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Abstract. The goal of this paper is to provide a theoretical framework allowing to extend
some general concepts related to the numerical approximation of 1d conservation laws to the more
general case of first order quasi-linear hyperbolic systems. In particular this framework is intended
to be useful for the design and the analysis of well-balanced numerical schemes for solving balance
laws or coupled systems of conservation laws. First, the concept of path-conservative numerical
schemes is introduced, which is a generalization of the concept of conservative schemes for systems
of conservation laws. Then, we introduce the general definition of Approximate Riemann Solvers
and we give the general expression of some well-known families of schemes based on these solvers:
Godunov, Roe and Relaxation methods. Finally, the general form of a high order scheme based on
a first order path-conservative scheme and a reconstruction operator is presented.
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1. Introduction. The motivating question of this paper was the design of nu-
merical schemes for P.D.E. Systems that can be written under the form:

∂tw + ∂xF (w) = B(w) · ∂xw + S(w)∂xσ,(1.1)

where the unkonwn w(x, t) takes values on an open convex set D of R
N ; F is a regular

function from D to R
N ; B is a regular matrix function from D to MN×N(R); S, a

function from D to R
N ; and σ(x), a known function from R to R.

System (1.1) includes as particular cases: systems of conservation laws (B = 0,
S = 0); systems of conservation laws with source term or balance laws (B = 0); and
coupled system of balance laws as defined in [7].

More precisely, the discretization of the Shallow Water Systems that govern the
flow of one shallow layer or two superposed shallow layers of immiscible homogeneous
fluids was focused (see http://www.damflow.org) . The corresponding systems can
be written respectively as a balance law or a coupled system of two balance laws.
Systems with similar characteristics also appear in other flow models such as two-
phase flows.

It is well known that standard methods that solve correctly systems of conser-
vation laws can fail in solving systems of balance laws, specially when approaching
equilibria or near to equilibria solutions. Moreover, they can produce unstable meth-
ods when they are applied to coupled systems of conservation or balance laws. Many
authors have studied the definition of stable numerical schemes for systems or coupled
systems of balance laws, which are well-balanced, that is, that preserve some equilib-
ria: see [36], [3] , [38], [23], [24], [27], [17], [18], [31], [7], [39], [32], [10], [11], [2], [5],
[29], [37], [12] . . .

Among the main techniques used in the derivation of well-balanced numerical
schemes, one of them consists in choosing first a standard conservative scheme for
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the discretization of the flux terms and discretizing then the source and the coupling
terms in order to obtain a consistent scheme which solves correctly a predetermined
family of equilibria. If this first procedure is followed, the calculation of the correct
discretization of the source and the coupling terms depends both on the specific
problem and the conservative numerical scheme chosen, and it may become rather
cumbersome. In [11] it was shown that the technique of Modified Equations can be
helpful in this procedure.

Another technique consists in considering (1.1) as a particular case of one-dimensional
quasilinear hyperbolic system:

∂W

∂t
+ A(W )

∂W

∂x
= 0, x ∈ R, t > 0,(1.2)

by adding to the system the trivial equation:

∂σ

∂t
= 0.

Once the system rewritten under this form, piecewise constant approximations of the
solutions are considered, that are updated by means of Approximate Riemann Solvers
at the intercells.

If this second procedure is followed, the main difficulty both from the mathe-
matical and the numerical points of view comes from the presence of nonconservative
products, which makes difficult even the definition of weak solutions. Many papers
have been devoted to the definition and the stability of nonconservative products,
and its application to the definition of weak solutions of non-conservative hyperbolic
systems: see [41], [9], [13], [14], [34], [6], [26], [4], [1] . . .

In this article we assume the definition of nonconservative products as Borel
measures given by Dal Maso, LeFloch, and Murat in [14]. This definition, which
depends on the choice of a family of paths in the phases space, allows to give a
rigorous definition of weak solutions of (1.2). Together with the definition of weak
solutions, a notion of entropy has to be chosen, as the usual Lax’s concept or one
related to an entropy pair. The classical theory of simple waves of hyperbolic systems
of conservation laws and the results concerning the solutions of Riemann problems
can be then extended to systems (1.2).

The choice of the family of paths may be, in general, a difficult task. The goal
of this article is, once the choice is done, to provide a theoretical framework for the
numerical approximation of the corresponding weak solutions of a strictly hyperbolic
system (1.2) whose characteristic fields are either genuinely nonlinear or linearly de-
generate.

The organization of the article is as follows: in Section 2, a brief resume of the
theory developed in [14] is presented, together with some remarks concerning the
choice of paths and some properties of weak solutions.

In Section 3 we introduce the concept of path-conservative numerical schemes,
which is a generalization of that of conservative schemes for systems of conservation
laws: a scheme will be said to be path-conservative if it conserves to some extent the
Borel measure related to the nonconservative products.

Section 4 is devoted to the well-balance property: we recall the general definition
of well-balanced numerical scheme proposed in [29] and we show that the well-balance
property of a scheme is strongly related with its ability to approach stationary contact
discontinuities.
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In Section 5, a general definition of Approximate Riemann Solvers for (1.2) is
presented. We verify that the generalizations of the classical methods of Roe [35]
and Godunov [16] presented respectively in [40] and [30] are particular cases of path-
conservative methods based on Approximate Riemann Solvers fitting this general
definition. We give also some guidelines about how to construct Relaxation schemes.

Section 6 is devoted to high order methods based on reconstruction techniques.
The general form of a scheme based on a first order path-conservative scheme and a
reconstruction operator is presented. The schemes constructed in [8] are particular
cases in which the first order method is of the Roe type. Some general results con-
cerning the order and well-balance properties of these methods are finally presented.

2. Weak solutions. Consider the problem:

∂W

∂t
+ A(W )

∂W

∂x
= 0, x ∈ R, t > 0,(2.1)

where W (x, t) belongs to Ω, an open convex subset of R
N , and W ∈ Ω 7→ A(W ) ∈

MN×N(R) is a smooth locally bounded map. We suppose that System (2.1) is strictly
hyperbolic, that is, for each W ∈ Ω, A(W ) has N real distinct eigenvalues λ1(W ) <
. . . < λN (W ), with associated eigenvectors R1(W ),. . . ,RN (W ). We also suppose that
for each i = 1, . . . , N , the characteristic field Ri(W ) is either genuinely nonlinear:

∇λi(W ) · Ri(W ) 6= 0, ∀W ∈ Ω,

or linearly degenerate:

∇λi(W ) · Ri(W ) = 0, ∀W ∈ Ω.

