin2(ξ2/2))(6.6)

and can be easily obtained as in the von Neumann analysis of the stability of numerical
schemes by taking the Fourier transform of the semidiscrete equation: the continuous
one in time and the discrete one in space.18

Note that in the symbol in (6.6) the parameter h disappears. This is due to the
fact that we are analyzing the propagation of waves of wavelength of the order of h.
The bicharacteristic rays are then defined as follows:


x′j(s) = −2sin(ξj/2)cos(ξj/2) = −sin(ξj), j = 1, 2,
t′(s) = τ,
ξ′j(s) = 0, j = 1, 2,
τ ′(s) = 0.

(6.7)

18This argument can be easily adapted to the case where the numerical approximation scheme is
discrete in both space and time by taking discrete Fourier transforms in both variables.
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Fig. 9 This figure represents the zones in the frequency space that need to be filtered out in order to
guarantee a uniform minimal velocity of propagation of rays as h → 0. When the filtering
excludes the areas within the eight small neighborhoods of the distinguished points on the
boundary of the frequency cell, the velocity of propagation of rays is uniform. Obviously the
minimal velocity depends on the size of these patches that have been removed by filtering
and, consequently, so does the observation/control time.

It is interesting to note that the rays are straight lines, as for the constant co-
efficient wave equation, since the coefficients of the equation and the numerical dis-
cretization are both constant. We see, however, that in (6.7) both the direction and
the velocity of propagation change with respect to those of the continuous wave equa-
tion.
Let us now consider initial data for this Hamiltonian system with the following

particular structure: x0 is any point in the domain Ω, the initial time t0 = 0, and the
initial microlocal direction (τ∗, ξ∗) is such that

(τ∗)2 = 4
(
sin2(ξ∗1/2) + sin

2(ξ∗2/2)
)
.(6.8)

Note that the last condition is compatible with the choice ξ∗1 = 0 and ξ
∗
2 = π together

with τ∗ = 2. Thus, let us consider the initial microlocal direction ξ∗2 = π and τ
∗ = 2.

In this case the ray remains constant in time, x(t) = x0, since, according to the first
equation in (6.7), x′j vanishes both for j = 1 and j = 2. Thus, the projection of the ray
over the space x does not move as time evolves. This ray never reaches the exterior
boundary ∂Ω where the equation evolves and excludes the possibility of having a
uniform boundary observability property. More precisely, this construction allows
one to show that, as h → 0, there exists a sequence of solutions of the semidiscrete
problem whose energy is concentrated in any finite time interval 0 ≤ t ≤ T as much
as one wishes in a neighborhood of the point x0.
Note that this example corresponds to the case of very slow oscillations in the

space variable x1 and very rapid ones in the x2-direction, and it can be ruled out,
precisely, by taking the filtering parameter γ < 4. In view of the structure of the
Hamiltonian system, it is clear that one can be more precise when choosing the space
of filtered solutions. Indeed, it is sufficient to exclude by filtering the rays that do not
propagate at all to guarantee the existence of a minimal velocity of propagation (see
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Figure 9).19

All the results we have presented in this section have their counterpart in the
context of controllability, which are close analogues of those developed previously in
the 1D case.

7. Other Remedies for High-Frequency Pathologies. In the previous sections
we have described the high-frequency spurious oscillations that arise in finite differ-
ence space semidiscretizations of the wave equation and how they produce divergence
of the controls as the mesh size tends to zero. We have also shown that there is
a remedy for this, which consists in filtering the high frequencies by truncating the
Fourier series. However, this method, which is natural from a theoretical point of view,
can be hard to implement in numerical simulations. Indeed, solving the semidiscrete
system provides the nodal values of the solution. One then needs to compute its
Fourier coefficients and, once this is done, to recalculate the nodal values of the fil-
tered/truncated solution. Therefore, it is convenient to explore other ways of avoiding
these high-frequency pathologies that do not require going back and forth from the
physical space to the frequency one. Here we shall briefly discuss other cures that
have been proposed in the literature.

7.1. Tychonoff Regularization. Glowinski, Li, and Lions [41] proposed a Ty-
chonoff regularization technique that allows one to recover the uniform (with respect
to the mesh size) coercivity of the functional that one must minimize to get the
controls in the HUM approach. The method was tested to be efficient in numerical
experiments. Here we give a sketch of the proof of convergence in the particular case
under consideration, which is new, to our knowledge.
Let us recall that the lack of uniform observability makes the functionals (4.23)

not uniformly coercive, as we mentioned in section 4.5. As a consequence of this,
for some initial data, the controls vh diverge as h → 0. In order to avoid this lack
of uniform coercivity, the functional Jh can be reinforced by means of a Tychonoff
regularization procedure.20 Consider the new functional

J∗
h((u

0
j , u

1
j )j=1,...,N ) =

1

2

∫ T

0

∣∣∣∣uN (t)h
∣∣∣∣
2

dt+ h3
N∑
j=0

∫ T

0

∣∣∣∣u′j+1 − u′j
h

∣∣∣∣
2

dt

+ h

N∑
j=1

y0ju
1
j − h

N∑
j=1

y1ju
0
j .(7.1)

This functional is coercive when T > 2 and, more importantly, its coercivity is uniform

19Roughly speaking, this suffices for the observability inequality to hold uniformly in h for a
sufficiently large time [72, 73]. This ray approach makes it possible to obtain the optimal uniform
observability time depending on the class of filtered solutions under consideration. The optimal time
is simply that needed by all characteristic rays entering in the class of filtered solutions to reach the
controlled region. It is in fact the discrete version of the GCC for the continuous wave equation.
Moreover, if the filtering is done so that the wavelength of the solutions under consideration is of
an order strictly less than h, then one recovers the classical observability result for the constant
coefficient continuous wave equation with the optimal observability time.