The theory developed by Dal Maso, LeFloch and Murat (see [14]) allows to give
a rigorous definition of nonconservative products, associated to the choice of a family
of paths in Ω.

Definition 2.1. A family of paths in Ω ⊂ R
N is a locally Lipschitz map

Φ: [0, 1]× Ω × Ω 7→ Ω,

such that:
• Φ(0; WL, WR) = WL and Φ(1; WL, WR) = WR, for any WL, WR ∈ Ω;
• for every arbitrary bounded set O ⊂ Ω, there exists a constant k such that

∣∣∣∣
∂Φ

∂s
(s; WL, WR)

∣∣∣∣ ≤ k|WR − WL|,

for any WL, WR ∈ O and almost every s ∈ [0, 1];
• for every bounded set O ⊂ Ω, there exists a constant K such that
∣∣∣∣
∂Φ

∂s
(s; W 1

L, W 1
R) −

∂Φ

∂s
(s; W 2

L, W 2
R)

∣∣∣∣ ≤ K(|W 1
L − W 2

L| + |W 1
R − W 2

R|),

for any W 1
L, W 1

R, W 2
L, W 2

R ∈ O and almost every s ∈ [0, 1].
Suppose that a family of paths Φ in Ω has been chosen. Then, for W ∈ (L∞(R×

R
+) ∩ BV (R × R

+))N , the nonconservative product can be interpreted as a Borel
measure denoted by [A(W )Wx]Φ. If the family of segments is chosen, this interpre-
tation is equivalent to the definition of nonconservative product proposed by Volpert
in [41].
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Across a discontinuity with speed ξ a weak solution must satisfy the generalized
Rankine-Hugoniot condition

∫ 1

0

(
ξI −A(Φ(s; W−, W+))

)∂Φ

∂s
(s; W−, W+) ds = 0,(2.2)

where I is the identity matrix and W−, W+ are the left and right limits of the solution
at the discontinuity. In the particular case of a system of conservation laws (that is,
if A(W ) is the Jacobian matrix of some flux function F (W )), (2.2) is independent of
the family of paths and it reduces to the usual Rankine-Hugoniot condition.

As it occurs in the conservative case, not any discontinuity is admissible. There-
fore, a concept of entropic solution has to be assumed, as one of the following defini-
tions:

Definition 2.2. A weak solution is said to be an entropic solution in the Lax
sense if, at each discontinuity, there exists i ∈ {1, . . . , N} such that

λi(W
+) < ξ < λi+1(W

+) and λi−1(W
−) < ξ < λi(W

−)

if the i-th characteristic field is genuinely nonlinear or

λi(W
−) = ξ = λi(W

+)

if the i-th characteristic field is linearly degenerate.
Definition 2.3. Given an entropy pair (η, G) for (2.1), i.e. a pair of regular

functions from Ω to R such that:

∇G(W ) = ∇η(W ) · A(W ), ∀W ∈ Ω,

a weak solution is said to be entropic if it satisfies the inequality:

∂tη(W ) + ∂xG(W ) ≤ 0,

in the distributions sense.
The choice of the family of paths is important as it determines the speed of

propagation of discontinuities. For scalar balance laws, rigorous justifications of the
choice of the family of paths can be given, using different techniques based on weak
limits: see [19], [20]. In general, this choice has to be based on the physical background
(see [25], [33] for instance). In any case, it is natural from the mathematical point of
view to require this family to satisfy some hypotheses concerning the relation of the
paths with the integral curves of the characteristic fields. Following [30] here we will
assume that the family of paths satisfies the following hypotheses:

(H1) Given two states WL and WR belonging to the same integral curve γ of a
linearly degenerate field, the path Φ(s; WL, WR) is a parameterization of the arc of γ
linking WL and WR.

(H2) Given two states WL and WR belonging to the same integral curve γ of a
genuinely nonlinear field, Ri, such that λi(WL) < λi(WR), the path Φ(s; WL, WR) is
a parameterization of the arc of γ linking WL and WR.

(H3) Let us denote by RP ⊂ Ω × Ω the set of pairs (WL, WR) such that the
Riemann Problem: 




∂W

∂t
+ A(W )

∂W

∂x
= 0,

W (x, 0) =





WL if x < 0,

WR if x > 0,

(2.3)
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has a unique self-similar solution W (x, t) = V (x/t; WL, WR) (where the function V is
piecewise regular) composed by at most N simple waves: rarefaction waves, contact
discontinuities or shocks (i.e. discontinuities satisfying the jump condition (2.2) and
the entropy condition given by Definition 2.2 or 2.3). These simple waves connect
J + 1 intermediate states

W0 = WL; W1; . . . WJ−1; WJ = WR;

with J ≤ N . We assume that, given two states (WL, WR) ∈ RP , the curve described
by the path Φ(s; WL, WR) in Ω is equal to the union of those corresponding to the
paths Φ(s; Wj , Wj+1), j = 0, . . . , J − 1.

If the definition of weak solutions of (2.1) is based on a family of paths satisfying
these hypotheses, the following natural properties hold (see [30]):

Proposition 2.4. Let us suppose that the concept of weak solutions of (2.1) is
defined on the basis of a family of paths satisfying hypotheses (H1)-(H3). Then:

(i) Given two states WL and WR belonging to the same integral curve of a lin-
early degenerate field, the contact discontinuity given by:

W (x, t) =

{
WL if x < σt,
WR if x > σt,

where σ is the (constant) value of the corresponding eigenvalue through the integral
curve, is a weak solution of (2.1).

(ii) Let (WL, WR) be a pair belonging to RP and let W be the solution of the
corresponding Riemann Problem (2.3). The following equality holds:

〈
[A(W (·, t))Wx(·, t)]Φ , 1

〉
=

∫ 1

0

A (Φ(s; WL, WR))
∂Φ

∂s
(s; WL, WR) ds.