20This functional is a variant of the one proposed in [41], where the added term was

h2||(�u0, �u1)||2
H2×H1 instead of h

3
∑N

j=0

∫ T

0

∣∣u′
j+1−u′

j

h

∣∣2dt. Both terms have the same scales, so
that both are negligible at low frequencies but are of the order of the energy for the high ones. This
is due to the fact that for the solutions of wave-like equations the H1-norm of ut is of the order of the
H2-norm of u. The one introduced in (7.1) arises naturally in view of (7.2,) but the same arguments
could be used to justify the convergence of the one proposed in [41].
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in h. This is a consequence of the following observability inequality (see [100]):

Eh(0) ≤ C(T )
[ ∫ T

0

∣∣∣∣uN (t)h
∣∣∣∣
2

dt+ h3
N∑
j=0

∫ T

0

∣∣∣∣u′j+1 − u′j
h

∣∣∣∣
2

dt

]
.(7.2)

This inequality holds for all T > 2 for a suitable C(T ) > 0 which is independent of h
and of the solution of the semidiscrete problem (4.1) under consideration.
Note that in (7.2) we have the extra term

h3
N∑
j=0

∫ T

0

∣∣∣∣u′j+1 − u′j
h

∣∣∣∣
2

dt,(7.3)

which has also been used in the regularization of the functional J∗
h in (7.1). By in-

spection of the solutions of (4.1) in separated variables it is easy to understand why
this added term is a suitable one to reestablish the uniform observability property.
Indeed, consider the solution of the semidiscrete system u = exp(±i√λjt)wj . The
extra term we have added is of the order of h2λjEh(0). Obviously this term is negli-
gible as h → 0 for the low-frequency solutions (for j fixed) but becomes relevant for
the high-frequency ones when λj ∼ 1/h2. Accordingly, when inequality (4.6) fails,
i.e., for the high-frequency solutions, the extra term in (7.2) reestablishes the uniform
character of the estimate with respect to h. It is important to emphasize that both
terms are needed for (7.2) to hold. Indeed, (7.3) by itself does not suffice since its
contribution vanishes as h→ 0 for the low-frequency solutions.
As we said above, this uniform observability inequality guarantees the uniform

boundedness of the minima of J∗
h and the corresponding controls. But there is an

important price to pay. The control that J∗
h yields not only is at the boundary but

also is distributed everywhere in the interior of the domain. The corresponding control
system reads as follows:


y′′j − 1

h2 [yj+1 + yj−1 − 2yj ] = h2g′h,j , 0 < t < T, j = 1, . . . , N,

y0(t) = 0; yN+1(t) = vh(t), 0 < t < T,
yj(0) = y

0
j , y

′
j(0) = y

1
j , j = 1, . . . , N.

(7.4)

And the controlled state satisfies ,yh(T ) ≡ ,y ′h(T ) ≡ 0. In this case, roughly speaking,
when the initial data are fixed independently of h (for instance, we consider initial
data in L2(0, 1)×H−1(0, 1) and we choose those in (7.4) as the corresponding Fourier
truncation) then there exist controls vh ∈ L2(0, T ) and gh such that the solution of
(7.4) reaches equilibrium at time T with the following uniform bounds:

vh is uniformly bounded in L
2(0, T ),(7.5)

||(Ah)
−1/2 ,gh||h is uniformly bounded in L2(0, T ),(7.6)

where Ah is the matrix in (4.3), and || · ||h stands for the standard euclidean norm

||−→fh||h =
[
h

N∑
j=1

|fh,j |2
]1/2

.(7.7)

These bounds on the controls can be obtained directly from the coercivity property
of the functional J∗

h we minimize, which is a consequence of the uniform observability
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inequality (7.2). The roles that the two controls play are of different natures: The
internal control h2g′h takes care of the high-frequency spurious oscillations, and the
boundary control deals with the low-frequency components. In fact, it can be shown
that, as h→ 0, the boundary control vh converges to the control v of (3.4) in L

2(0, T ).
In this sense, the limit of the control system (7.4) is the boundary control problem for
the wave equation. To better understand this fact it is important to observe that, due
to the h2 multiplicative factor on the internal control, its effect vanishes in the limit.
Indeed, in view of the uniform bound (7.6), roughly speaking,21 the internal control
is of the order of h2 in the space H−1(0, T ;H−1(0, 1)) and therefore tends to zero
in the distributional sense. The fact that the natural space for the internal control
is H−1(0, T ;H−1(0, 1)) comes from the nature of the regularizing term introduced

in the functional J∗
h . Indeed, its continuous counterpart is

∫ T

0

∫ 1

0
|∇ut|2dxdt and

it can be seen that, by duality, it produces controls of the form ∂t∂x(f) with f ∈
L2((0, 1)× (0, T )). The discrete internal control reproduces this structure.
The control h2g′h,j is bounded in L

2 with respect to both space and time. This is

due to two facts: (a) the norm of the operator (Ah)
1/2 is of order 1/h, and (b) taking

one time derivative produces multiplicative factors of order
√
λ for the solutions in

separated variables. Since the maximum of the square roots of the eigenvalues at the
discrete level is of order 1/h, this yields a contribution of order 1/h too. These two
contributions are balanced by the multiplicative factor h2. Now recall that the natural
space for the controlled trajectories is L∞(0, T ;L2(0, 1))∩W 1,∞(0, T ;H−1(0, 1)) at the
continuous level, with the corresponding counterpart for the discrete one. However,
the right-hand side terms in L2 for the wave equation produce finite energy solutions in
L∞(0, T ;H1(0, 1)) ∩W 1,∞(0, T ;L2(0, 1)). Thus, the added internal control produces
only a compact correction on the solution at the level of the space L∞(0, T ;L2(0, 1))∩
W 1,∞(0, T ;H−1(0, 1)). As a consequence of this one can show, for instance, that,
using only boundary controls, one can reach states at time T that weakly (resp.,
strongly) converge to zero as h→ 0 in H1(0, 1)×L2(0, 1) (resp., L2(0, 1)×H−1(0, 1)).
Summarizing, we may say that a Tychonoff regularization procedure may allow

controlling the semidiscrete system uniformly at the price of adding an extra internal
control but in such a way that the boundary controls converge to the boundary control
for the continuous wave equation. Consequently, in practice, one can ignore the in-
ternal control this procedure gives and keep only the boundary one that, even though
it does not exactly control the numerical approximation scheme it does converge to
the right control of the wave equation. Thus, the method is efficient for comput-
ing approximations of the boundary control for the wave equation as the numerical
experiments in [41] confirm.

7.2. ATwo-GridAlgorithm. Glowinski and Li in [40] introduced a two-grid algo-
rithm that also makes it possible to compute efficiently the control of the continuous
model. The method was further developed by Glowinski in [38].
The relevance and impact of using two grids can be easily understood in view of

the above analysis of the 1D semidiscrete model. In section 4 we have seen that all
the eigenvalues of the semidiscrete system satisfy λ ≤ 4/h2. We have also seen that
the observability inequality becomes uniform when one considers solutions involving
eigenvectors corresponding to eigenvalues λ ≤ 4γ/h2, with γ < 1. Glowinski’s algo-

21To make this more precise we should introduce Sobolev spaces of negative order at the discrete
level as in (4.26). This can be done using Fourier series representations or extension operators from
the discrete grid to the continuous space variable.
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rithm is based on the idea of using two grids: one with step size h and a coarser one
of size 2h. In the coarser mesh the eigenvalues obey the sharp bound λ ≤ 1/h2. Thus,
the oscillations in the coarse mesh that correspond to the largest eigenvalues λ ∼ 1/h2

are associated to eigenvalues in the class of filtered solutions with parameter γ = 1/4
in the finer mesh. Formally, this corresponds to a situation where the observability
inequality is uniform for T > 2/ cos(π/8).
This explains the efficiency of the two-grid algorithm for computing the control

of the continuous wave equation.
This method was introduced by Glowinski [38] in the context of the full finite

difference and finite element discretizations in two dimensions. It was then further
developed in the framework of finite differences by Asch and Lebeau in [2], where the
GCC for the wave equation in different geometries was tested numerically.
The convergence of this method has recently been proved rigorously in [85] for fi-

nite difference and finite element semidiscrete approximations in one space dimension.
It was also proved that the sharp time for the convergence of the algorithm is T = 4,
twice the minimal time needed for the control of the continuous wave equation.
In practice, the two-grid algorithm works as follows: One minimizes Jh over the

subspace of data obtained by extending the slowly oscillating data given over the
coarse mesh to the fine one by interpolation. This gives a sequence of bounded (as
h tends to zero) controls. The controls, for h fixed, provide a partial controllability
result in the sense that only a projection of solutions of the controlled system over
the coarse grid vanishes. But the limit of these controls as h tends to zero is an exact
control for the wave equation. Consequently, the two-grid algorithm is a good method
for getting numerical approximations of the control of the wave equation.
The key point in the proof of this result in [85] is a uniform (with respect to h)

observability inequality for the adjoint system over the subspace of slowly varying
interpolated data.

7.3. Mixed Finite Elements. Let us now discuss a different approach that is
somewhat simpler than the previous ones. It consists in using mixed finite element
methods rather than finite differences or standard finite elements. As we have seen,
these two require some filtering—Tychonoff regularization or multigrid techniques—
to provide convergent methods for the computation of controls. The advantage of the
mixed finite elements, as we shall see, is that they may converge without the need of
any extra filtering or corrections.
First of all, it is important to emphasize that the analysis we have developed in

section 4 for the finite difference space semidiscretization of the 1D wave equation can
be carried out with minor changes for finite element semidiscretizations as well. In
particular, due to the high-frequency spurious oscillations, uniform observability does
not hold [49]. It is thus natural to consider mixed finite element methods. This idea
was introduced by Banks, Ito, and Wang [5] in the context of boundary stabilization
of the wave equation. Here we adapt that approach to the analysis of controllability
and observability. A variant of this method was introduced in [39].
The starting point is writing the adjoint wave equation (3.1) in the system form

ut = v, vt = uxx. We now use two different Galerkin bases for the approximation of
u and v. Since u lies in H1

0 , we use classical piecewise linear finite elements, and for
v piecewise constant ones.
In these bases, and after some work which is needed to handle the fact that the

left- and right-hand side terms of the equations in this system do not have the same
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Fig. 10 Square roots of the eigenvalues in the continuous and discrete cases with mixed finite ele-
ments (compare with Figure 2).

regularity, one is led to the following semidiscrete system:


1
4

[
u′′j+1 + u

′′
j−1 + 2u

′′
j

]
= 1

h2 [uj+1 + uj−1 − 2uj ] , 0 < t < T, j = 1, . . . , N,
uj(t) = 0, j = 0, N + 1,
uj(0) = u

0
j , u

′
j(0) = u

1
j , j = 1, . . . , N.

(7.8)

This system is a good approximation of the wave equation and converges in classical
terms. Moreover, the spectrum of the mass and stiffness matrices involved in this
scheme can be computed explicitly and the eigenvectors are those of (4.9), i.e., the
restriction of the sinusoidal eigenfunctions of the Laplacian to the mesh points. The
eigenvalues are now

λk =
4

h2
tan2(kπh/2), k = 1, . . . , N.(7.9)

For this spectrum the gap between the square roots of consecutive eigenvalues is
uniformly bounded from below, and in fact tends to infinity for the highest frequencies
as h → 0 (Figure 10). According to this, and applying Ingham’s inequality, the
uniform observability property may be proved (see [16]). Note, however, that one
cannot expect (4.6) to hold since it is not even uniform for the eigenvectors. One gets
instead that, for all T > 2, there exists C(T ) > 0 such that

Eh(0) ≤ C(T )
∫ T

0

[∣∣∣∣uN (t)h
∣∣∣∣
2

+ h2

∣∣∣∣u′N (t)h
∣∣∣∣
2
]
dt(7.10)

for every solution of (7.8) and for all h > 0. As a consequence, the corresponding
systems are also uniformly controllable and the controls converge as h → 0. These
results may be extended to suitable 2D mixed finite element schemes.
One of the drawbacks of this method is that the CFL stability condition that

is required when dealing with fully discrete approximations based on this method is
stronger than for classical finite difference or finite element methods because of the
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sparsity of the spectrum. This is why one has to be more careful in the choice of the
time-discretization scheme (see [16, 78]).
The mixed finite element method above may also be viewed as a suitable mod-

ification of the classical finite difference scheme in which the mass matrix has been
worked out to improve the dispersion diagram of the scheme. This is a classical idea
(see, for instance, Krenk [58]).