Consequently, the total mass of the Borel measure [A(W (·, t))Wx(·, t)]Φ does not de-
pend on t.

(iii) Let (WL, WR) be a pair belonging to RP and let Wj be any of the intermediate
states appearing in the solution of the Riemann Problem (2.3). Then:

∫ 1

0

A (Φ(s; WL, WR))
∂Φ

∂s
(s; WL, WR) ds =

∫ 1

0

A (Φ(s; WL, Wj))
∂Φ

∂s
(s; WL, Wj) ds

+

∫ 1

0

A (Φ(s; Wj , WR))
∂Φ

∂s
(s; Wj , WR) ds.

Some general guidelines to construct a family of paths satisfying these hypotheses
(at least for pairs (WL, WR) ∈ RP) have been presented in [30].

In the following proposition we establish a property of the solution of a Riemann
Problem that will be of importance in the definition of generalized Approximate Rie-
mann Solvers for (2.1):

Proposition 2.5. Given (WL, WR) ∈ RP, the solution W (x, t) = V (x/t; WL, WR)
of the Riemann Problem (2.3) satisfies the following equality:

∫ 1

0

A (Φ(s; WL, WR))
∂Φ

∂s
(s; WL, WR) ds

(2.4)

+

∫ ∞

0

(V (v; WL, WR) − WR) dv +

∫ 0

−∞

(V (v; WL, WR) − WL) dv = 0.
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Proof. Let A, T be two positive numbers such that:

V (x/T ; WL, WR) = WL, if x < −A,

V (x/T ; WL, WR) = WR, if x > A.

Integrating (2.1) in [−A, A] × [0, T ] we obtain:

∫ A

−A

V (x/T ; WL, WR) dx − AWL − AWR +

∫ T

0

〈[A(W (·, t))Wx(·, t)]Φ , 1〉 dt = 0.

Then (2.4) is easily obtained by taking into account (ii) of Proposition 2.4 and making
the change of variables v = x/T in the integral at the right-hand side.

Remark 1. If the concept of entropic solution is related to an entropy pair (η, G)
with convex η, the following inequality can also be proved for the solution of a Riemann
Problem:

G(WR) +

∫ ∞

0

(
η
(
V (v; WL, WR)

)
− η(WR)

)
dv

(2.5)

≤ G(WL) −

∫ 0

−∞

(
η
(
V (v; WL, WR)

)
− η(WL)

)
dv.

The proof is identical to that corresponding to systems of conservation laws.

3. Path-conservative numerical schemes. The central concept of the theory
developed in this article is that of path-conservative numerical scheme, which is a
generalization of conservative schemes for systems of conservation laws. We recall
that, given a system of conservation laws:

∂tW + ∂xF (W ) = 0, x ∈ R, t > 0,(3.1)

the expression of a conservative numerical scheme is as follows:

W n+1
i = W n

i +
∆t

∆x

(
Gi−1/2 − Gi+1/2

)
,(3.2)

where ∆t and ∆x are the time step and the space step, which are supposed to be
constant for simplicity; W n

i represents the approximation of the average of the exact
solution at the i-th cell Ii = [xi−1/2, xi+1/2] at time tn = n∆t:

W n
i
∼=

1

∆x

∫ xi+1/2

xi−1/2

W (x, tn) dx,

and Gi+1/2 = G(W n
i−q , . . . , W

n
i+p) is the numerical flux at the intercell xi+1/2:

Gi+1/2
∼=

1

∆t

∫ tn+1

tn

F (W (xi+1/2, t)) dt.(3.3)

This expression is usually motivated as follows: a weak solution of (3.1) satisfies
the equality:

∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx +

∫ t1

t0

F (W (a, t)) dt −

∫ t1

t0

F (W (b, t)) dt,(3.4)
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for every rectangle [a, b] × [t0, t1] in R × [0,∞), and (3.2) is the discrete analogue of
the equality (3.4) corresponding to the rectangle Ii × [tn, tn+1].

Let us give a reinterpretation of (3.2) in terms of measures in order to motivate its
generalization to nonconservative problems. A weak solution can be understood as a
function that satisfies the equality (3.1) in the sense of distributions. In the particular
case of a piecewise regular weak solution, given t > 0 the distribution [F (W (·, t))x] is
defined by:

〈[F (W (·, t))x], φ〉 =

∫

R

F (W (x, t))xφ(x) dx

(3.5)
+
∑

l

(
F (W+

l ) − F (W−

l )
)
φ(xl(t)), ∀φ ∈ D(R)N ,

where the derivative appearing in the integral term has to be understood in the
pointwise sense; the index l of the sum runs in the number of discontinuities appearing
in the solution; xl(t) is the location at time t of the l-th discontinuity; W−

l and W+
l ,

the limits of the solution to the left and to the right of the l-th discontinuity at time t;
finally, D(R) represents the set of functions of class C∞(R) with compact support. The
distribution [F (W (·, t))x] can be interpreted as a Borel measure having the Lebesgue
decompostion µa + µs, where µa is given by:

µa(E) =

∫

E

F (W (x, t))x dx,

for every Borel set E, and:

µs =
∑

l

(
F (W+

l ) − F (W−

l )
)
δx=xl(t),(3.6)

being δx=a the Dirac measure placed at x = a. Given a Borel set E, we will denote
its measure by:

〈[F (W (·, t))x], 1E〉.

Using this notation, (3.4) can be rewritten as follows:

∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx −

∫ t1

t0

〈
[F (W (·, t))x], 1[a,b]

〉
dt.(3.7)

If we now define the piecewise constant function W n whose value at the cell Ii is the
approximation W n

i , the discrete analogue of (3.7) would be:

W n+1
i = W n

i −
∆t

∆x
〈[F (W n)x], 1Ii〉,(3.8)

but this equality is not equivalent to (3.2): as W n is piecewise constant, the measure
[F (W n)x] consists only of its singular part

∑

i

(
F (W n

i+1) − F (W n
i )
)
δx=xi+1/2

.