8. OtherModels. The controllability properties of wave-like equations are rather
unstable under numerical discretizations. In this section we show that the dissipative
and dispersive effects that the heat and Schrödinger equations introduce, respectively,
do reestablish the stability.

8.1. Finite Difference Space Semidiscretizations of the Heat Equation. As
we mentioned in the introduction, the dissipative character of the models may help
to reestablish stability. But mild dissipation does not suffice. That is, for instance,
the case for the dissipative wave equation utt −∆u+ kut = 0 that, under the change
of variables v = e−kt/2u, can be transformed into the wave equation plus potential

vtt −∆v − k2

4 v = 0. In the latter, the presence of the zero order potential introduces
a compact perturbation of the d’Alembertian and does not change the dynamics of
the system in what concerns the problems of observability and controllability under
consideration. Therefore, the presence of the damping term in the equation for u
introduces, roughly, a decay rate22 in time of the order of e−kt/2 but does not change
the properties of the system in what concerns control/observation. As we shall see in
this section the strong damping that the heat equation introduces helps much more.
The convergence of numerical schemes for control problems associated with para-

bolic equations has been extensively studied in the literature (see, e.g., [56, 94, 102]).
But this has been done mainly in the context of optimal control and very little is
known about the controllability issues that we address now.
Let us consider the following 1D heat equation with control acting at the boundary

point x = L: 

yt − yxx = 0, 0 < x < L, 0 < t < T,
y(0, t) = 0, y(L, t) = v(t), 0 < t < T,
y(x, 0) = y0(x), 0 < x < L.

(8.1)

This is the so-called boundary control problem. It is by now well known that (8.1) is
null controllable in any time T > 0 (see, for instance, Russell [96, 97]). To be more
precise, the following holds: For any T > 0 and y0 ∈ L2(0, L) there exists a control
v ∈ L2(0, T ) such that the solution y of (8.1) satisfies y(x, T ) ≡ 0 in (0, L).
This null controllability result is equivalent to a suitable observability inequality

for the adjoint system

ut + uxx = 0, 0 < x < L, 0 < t < T,
u(0, t) = u(L, t) = 0, 0 < t < T,
u(x, T ) = u0(x), 0 < x < L.

(8.2)

Note that, in this case, due to the time irreversibility of the state equation and
its adjoint, in order to guarantee that the latter is well-posed, we take the initial

22This is true for low-frequency solutions. However, the decay rate may be lower for low-frequency
ones when k is large enough. This can easily be seen by means of Fourier decomposition. This is the
so-called overdamping phenomenon.
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conditions at the final time t = T . The corresponding observability inequality is as
follows23: For any T > 0 there exists C(T ) > 0 such that

∫ L

0

u2(x, 0)dx ≤ C
∫ T

0

|ux(L, t)|2 dt(8.3)

holds for every solution of (8.2).24

Let us now consider semidiscrete versions of these problems:

y′j − 1

h2 [yj+1 + yj−1 − 2yj ] = 0, 0 < t < T, j = 1, . . . , N,
y0 = 0, yN+1 = v, 0 < t < T,
yj(0) = y

0
j , j = 1, . . . , N ;

(8.4)



u′j +

1
h2 [uj+1 + uj−1 − 2uj ] = 0, 0 < t < T, j = 1, . . . , N,

u0 = uN+1 = 0, 0 < t < T,
uj(T ) = u

0
j , j = 1, . . . , N.

(8.5)

According to the Kalman criterion for controllability in section 2, for any h > 0
and for all time T > 0 system (8.4) is controllable and (8.5) observable. In fact, in
this case, in contrast with the results we have described for the wave equation, these
properties hold uniformly as h→ 0. More precisely, the following results hold.
Theorem 8.1 (see [71]). For any T > 0 there exists a positive constant C(T ) > 0

such that

h

N∑
j=1

|uj(0)|2 ≤ C(T )
∫ T

0

∣∣∣∣uN (t)h
∣∣∣∣
2

dt(8.6)

holds for any solution of (8.5) and any h > 0.
Theorem 8.2 (see [71]). For any T > 0 and

{
y01 , . . . , y

0
N

}
there exists a control

v ∈ L2(0, T ) such that the solution of (8.4) satisfies

yj(T ) = 0, j = 1, . . . , N.(8.7)

Moreover, there exists a constant C(T ) > 0, independent of h > 0, such that

‖ v ‖2
L2(0,T )≤ C(T )h

N∑
j=1

∣∣y0j ∣∣2 .(8.8)

These results were proved in [71] using Fourier series and a classical result on the
sums of real exponentials (see, for instance, Fattorini and Russell [30]) that plays the
role of Ingham’s inequality in the context of parabolic equations.

23This inequality has been greatly generalized to heat equations with potentials in several space
dimensions, with explicit observability constants depending on the potentials, etc. (see, for instance,
[33, 31])

24Note that the observability estimate (8.3) does not provide information on u(T ). In fact, due
to the regularizing effect of the heat equation it would be impossible to get estimates on u0 on
any Sobolev norm (see [31]). At the control level, this corresponds to the fact that, again, due
to the regularizing effect, it would be impossible to drive the state y in the final time T to an
arbitrary L2-function, for instance. The strong regularizing effect of the heat equation introduces
time-irreversibility both in the problems of control and observation.
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The explicit form of the spectrum and its properties play a key role in the proof.
One uses in particular that there exists c > 0 such that λhj ≥ cj2 for all h > 0 and
j = 1, . . . , N and that the uniform gap condition is also satisfied. Recall that, in the
context of the wave equation, the lack of gap for the square roots of these eigenvalues
was observed for the high frequencies and that this was the main reason for the lack
of uniform bound on the controls. In particular it was found that

√
λhN −

√
λhN−1 ∼ h.

But, in the present case, it follows that λhN − λhN−1 ∼ (
√
λhN −

√
λhN−1)(

√
λhN +√

λhN−1) ∼ 1, since
√
λhN +

√
λhN−1 ∼ 1/h. This fact describes clearly why the gap

condition is fulfilled in this case.
Once the uniform observability inequality of Theorem 8.1 is proved, the controls

for the semidiscrete heat equation (8.4) can be easily constructed by means of the min-
imization method described in section 4.5. The fact that the observability inequality
is uniform implies the uniform bound (8.8) on the controls. The null controls for the
semidiscrete equation (8.5) that one obtains in this way are such that, as h→ 0, they
tend to the null control for the continuous heat equation (8.1) (see [71]).

8.2. The Beam Equation. In a recent work by León and the author [65] the
problem of boundary controllability of finite difference space semidiscretizations of the
beam equation ytt + yxxxx = 0 was addressed. This model has important differences
with the wave equation even in the continuous case. First of all, at the continuous
level, it turns out that the gap between consecutive eigenfrequencies tends to infinity.
For instance, with the boundary conditions y = yxx = 0, x = 0, π, the solution
admits the Fourier representation formula y(x, t) =

∑
k∈Z ake

iλktsin(kx), where λk =
sgn(k)k2. Obviously, the gap between consecutive eigenvalues is uniformly bounded
from below. More precisely, λk+1 − λk = 2k + 1 → ∞ as k → ∞. This allows us to
apply a variant of Ingham’s inequality for an arbitrarily small control time T > 0 (see
[76]).25 As a consequence, boundary exact controllability holds for any T > 0 too.
When considering finite difference space semidiscretizations, things are better

than they are for the wave equation too. Indeed, as was proved in [65], roughly
speaking, the asymptotic gap26 also tends to infinity as k → ∞, uniformly on the
parameter h. This allows proving the uniform observability and controllability (as
h → 0) of the finite difference semidiscretizations. However, as we mentioned in
section 4, due to the bad approximation that finite differences provide at the level of
observing the high-frequency eigenfunctions, the control has to be split into two parts:
the main part that strongly converges to the control of the continuous equation in the
sharp L2(0, T ) space and the oscillatory one that converges to zero in a weaker space
H−1(0, T ). Thus, in the context of the beam equation, with the most classical finite
difference semidiscretization, we obtain what we had gotten for the wave equation
with mixed finite elements. This fact was further explained by means of tools related
with discrete Wigner measures in [72, 73].
The same results apply for the Schrödinger equation. Indeed, the beam equation

under consideration is simply the composition of the Schrödinger operator with its

25Although in the classical Ingham inequality the gap between consecutive eigenfrequencies is
assumed to be uniformly bounded from below for all indices k, in fact, in order for Ingham inequality
to be true, it is sufficient to assume that all eigenfrequencies are distinct and that there is an
asymptotic gap as k → ∞. We refer to [76] for a precise statement where explicit estimates of the
constants arising in the inequalities are given.

26In fact one needs to be more careful since, for h > 0 fixed, the gap between consecutive eigenfre-
quencies is not increasing. Indeed, in order to guarantee that the gap is asymptotically larger than
any constant L > 0 one has to filter not only a finite number of low frequencies but also the highest
ones. However, the methods and results in [76] apply in this context too (see [65]).
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conjugate: ytt + yxxxx = (−i∂t + ∂2
x)(i∂t + ∂

2
x)y. The same occurs for the numerical

scheme we consider. According to this, the solutions of the continuous Schrödinger
equation and of its numerical version are also solutions of the beam equation and
its numerical discretization, respectively. Therefore, all of our analysis applies in the
context of the Schrödinger equation, too.
Note, however, that, as we shall see in open problem 3 below, the situation is

more complex in several space dimensions in which the dissipative and dispersive
effects added by the heat and Schrödinger equations do not suffice. That is the case
since, in several space dimensions, in addition to the numerical dispersive effects, new
geometric issues arise. Indeed, for instance, there are discrete eigenvectors that violate
the unique continuation properties of the eigenfunctions of the continuous Laplacian.27

Adding dissipativity or dispersivity does not rule out this spurious eigenmodes and
therefore does not suffice to reestablish the uniform observability and controllability
properties in the same geometric setting of the corresponding continuous models.

9. Further Comments and Open Problems.

9.1. Further Comments.

1. Stabilization. The problem of controllability has been addressed. Nevertheless,
similar developments could be carried out, with the same conclusions, in the context
of stabilization. The connections between controllability and stabilization are well
known (see, for instance, [96, 107]).
For the wave equation, it is well known that the GCC suffices for stabilization

and more precisely to guarantee the uniform exponential decay of solutions when a
damping term, supported in the control region, is added to the system. More precisely,
when the subdomain ω satisfies the GCC the solutions of the damped wave equation
ytt −∆y + 1ωyt = 0 with homogeneous Dirichlet boundary conditions are known to
decay exponentially in the energy space: there exist constants C > 0 and γ > 0 such
that E(t) ≤ Ce−γtE(0) holds for every finite energy solution of the Dirichlet problem
for this damped wave equation.
It is then natural to analyze whether the decay rate is uniform with respect to

the mesh size for numerical discretizations. The answer is in general negative due to
spurious high-frequency oscillations. This negative result also has important conse-
quences in many other issues related with control theory like infinite horizon control
problems, Riccati equations for the optimal stabilizing feedback (see [89]), etc. The
uniformity of the exponential decay rate can be reestablished if we add an internal
viscous damping term to the equation (see [100, 80]). This is closely related to the en-
hanced observability inequality (7.2) in which the extra internal viscous term added
in the observed quantity guarantees the observability constant to be uniform. We
shall return to this issue in open problem 5 below.

2. Space-time discretizations. The analysis we have developed in this article ap-
plies as well to fully space-time finite difference discretizations. Except for the very
particular case of the centered discretization of the 1D wave equation with equal
space and time steps (∆x = ∆t) addressed in [83], filtering of high frequencies is also
needed. The discrete version of the Ingham inequality developed in [84] allows proving

27For the eigenfunctions of the Laplacian it is well known that if an eigenfunction vanishes in an
open nonempty subset, then it has to vanish everywhere. As we shall see in open problem 3 below,
the discrete analogue of this is not true.
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boundedness and convergence of controls once the filtering parameter and the control
time have been chosen in an appropriate way.