But, as cells Ii have been defined as closed intervals, in (3.8) the punctual mass placed
at xi+1/2 would contribute both to cells Ii and Ii+1. In this sense, the conservative
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numerical scheme (3.2) can be interpreted as follows: Gi+1/2 can be considered as an
intermediate flux that is used to split the Dirac measures placed at the intercells

(
F (W n

i+1) − F (W n
i )
)
δx=xi+1/2

=
(
F (W n

i+1) − Gi+1/2

)
δx=xi+1/2

+
(
Gi+1/2 − F (W n

i )
)
δx=xi+1/2

,

and then, the first summand contributes to cell Ii+1 and the second one to Ii, i.e.:

W n+1
i = W n

i −
∆t

∆x

(
(F (W n

i ) − Gi−1/2) + (Gi+1/2 − F (W n
i )
)
,(3.9)

which is obviously equivalent to (3.2).
Let us now come back to nonconservative systems (2.1) and suppose that a family

of paths Φ has been chosen to define the weak solutions. If W is again a piecewise reg-
ular weak solution, for a given time t the Borel measure related to the nonconservative
product is defined as follows:

〈[A(W (·, t))Wx(·, t)]Φ, φ〉 =

∫

R

A(W (x, t))Wx(x, t)φ(x) dx

+
∑

l

(∫ 1

0

A(Φ(s; W−

l , W+
l ))

∂Φ

∂s
(s; W−

l , W+
l ) ds

)
φ(xl(t)),(3.10)

∀φ ∈ C0(R),

which is obviously a generalization of (3.5). In the above equality, the expression
Wx appearing in the first integral represents again the pointwise derivative of W (·, t);
xl(t), W−

l , W+
l are like in (3.5); and C0(R) is the set of continuous map with compact

support.
Notice that again this measure can be decomposed as a sum µΦ

a + µΦ
s where:

µΦ
a (E) =

∫

E

A(W (x, t))Wx(x, t) dx,

for every Borel set E, and:

µΦ
s =

∑

l

(∫ 1

0

A(Φ(s; W−

l , W+
l ))

∂Φ

∂s
(s; W−

l , W+
l ) ds

)
δx=xl(t).(3.11)

Given a rectangle [a, b] × [t0, t1] in R × [0,∞), a weak solution of (2.1) satisfies
the equality:

∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx −

∫ t1

t0

〈[A(W (·, t))Wx(·, t)]Φ , 1[a,b]〉 dt,(3.12)

that generalizes (3.4).
The discrete analogue of (3.12) is now:

W n+1
i = W n

i −
∆t

∆x
〈[A(W n)W n

x ]Φ , 1Ii〉,(3.13)

where, again, W n is the piecewise constant function taking the value W n
i at cell Ii.

Newly the measure [A(W n)W n
x ]Φ consists only of its singular part:

∑

i

(∫ 1

0

A(Φ(s; W n
i , W n

i+1))
∂Φ

∂s
(s; W n

i , W n
i+1) ds

)
δx=xi+1/2

.
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Therefore, the punctual masses placed at the intercells have to be decomposed into
two terms D±

i+1/2, one contributing to the cell Ii and the other to the cell Ii+1. This

idea leads to the following definition:
Definition 3.1. Given a family of paths Ψ, a numerical scheme is said to be

Ψ-conservative if it can be written under the form:

W n+1
i = W n

i −
∆t

∆x

(
D+

i−1/2 + D−

i+1/2

)
,(3.14)

where

D±

i+1/2 = D±(W n
i−q , . . . , W

n
i+p),

D− and D+ being two continuous functions from Ωp+q+1 to Ω satisfying:

D±(W, . . . , W ) = 0, ∀W ∈ Ω,(3.15)

and

D−(W−q , . . . , Wp) + D+(W−q , . . . , Wp)
(3.16)

=

∫ 1

0

A(Ψ(s; W0, W1))
∂Ψ

∂s
(s; W0, W1) ds,

for every Wi ∈ Ω, i = −q, . . . , p.
This definition generalizes the usual concept of conservative numerical scheme for

system of conservation laws:
Proposition 3.2. Let us suppose that (2.1) is a system of conservation laws,

i.e. A is the Jacobian of a flux function F . Then, every numerical scheme which is
Ψ-conservative for some family of paths Ψ is consistent and conservative in the usual
sense. Conversely, a consistent conservative numerical scheme is Ψ-conservative for
every family of paths Ψ.

Proof. Observe first that, in the case of a conservative system, (3.16) reduces to:

D−(W−q , . . . , Wp) + D+(W−q , . . . , Wp) = F (W1) − F (W0).

Therefore, given a Ψ-conservative numerical scheme (3.14) we can define a numerical
flux function G as follows:

G(W−q , . . . , Wp) = D−(W−q , . . . , Wp) + F (W0)
(3.17)

= −D+(W−q , . . . , Wp) + F (W1).

Then, (3.14) is equivalent to the conservative scheme (3.2) corresponding to the nu-
merical flux G. Moreover, from (3.15) we easily deduce:

G(W, . . . , W ) = F (W ).

Conversely, given a consistent conservative numerical scheme with numerical flux
function G, it can be written under the form (3.14) by defining:

D−(W−q , . . . , Wp) = G(W−q , . . . , Wp) − F (W0),
D+(W−q , . . . , Wp) = −G(W−q , . . . , Wp) + F (W1).
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It can be easily verified that (3.15) and (3.16) are satisfied for every family of paths
Ψ.

Remark 2. According to Proposition 3.2, a path-conservative numerical scheme
applied to a conservative problem is just a conservative scheme formulated in the so-
called wave propagation form (see [28]). It is important to notice that, in despite of its
form, a path-conservative numerical scheme (3.14) is not a nonconservative numerical
scheme in the usual sense: a numerical scheme for solving a conservative problem is
said to be nonconservative if it cannot be written under the form (3.2).

Notice that condition (3.16) plays a double role. On the one hand, it is used to
approximate the punctual masses associated to discontinuities. On the other hand,
together with (3.15), it is a consistency requirement for regular solutions and smooth
data. In effect, if W is a regular enough solution and A(W ), D±(W−q , . . . , Wp) are
also regular, from (3.15) and (3.16) it can be deduced that:

1

∆x

(
D+(W (xi−q−1, t), . . . , W (xi+p−1, t)) + D−(W (xi−q , t), . . . , W (xi+p, t))

)

= A(W (xi, t))Wx(xi, t) + O(∆x).

Path-conservative numerical schemes satisfy a certain conservation property. In
effect, let W be a weak solution of (2.1) corresponding to an initial condition W0 such
that:

W0(x) = WL, ∀x < −A; W0(x) = WR, ∀x > A;(3.18)

for some A > 0. Given 0 ≤ t0 < t1 < ∞, W satisfies:

∫

R

(
W (x, t1) − W (x, t0)

)
dx = −

∫ t1

t0

〈[A(W (·, t))Wx(·, t)]Φ, 1〉 dt.(3.19)

Let us suppose now that a Ψ-conservative scheme is applied to approach this
solution and let W n be the piecewise constant function whose value at the cell Ii is
W n

i . Summing up in (3.14) and taking into account (3.10) and (3.16), we deduce the
equality:

∫

R

(
W n+1(x) − W n(x)

)
dx = −∆t 〈[A(W n)W n

x ]Ψ , 1〉 ,(3.20)

which is clearly an approximation of (3.19).
As it was remarked in [29] in the context of Roe schemes, the best choice of

the family of paths Ψ appearing in Definition 3.1 is the family Φ selected for the
definition of weak solutions: in this case, (3.19) and (3.20) makes reference to the same
Borel measure and the jump conditions of weak solutions and numerical solutions are
consistent.

In fact, a Lax-Wendroff theorem can be conjectured: if the numerical solutions
obtained with a Ψ-conservative converge in an adequate sense, its limit has to be a
weak solution whose definition is also related to the family of paths Ψ.

We stress that such a theorem would not be in contradiction with the negative
results shown in [22] or [15]: in these works the failure of the convergence of non-
conservative schemes to weak solutions of conservative problems was studied. But
in our case, if the system is conservative, a path-conservative numerical scheme is
not a nonconservative scheme (see Remark 2). Nevertheless, this kind of negative
results are also expectable if a path-conservative numerical scheme based on a family
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Ψ is used to approach weak solutions based on a different family of paths Φ: in that
case, the consistency for smooth solutions is still provided by (3.15) and (3.16) but
discontinuities can be incorrectly treated. In fact, a negative result of this type was
observed in [29] in the context of the approximation of shallow water systems with
source term.

Unfortunately, the construction of Φ-conservative schemes can be difficult or very
costly in practice. In this case, a simpler family of paths Ψ has to be chosen, as the
family of segments:

Ψ(s; WL, WR) = WL + s(WR − WL).(3.21)

4. Well-balancing. Well-balancing is related to the numerical approximation
of equilibria, i.e. steady state solutions. Notice that System (2.1) can only have
nontrivial steady state solutions if it has some linearly degenerate fields: let W (x) be
a regular steady state solution

A(W (x)) · W ′(x) = 0, ∀x ∈ R.

If W ′(x) 6= 0, then 0 is an eigenvalue of A(W (x)) and W ′(x) is an associated eigen-
vector. Therefore, x 7→ W (x) can be interpreted as a parameterization of an integral
curve of a linearly degenerate characteristic field whose corresponding eigenvalue takes
the value 0 through the curve. In order to define the concept of well-balancing, let us
introduce the set Γ of all the integral curves γ of a linearly degenerate field of A(W )
such that the corresponding eigenvalue vanishes on Γ. According to [29] we introduce
the following definitions:

Definition 4.1. Given a curve γ ∈ Γ, a numerical scheme for solving (2.1):

W n+1
j = W n

j +
∆t

∆x
H(W n

j−q , . . . , W
n
j+p)(4.1)

is said to be exactly well-balanced for γ if, given any C1 function x ∈ (α, β) ⊂ R 7→
W (x) ∈ Ω such that

W (x) ∈ γ, ∀x ∈ (α, β),(4.2)

and p + q + 1 points in (α, β) x−q , . . . , xp such that:

x−q < . . . < xp; xi+1 − xi = ∆x, i = −q, . . . , p − 1,(4.3)

then

H(W (x−q), . . . , W (xp)) = 0.(4.4)

The scheme is said to be well-balanced with order k for γ if, given any Ck+1 function
W and any set of points {x−q , . . . , xp} satisfying (4.2), (4.3), then:

|H(W (x−q), . . . , W (xp))| = O
(
∆xk+1

)
.(4.5)

Finally, the scheme is said to be exactly well-balanced or well-balanced with order k if
these properties are satisfied for any curve of Γ.

We have only considered 1-level schemes and uniform meshes in order to avoid an
excess of notation, but the definition can be easily extended to more general schemes.
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The well-balance property of a scheme is strongly related to its ability to approx-
imate stationary contact discontinuities. We can state for instance the following:

Proposition 4.2. Given a numerical scheme of the form (3.14) with q = 0 and
p = 1 and a curve γ of Γ, the numerical scheme is exactly well-balanced for γ if
and only if it solves exactly every stationary contact discontinuity linking two states
belonging to γ.

Proof. Both properties are satisfied if and only if:

D±(W0, W1) = 0, ∀W0, W1 ∈ γ.

Remark 3. For numerical schemes with arbitrary values of p and q the direct
implication of the Proposition is also valid. To see this, observe first that a numerical
scheme is exactly well-balanced for γ if and only if:

H(W−q , . . . , Wp) = 0,

for any given ordered set of states {W−q , . . . , Wp} of γ, where some of the states can
be repeated. Then, it can be easily shown that this property implies that the numerical
scheme solves exactly stationary contact discontinuities linking two states belonging
to γ.

5. Approximate Riemann Solvers. This section is devoted to generalize the
notion of Approximate Riemann Solver introduced in [21] for conservative systems
(3.1) and extended in [5] for balance laws. The organization of this section follows
closely Bouchut’s book.

Definition 5.1. Given a family of paths Ψ, a Ψ-Approximate Riemann Solver
for (2.1) is a function Ṽ : R × Ω × Ω 7→ Ω satisfying:

(i) for every W ∈ Ω:

Ṽ (v; W, W ) = W, ∀v ∈ R;(5.1)

(ii) for every WL, WR ∈ Ω there exist λmin(WL, WR), λmax(WL, WR) in R such
that:

Ṽ (v; WL, WR) = WL, if v < λmin(WL, WR),

Ṽ (v; WL, WR) = WR, if v > λmax(WL, WR);

(iii) for every WL, WR ∈ Ω:

∫ 1

0

A (Ψ(s; WL, WR))
∂Ψ

∂s
(s; WL, WR) ds

+

∫ ∞

0

(
Ṽ (v; WL, WR) − WR

)
dv(5.2)

+

∫ 0

−∞

(
Ṽ (v; WL, WR) − WL

)
dv = 0.