3. Homogenization. Most of the analysis presented here has also been developed
in the context of a more difficult problem, related to the behavior of the observa-
tion/control properties of the wave equation in the context of homogenization. In
that context the coefficients of the wave equation oscillate rapidly on a scale ε that
tends to zero, so that the equation homogenizes to a constant coefficient one. The
interaction of high-frequency waves with the microstructure produces localized waves
at high frequency. These localized waves are an impediment for the uniform ob-
servation/control properties to hold. It has been proved in a number of situations
that this filtering technique suffices to reestablish uniform observation and control
properties (see [17] and [62]). The analogies between both problems (homogenization
and numerical approximation) are clear: the mesh size h in numerical approximation
schemes plays the same role as the ε parameter in homogenization (see [115] and [19]
for a discussion of the connection between these problems). Although the analysis of
the numerical problem is much easier from a technical point of view, it was developed
only after the problem of homogenization was understood. This is due in part to the
fact that, from a control theoretical point of view, there was a conceptual difficulty to
match the existing finite-dimensional and infinite-dimensional theories. In this article
we have shown how this may be done in the context of the wave equation, a model of
purely conservative dynamics in infinite dimension.

4. Optimal and approximate control. We have shown that the property of exact
controllability is badly behaved for the wave equation with respect to numerical ap-
proximations. However, this is no longer true for classical optimal control problems
(LQR (linear quadratic regulator), finite-time-horizon optimal control, etc.) or even
for approximate controllability problems in which the objective is to drive the solu-
tion to any state of size less than a given ε. Approximate controllability is a relaxed
version of the exact controllability property, the goal being to drive the solution of the
controlled wave equation (3.4) not exactly to the equilibrium as in (3.5) but rather to
an ε-state such that

||y(T )||L2(0,1) + ||yt(T )||H−1(0,1) ≤ ε.(9.1)

When for all initial data (y0, y1) in L2(0, 1) × H−1(0, 1) and for all ε there is a
control v (obviously, the control v will normally depend on ε, too) such that (9.1)
holds, we say that the system (3.5) is approximately controllable. Obviously, approx-
imate controllability is a weaker notion than exact controllability, and whenever the
wave equation is exactly controllable, it is approximately controllable too.
Of course, the approximate controllability property by itself, as stated, does not

provide any information as to what the cost of controlling to an ε-state is, as in (9.1),
i.e., what norm of the control vε is needed to achieve the approximate control condition
(9.1). Roughly speaking, when exact controllability does not hold (for instance, in
several space dimensions, when the GCC is not fulfilled), the cost of controlling blows
up exponentially as ε tends to zero (see [92]).28 But this issue will not be addressed
here.

28This type of result has been also proved in the context of the heat equation in [31]. But there
the difficulty does not come from the geometry but rather from the regularizing effect of the heat
equation.
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Once ε is fixed, we know that when T ≥ 2, for all initial data (y0, y1) in
L2(0, 1) ×H−1(0, 1), there exists a control vε ∈ L2(0, T ) such that (9.1) holds. This
is a consequence of the exact controllability property of the wave equation in section
3.
We are interested in the behavior of this property under numerical discretization.

Thus, let us consider the semidiscrete controlled version of the wave equation (4.21).
We fix the initial data in (4.21) “independently of h” (roughly, by taking a projection
over the discrete mesh of fixed initial data (y0, y1) or by truncating its Fourier series).
Of course, (4.21) is also approximately controllable.29 The question we address

is as follows: Given initial data which are “independent of h,” with ε fixed, and given
also the control time T ≥ 2, is the control vh of the semidiscrete system (4.21) (such
that the discrete version of (9.1) holds) uniformly bounded as h→ 0?
In the previous sections we have shown that the answer to this question in the

context of the exact controllability (which corresponds to taking ε = 0) is negative.
However, in the context of approximate controllability, the controls vh do remain uni-
formly bounded as h→ 0. Moreover, they can be chosen such that they converge to a
limit control v for which (9.1) is realized for the continuous wave equation.
This positive result on the uniformity of the approximate controllability property

under numerical approximation when ε > 0 does not contradict the fact that the
controls blow up for exact controllability. These are in fact two complementary and
compatible facts. For approximate controllability, one is allowed to concentrate an ε
amount of energy on the solution at the final time t = T . For the semidiscrete problem
this is done precisely in the high-frequency components that are badly controllable
as h → 0, and this makes it possible to keep the control fulfilling (9.1), bounded as
h→ 0.
We refer to [119] for the details of the proof of this positive result.
The same can be said about finite horizon optimal control problems (see [119]).
In view of this discussion it becomes clear that the source of divergence in the limit

process as h→ 0 in the exact controllability problem is the requirement of driving the
high-frequency components of the numerical solution exactly to zero. As we mentioned
in the introduction, taking into account that optimal and approximate controllability
problems are relaxed versions of the exact controllability one, this negative result
should be considered as a warning about the limit process as h→ 0 in general control
problems.

9.2. Open Problems.

Problem 1. Semilinear Equations. The questions we have addressed in this
article are completely open in the case of the semilinear heat and wave equations with
globally Lipschitz nonlinearities. For continuous models there are a number of fixed
point techniques allowing one to extend the results of controllability of linear waves
and heat equations to semilinear equations with moderate nonlinearities (globally Lip-
schitz ones, for instance [117]). These techniques need to be combined with Carleman
or multiplier inequalities (see [33, 108]) allowing one to estimate the dependence of
the observability constants on the potential of the linearized equation. However, the
analysis we have pursued in this article relies very much on the Fourier decomposition
of solutions, which does not suffice to obtain explicit estimates on the observability
constants in terms of the potential of the equation. Thus, extending the positive

29In fact, in finite dimensions, exact and approximate controllability are equivalent notions and,
as we have seen, the Kalman condition is satisfied for system (4.21).
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results of uniform controllability presented in this paper (by means of filtering, mixed
finite elements, multigrid techniques, etc.) to the numerical approximation schemes
of semilinear PDE is a completely open subject of research.