Notice that (5.2) is a generalization of the property (2.4) satisfied by the exact
solution of a Riemann Problem (2.3).
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Given a Ψ-Approximate Riemann Solver for (2.1) a numerical scheme can be
constructed as follows:

W n+1
i =

1

∆x

(∫ xi

xi−1/2

Ṽ

(
x − xi−1/2

∆t
; W n

i−1, W
n
i

)
dx

(5.3)

+

∫ xi+1/2

xi

Ṽ

(
x − xi+1/2

∆t
; W n

i , W n
i+1

)
dx

)
.

Under a CFL condition 1/2, the numerical scheme can also be written under the
form (3.14) with:

D−

i+1/2 = −

∫ 0

−∞

(
Ṽ (v; W n

i , W n
i+1) − W n

i

)
dv,(5.4)

D+
i+1/2 = −

∫ ∞

0

(
Ṽ (v; W n

i , W n
i+1) − W n

i+1

)
dv.(5.5)

Proposition 5.2. A numerical scheme (3.14) based on a Ψ-Approximate Rie-
mann Solver is Ψ-conservative.

Proof. The proof is straightforward from (5.4), (5.5), and Definition 5.1.

Remark 4. If the numerical scheme is intended to solve only weak solutions with
small discontinuities, i.e. discontinuities linking pair of states (WL, WR) belonging to

RP then it is enough for the Approximate Riemann Solver Ṽ to be defined in R×RP.

A numerical scheme (3.14) based on a Ψ-Approximate Riemann Solver is well-
balanced for a curve γ of the set Γ if, and only if, given two states WL and WR in γ
the following equalities holds

∫ 0

−∞

(
Ṽ (v; WL, WR) − WL

)
dv = 0,

∫ ∞

0

(
Ṽ (v; WL, WR) − WR

)
dv = 0.

These equalities are trivially satisfied if:

Ṽ (v; WL, WR) =

{
WL if v < 0,
WR if v > 0,

i.e. if the Approximate Riemann Solver is exact for pairs of states (WL, WR) belonging
to γ.

We recall hereafter some classical choices of Approximate Riemann Solvers:

5.1. Godunov methods. Godunov methods correspond to the choice of the
Exact Riemann Solver, i.e.

Ṽ (v; WL, WR) = V (v; WL, WR),

being V (x/t; WL, WR) the exact solution of the Riemann Problem (2.3). This is clearly
a Φ-Approximate Riemann Solver. Moreover, if the concept of entropic solution is
related to an entropy pair (η, G) with convex η, according to Remark 1 it is dissipative
for this pair (see [5]).
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In [30] it has been shown that, if the family of paths satisfies the hypotheses
(H1)-(H3) stated in Section 2, Godunov methods can be written under the form
(3.14) with:

D−

i+1/2 =

∫ 1

0

A
(
Φ(s; W n

i , W n
i+1/2)

) ∂Φ

∂s
(s; W n

i , W n
i+1/2) ds,

D+
i+1/2 =

∫ 1

0

A
(
Φ(s, W n

i+1/2, W
n
i+1)

) ∂Φ

∂s
(s; W n

i+1/2, W
n
i+1) ds,

where W n
i+1/2 is the (constant) value at x = xi+1/2 of the solution of the Riemann

Problem related to the states W n
i and W n

i+1. If the solution is discontinuous at
x = xi+1/2 the limit to the left or to the right can be chosen indifferently.

Godunov methods are exactly well-balanced (see [30]).

5.2. Roe methods. Approximate Riemann Solvers are often constructed as
follows: Ṽ (x/t; WL, WR) is the solution of a Linear Riemann Problem:





∂U

∂t
+ A(WL, WR)

∂U

∂x
= 0,

U(x, 0) =

{
WL if x < 0,
WR if x > 0,

(5.6)

where A(WL, WR) is a linearization of A(W ). It can be easily shown that this is a
Ψ-Approximate Riemann Solver if, and only if, A(WL, WR) is a Roe linearization in
the sense defined by Toumi in [40]:

Definition 5.3. Given a family of paths Ψ, a function AΨ: Ω×Ω 7→ MN×N(R)
is called a Roe linearization if it verifies the following properties:

1. For each WL, WR ∈ Ω, AΨ(WL, WR) has N distinct real eigenvalues.
2. AΨ(W, W ) = A(W ), for every W ∈ Ω.
3. For any WL, WR ∈ Ω,

AΨ(WL, WR)(WR − WL) =

∫ 1

0

A(Ψ(s; WL, WR))
∂Ψ

∂s
(s; WL, WR) ds.(5.7)

Once a Roe linearization AΨ has been chosen, some straightforward calculations
allow to show that, under a CFL 1/2 condition, the numerical scheme can be written
under the form (3.14) with:

D−

i+1/2 = A−

i+1/2(W
n
i+1 − W n

i ),

D+
i+1/2 = A+

i+1/2(W
n
i+1 − W n

i ),

where

Ai+1/2 = AΨ(W n
i , W n

i+1),

and, as usual:

L±

i+1/2 =




(λ
i+1/2
1 )± 0

. . .

0 (λ
i+1/2
N )±


 , A±

i+1/2 = Ki+1/2L
±

i+1/2K
−1
i+1/2,(5.8)
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being Li+1/2 the diagonal matrix whose coefficients are the eigenvalues of Ai+1/2

λ
i+1/2
1 < λ

i+1/2
2 < . . . < λ

i+1/2
N ,

and Ki+1/2 is a N × N matrix whose columns are associated eigenvectors.
As in the case of systems of conservation laws, a CFL condition 1 is used in

practice, as this condition ensures the linear stability of the method. An entropy-fix
technique has also to be added to the numerical scheme.