Problem 2. Wavelets and Spectral Methods. In the previous sections we have
described how filtering of high frequencies can be used to get uniform observability
and controllability results. It would be interesting to develop the same analysis in the
context of numerical schemes based on wavelets and spectral methods. We refer to
[82, 8, 6] for some preliminary results.

Problem 3. Discrete Unique-Continuation. In the context of the continuous
wave equation we have seen that the observability inequality and, consequently, exact
controllability hold if and only if the domain where the control is being applied satisfies
the GCC. However, very often in practice, it is natural to consider controls that are
supported in a small subdomain. In those cases, when the control time is large
enough, one obtains approximate controllability results. Approximate controllability
is equivalent to a uniqueness or unique-continuation property for the adjoint system
(see [67, 113, 117]): If the solution u of (5.6) vanishes in ω × (0, T ), then it vanishes
everywhere. We emphasize that this property holds whatever the open subset ω of Ω
may be, provided T is large enough, by Holmgren’s uniqueness theorem (see [67]).
One could expect the same result to hold also for semidiscrete and discrete equa-

tions. But the corresponding theory has not been developed. The following example
due to Kavian [54] shows that, at the discrete level, new phenomena arise. It concerns
the eigenvalue problem for the five-point finite difference scheme for the Laplacian in
the square. A grid function taking alternating values ±1 along a diagonal and van-
ishing everywhere else (see Figure 11) is an eigenvector with eigenvalue λ = 4/h2.
According to this example, even at the level of the elliptic equation, the domain ω
where the solution vanishes has to be assumed to be large enough to guarantee the
unique-continuation property. In [22] it was proved that when ω is a “neighborhood
of one side of the boundary,” then unique continuation holds for the discrete Dirichlet
problem in any discrete domain. Here by a “neighborhood of one side of the bound-
ary” we mean the nodes of the mesh that are located immediately to one side of the
boundary nodal points (left, right, top, or bottom). Indeed, if one knows that the
solution vanishes at the nodes immediately to one side of the boundary, taking into
account that they vanish in the boundary too, the five-point numerical scheme al-
lows propagating the information and showing that the solution vanishes at all nodal
points of the whole domain.
Getting optimal geometric conditions on the set ω, depending on the domain Ω

where the equation holds, on the discrete equation itself, on the boundary conditions
and, possibly, on the frequency of oscillation of the solution for the unique continuation
property to hold at the discrete level is an interesting and widely open subject of
research.
One of the main tools for dealing with unique continuation properties of PDEs

are the so-called Carleman inequalities. It would be interesting to develop the corre-
sponding discrete theory.
Obviously, the lack of unique continuation for the discrete eigenvectors shows that

unique continuation will also fail for the discrete versions of the heat and Schrödinger
equations. Therefore, even if in one dimension the dispersive and diffusive properties
of the systems under consideration enhance its controllability, they are not sufficient
to guarantee the controllability of the numerical discretizations in several space di-
mensions. Understanding the need of filtering of high frequencies for these systems in
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Fig. 11 The eigenvector for the five-point finite difference scheme for the Laplacian in the square,
with eigenvalue λ = 4/h2, taking alternating values ±1 along a diagonal and vanishing
everywhere else in the domain.

several space dimensions is also an interesting open problem.

Problem 4. Hybrid Hyperbolic-Parabolic Equations. We have discussed dis-
cretizations of the wave equation and have seen that, for most schemes, there are
high-frequency spurious oscillations that need to be filtered to guarantee uniform
observability and controllability. However, we have seen that the situation is much
better for the 1D heat equation. It would also be interesting to analyze mixed models
involving wave and heat components. There are two examples of such systems: (a)
systems of thermoelasticity and (b) models for fluid-structure interaction (see [63] for
the system of thermoelasticity and [109, 110, 114] for the analysis of a system cou-
pling the wave and the heat equation along an interface). In particular, it would be
interesting to analyze to what extent the presence of the parabolic component makes
unnecessary the filtering of the high frequencies for the uniform observability property
to hold for space or space-time discretizations.

Problem 5. Viscous Numerical Damping. In [100] we analyzed finite difference
semidiscretizations of the damped wave equation utt − uxx + χωut = 0, where χω
denotes the characteristic function of the set ω where the damping term is effective.
In particular we analyzed the following semidiscrete approximation in which an extra
numerical viscous damping term is present:

u′′j − 1

h2
[uj+1 + uj−1 − 2uj ]−

[
u′j+1 + u

′
j−1 − 2u′j

]− u′jχω = 0.(9.2)

It was proved that this type of scheme preserves the stabilization properties of the
wave equation, uniformly as h tends to zero.
The extra numerical damping that this scheme introduces, namely, [u′j+1+ u

′
j−1−

2u′j ], damps out the high frequency spurious oscillations that the classical finite dif-
ference discretization scheme produces and that are the cause of lack of uniform
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exponential decay in the presence of damping. We also refer to [79], where this type
of scheme is used in order to develop an algorithm based on the level-set method for
computing the optimal location of dampers for the wave equation, a topic that has
been previously addressed from a theoretical point of view in [45].
The problem of whether this numerical scheme is uniformly observable or con-

trollable as h tends to zero is an interesting open problem.
Note that the system above, in the absence of the damping term localized in ω,

can be written in the vector form ,u′′+Ah,u+h
2Ah,u

′ = 0. Here ,u stands, as usual, for
the vector unknown (u1, . . . , uN )

T and Ah for the tridiagonal matrix associated with
the finite difference approximation of the Laplacian (4.3). In this form it is clear that
the scheme above corresponds to a viscous approximation of the wave equation.
Whether this system has uniform (with respect to h) observability and controlla-

bility properties is an interesting open problem even in one space dimension.

Problem 6. Multigrid Methods. In section 7.2 we presented the two-grid algo-
rithm introduced by Glowinski [38] and explained heuristically why it is a remedy for
high-frequency spurious oscillations. In [38] the efficiency of the method was exhib-
ited in several numerical examples and the convergence proved in [84] for one space
dimension. The problem of convergence is open in several space dimensions.