In [29] it has been shown that a Roe scheme based on a family of paths Ψ is
exactly well-balanced for a curve γ ∈ Γ if, given two states WL and WR in γ, the path
Ψ(s; WL, WR) is a parameterization of the arc of γ linking these states. In particular,
if the family of path Ψ coincides with the family Φ used in the definition of weak
solutions, the numerical scheme is exactly well-balanced. The numerical scheme is
well-balanced with order k if Ψ(s; WL, WR) approximates with order k + 1 a regular
parameterization of the arc of γ linking the states. In particular, a Roe scheme based
on the family of segments (3.21) is always well-balanced with order 2. Moreover, it is
exactly well-balanced for curves of Γ that are straight lines (see [29] for details).

The construction of Roe methods for systems (1.1) has been studied in [29].

5.3. Relaxation methods. The goal of this paragraph is to give some guide-
lines about the construction of Approximate Riemann Solvers for nonconservatives
systems based on the Relaxation technique. This has been done for balance laws in
[5].

The idea is as follows. First of all, a new nonconservative hyperbolic system is
considered:

∂W̃

∂t
+ B(W̃ )

∂W̃

∂x
= 0, x ∈ R, t > 0,(5.9)

where now W̃ takes values in an open convex Ω̃ of R
eN , with Ñ > N . Again, B is a

smooth locally bounded map from Ω̃ to M eN× eN(R).

Let us suppose that there exist two linear operators L : Ω̃ 7→ Ω and M : Ω 7→ Ω̃
such that:

LM(W ) = W, ∀W ∈ Ω.

In practice, the system (5.9) has to be chosen in such a way that it is possible
to construct easily an Approximate Riemann Solver with good properties (this is the
case, for instance, if Riemann Problems related to (5.9) are easy to solve). Then, an
Approximate Riemann Solver for (2.1) is deduced.

The main difference with the conservative case comes from the fact that, in this
case, together with the system (5.9) a family of paths in Ω̃ has also to be chosen in
order to define the Approximate Riemann Solver for this system.

The following lemma, whose demonstration is straightforward, gives a sufficient
condition to obtain a Ψ-Approximate Riemann Solver for (2.1) from a Ψ̃-Approximate
Riemann Solver for (5.9):

Lemma 5.4. Let Ψ and Ψ̃ be two families of paths in Ω and Ω̃ respectively such
that:

∫ 1

0

LB
(
Ψ̃(s;M(WL),M(WR))

)∂Ψ̃

∂s
(s;M(WL),M(WR)) ds

(5.10)

=

∫ 1

0

A
(
Ψ(s; WL, WR)

)∂Ψ

∂s
(s; WL, WR) ds.
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Then, if R(v; W̃L, W̃R) is a Ψ̃-Approximate Riemann Solver for (5.9), the function

Ṽ (v; WL, WR) = LR(v;M(WL),M(WR)),

gives a Ψ-Approximate Riemann Solver for (2.1).
Remark 5. It can also be shown easily that, if (η, G) is an entropy pair for (2.1)

and (η̃, G̃) is an entropy extension to (5.9) (see [5]) and both η and η̃ are convex

functions, then, if R is dissipative for (η̃, G̃) , Ṽ is dissipative for (η, G).

6. High order schemes based on reconstruction of states. The goal of
this section is to obtain a high order scheme for (2.1) based on a first order path-
conservative numerical scheme (3.14) with q = 0 and p = 1, that is,

D±

i+1/2 = D±(W n
i , W n

i+1),

and a reconstruction operator of order s, i.e. an operator that associates to a given
sequence {Wi} two new sequences {W−

i+1/2}, {W
+
i+1/2} in such a way that, whenever

Wi =
1

∆x

∫

Ii

W (x) dx, ∀i ∈ Z,

for some smooth function W , then:

W±

i+1/2 = W (xi+1/2) + O (∆xs) , ∀i ∈ Z.

In the case of a system of conservation laws (3.1), high order methods based
on the reconstruction of states can be built using the following procedure: a first
order conservative scheme with numerical flux function G(U, V ) and a reconstruction
operator of order s are first chosen. Next, the method of lines is used: the system
is discretized only in space, leaving the problem continuous in time. If we denote by
W i(t) the cell average of solution W of (2.1) over the cell Ii at time t:

W i(t) =
1

∆x

∫ xi+1/2

xi−1/2

W (x, t) dx,

the following equation can be easily obtained from (3.1):

W
′

i(t) =
1

∆x

(
F (W (xi−1/2, t)) − F (W (xi+1/2, t))

)
.(6.1)

Now, (6.1) is approached as follows:

W ′

i (t) =
1

∆x

(
G̃i−1/2 − G̃i+1/2

)
,(6.2)

with

G̃i+1/2 = G(W−

i+1/2(t), W
+
i+1/2(t)),(6.3)

being Wi(t) the approximation to W i(t) and {W±

i+1/2(t)} the reconstructions associ-

ated to the sequence {Wi(t)}. It can be shown that (6.2)-(6.3) give a semi-discrete
method of order s for (3.1).
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Notice that (6.2) is a system of ordinary differential equations which is solved
using a standard numerical method.

Let us introduce an interpretation of (6.2) in terms of measures, as it was done
in Section 2, in order to generalize it to nonconservative systems. First, notice that
(6.1) can also be written under the form:

W
′

i(t) = −
1

∆x
〈[F (W (·, t)x], 1Ii〉 .(6.4)

Next, let us choose at every cell Ii and at every time t > 0 a regular function P t
i such

that:

lim
x→x+

i−1/2

P t
i (x) = W+

i−1/2(t); lim
x→x−

i+1/2

P t
i (x) = W−

i+1/2(t).(6.5)

If we consider now the approximation of W (·, t) given by the piecewise regular function
Wt whose restriction to Ii is P t

i , the discrete analogue of (6.4) would be:

W ′

i = −
1

∆x

〈
[F (Wt)x], 1Ii

〉
,(6.6)

but, again, (6.6) is not equivalent to (6.2). In this case, [F (W t)x] is the sum of a
regular measure, whose Radon-Nykodim derivative at the cell Ii is F (P t

i )x, and the
singular measure:

∑

i

(
F (W+

i+1/2(t)) − F (W−

i+1/2(t))
)

δx=xi+1/2
.