Problem 7. Uniform Control of the Low Frequencies. We have seen that the
most natural finite difference approximation scheme for the 1D wave equation fails to
give convergent controls. However, Micu in [75] proved that the controls converge for
some initial data, in particular for those that involve only a finite number of Fourier
components. The 2D counterpart of the 1D positive result in [75] showing that the
initial data involving a finite number of Fourier components are uniformly controllable
as h → 0 has not been proved in the literature. Such a result is very likely to hold
for quite general approximation schemes and domains. But, up to now, it has been
proved only in one dimension for finite difference semidiscretizations.

Problem 8. Extending theWigner MeasureTheory. As we mentioned above,
Macià in [72, 73] developed a discrete Wigner measure theory to describe the propa-
gation of semidiscrete and discrete waves at high frequency. However, this was done
for regular grids and without taking into account boundary effects. The notion of
polarization developed in [13] remains also to be analyzed in the discrete setting.

Problem 9. Theory of Inverse Problems and Optimal Design. This paper
has been devoted mainly to the property of observability and its consequences for
controllability. But, as we mentioned from the beginning, most of the results we have
developed have consequences in other fields. This is the case, for instance, for the
theory of inverse problems, where one of the most classical problems is the one of
reconstructing the coefficients of a given PDE in terms of boundary measurements
(see [52]). Assuming that one has a positive answer to this problem in an appropriate
functional setting, it is natural to consider the problem of numerical approximation.
Then, the following question arises: Is solving the discrete version of the inverse
problem for a discretized model an efficient way of getting a numerical approximation
of the solution of the continuous inverse problem?
According to the analysis above we can immediately say that, in general, the

answer to this problem is negative. Consider, for instance, the wave equation

ρutt − uxx = 0, 0 < x < 1, 0 < t < T, u(0, t) = u(1, t) = 0, 0 < t < T,(9.3)
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with a constant but unknown density ρ > 0. Solutions of this equation are time-
periodic of period 2

√
ρ, and this can be immediately observed on the trace of normal

derivatives of solutions at either of the two boundary points x = 0 or x = 1, by
inspection of the Fourier series representation of solutions of (9.3). Thus, the value of
ρ can be determined by means of boundary measurements.
Let us now consider the semidiscrete version of (9.3). In this case, according

to the analysis above, the solutions do not have any well-defined time-periodicity
property. On the contrary, for any given values of ρ and h, (9.3) admits a whole
range of solutions that travel at different group velocities, ranging from h/

√
ρ (for

the high frequencies) to 1/
√
ρ (for the low frequencies). In particular, the high-

frequency numerical solutions do behave more like a solution of the wave equation
with an effective density ρ/h2. This argument shows that the mapping that allows
determining the value of the constant density from boundary measurements is unstable
under numerical discretization.
Of course, most of the remedies that have been introduced in this paper to avoid

the failure of uniform controllability and/or observability can also be used in this
context of inverse problems. But developing these ideas in detail remains to be done.
The same can be said about optimal design problems. Indeed, in this context

very little is known about the convergence of the optimal designs for the numerical
discretized models towards the optimal design of the continuous models and, to a
large extent, the difficulties one has to face in this context are similar to those we
addressed all throughout this paper. Recently convergence of the discrete optimal
shapes towards the continuous ones has been proved in [23] for the Dirichlet Laplacian
in two dimensions.

Problem 10. Finite- versus Infinite-Dimensional Nonlinear Control. Most of
this work has been devoted to analyzing linear problems. There is still a lot to be done
to understand the connections between finite-dimensional and infinite-dimensional
control theory, and, in particular, concerning numerical approximations and their
behavior with respect to the control property. According to the analysis above, the
problem is quite complex even in the linear case. Needless to say, one expects a much
higher degree of complexity in the nonlinear frame.
There are a number of examples in which the finite-dimensional versions of impor-

tant nonlinear PDEs have been solved from the point of view of controllability. Among
them the following are worth mentioning: (a) The Galerkin approximations of the bi-
linear control problem for the Schrödinger equation arising in quantum chemistry
(see [90, 104]); (b) the control of the Galerkin approximations of the Navier–Stokes
equations [69].
In both cases nothing is known about the possible convergence of the controls of

the finite-dimensional system to the control of a PDE as the dimension of the Galerkin
subspace tends to infinity. This problem seems to be very complex. However, the
degree of difficulty may be different in both cases. Indeed, in the case of the continuous
Navier–Stokes and Euler equations for incompressible fluids there are a number of
results in the literature indicating that they are indeed controllable (see [33, 25, 26]).
However, for the bilinear control of the Schrödinger equations, it is known that the
reachable set is very small in general, which indicates that one can only expect very
weak controllability properties. This weakness of the controllability property at the
continuous level makes it even harder to address the problem of passing to the limit
on the finite-dimensional Galerkin approximations as the dimension tends to infinity.
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Problem 11. Wave Equations with Irregular Coefficients. The methods we
have developed do not suffice to deal with wave equations with nonsmooth coefficients.
However, at the continuous level, in one space dimension, observability and exact
controllability hold for the wave equation with BV coefficients. It would be interesting
to see if the main results presented in this paper hold in this setting too. This seems
to be a completely open problem. We refer to the book by Cohen [24] for the analysis
of reflection and transmission indices for numerical schemes for wave equations with
interfaces.

Problem 12. Convergence Rates. In this article we have described several nu-
merical methods that do provide convergence of controls. The problem of the rate
of convergence has not been addressed so far. Recently important progress has been
made in this respect in the context of optimal control problems for semilinear elliptic
equations (see [14, 15]).

Problem 13. Waves on Networks. The problems of wave propagation, obser-
vation, and control in planar networks of strings has been intensively analyzed. We
refer to [27] for a survey on the state-of-the-art in the field. However, very little is
known about the behavior of numerical methods. We refer to [9] for some preliminary
results on the subject. The method of domain decomposition has also been studied
[59]. But a lot is to be done in order to develop a complete theory for the observation,
control, and numerical approximation of waves on networks.
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