If, again, the numerical flux of the first order scheme is used to split the Dirac measures
placed at the intercells:
(
F (W+

i+1/2(t)) − F (W−

i+1/2(t))
)

δx=xi+1/2
=

(
F (W+

i+1/2(t)) − G̃i+1/2

)
δx=xi+1/2

+
(
G̃i+1/2 − F (W−

i+1/2(t))
)

δx=xi+1/2
,

and the first and the second summands are assigned respectively to the cells Ii+1 and
Ii, we obtain from (6.6):

W ′

i = −
1

∆x

(
F (W+

i−1/2(t)) − G̃i−1/2 + G̃i+1/2 − F (W−

i+1/2(t))

(6.7)

+

∫ xi+1/2

xi−1/2

F (P t
i (x))x dx

)
,

which is obviously equivalent to (6.2).
We go now to the general case (2.1). In this case, the equation for the cell averages

is the following:

W
′

i = −
1

∆x
〈[A(W (·, t))W (·, t)x]Φ , 1Ii〉.(6.8)

The natural extension of (6.7) is then:

W ′

i = −
1

∆x

(
D̃+

i−1/2 + D̃−

i+1/2 +

∫ xi+1/2

xi−1/2

A[P t
i (x)]

dP t
i

dx
(x) dx

)
,(6.9)
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with

D̃±

i+1/2 = D±(W−

i+1/2(t), W
+
i+1/2(t)).(6.10)

In (6.9) the integral terms are approximations of the regular measure of the

Lebesgue decomposition of [A(W (·, t))Wx(·, t)]Φ while the terms D̃±

i−1/2 are related

to its singular part.
Notice that there is an important difference between the conservative and the

nonconservative case: while in the conservative case the numerical scheme is indepen-
dent of the functions P t

i chosen at the cells (only the property (6.5) is important), this
is not the case for nonconservative systems. As a consequence, while the numerical
scheme (6.2) has order s, in the case of the scheme (6.9) the order will depend on the
choice of the functions P t

i .
In practice, the definition of the reconstruction operator gives the natural choice

of the functions P t
i , as the usual procedure is the following: given a sequence {Wi} of

values at the cells, an approximation function is calculated at every cell Ii using the
values Wj at a stencil :

Pi(x; Wi−l, . . . , Wi+r),

being l, r two natural numbers. The reconstructions W±

i+1/2 are then calculated by

taking the limits of these functions at the intercells. These approximations functions
are usually calculated by means of interpolation or approximation techniques. The
natural choice of P t

i is thus:

P t
i (x) = Pi(x; Wi−l(t), . . . , Wi+r(t)).

Let us now investigate the order of the numerical scheme (6.9). Notice first that,
for regular solutions W , the differential equation (6.8) can be written as follows:

W
′

i(t) = −
1

∆x

∫ xi+1/2

xi−1/2

A(W (x, t))Wx(x, t) dx.(6.11)

Theorem 6.1. Let us suppose that A, D± are regular and with bounded deriva-
tives. Let us suppose also that the reconstruction operator is of order s and that, given
the sequence defined by

Wi =
1

∆x

∫

Ii

W (x) dx,

for any smooth function W , the following approximation properties are satisfied:

Pi(x; Wi−l, · · · , Wi+r) = W (x) + O (∆xs1 ) , ∀x ∈ Ii,

d

dx
Pi(x; Wi−l, · · · , Wi+r) = W ′(x) + O (∆xs2) , ∀x ∈ Ii.

Then (6.9) is an approximation of order at least s̄ = min(s, s1+1, s2+1) to the system
(6.11) in the following sense:

D̃+
i−1/2 − D̃−

i+1/2 +

∫ xi+1/2

xi−1/2

A(P t
i (x))

dP t
i

dx
(x) dx

(6.12)

=

∫ xi+1/2

xi−1/2

A(W (x, t))Wx(x, t) dx + O
(
∆xs̄

)
,
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for every smooth enough solution W , being {W±

i+1/2(t)} the reconstructions corre-

sponding to the sequence {W i(t)} and P t
i the functions defined by:

P t
i (x) = Pi(x; W i−l(t), · · · , W i+r(t)).

The proof is identical to that of the particular case studied in [8], where general
high order numerical schemes based on first order Roe methods were introduced.

Remark 6. For the usual reconstruction techniques one has s2 ≤ s1 < s and
the order of (6.9) is thus s2 + 1 for nonconservative systems and s for systems of
conservation laws. Therefore a loss of accuracy can be observed when a technique of
reconstruction is applied to a nonconservative problem. This effect has been detected
and verified numerically for WENO-Roe methods in [8].

Notice that (6.9) can also be written under a form similar to (3.14):

W ′

i = −
1

∆x

(
E+

i−1/2 + E−

i+1/2

)
,(6.13)

with:

E+
i+1/2 = D̃+

i+1/2 +

∫ xi+1

xi+1/2

A(P t
i+1(x))

dP t
i+1

dx
(x) dx,

(6.14)

E−

i+1/2 = D̃−

i+1/2 +

∫ xi+1/2

xi

A(P t
i (x))

dP t
i

dx
(x) dx.

Using this notation, the following equality holds:

E+
i+1/2 + E−

i+1/2 =

∫ xi+1/2

xi

A(P t
i (x))

dP t
i

dx
(x) dx

+

∫ 1

0

A(Ψ(s; W−

i+1/2, W
+
i+1/2))

∂Ψ

∂s
(s; W−

i+1/2, W
+
i+1/2) ds(6.15)

+

∫ xi+1

xi+1/2

A(P t
i+1(x))

dP t
i+1

dx
(x) dx,

being Ψ the family of paths for which the first order numerical scheme is path-
conservative.

This latter equality can be understood as a path-conservation property similar
to (3.16), where now the path linking Wi(t) and Wi+1(t) is the composition of three
paths:

x ∈ [xi, xi+1/2] 7→ P t
i (x),(6.16)

linking Wi(t) and W−

i+1/2(t);

s ∈ [0, 1] 7→ Ψ(s; W−

i+1/2(t), W
+
i+1/2(t)),(6.17)

linking W−

i+1/2(t) and W+
i+1/2(t); and finally,

x ∈ [xi+1/2, xi+1] 7→ Pi+1(x),(6.18)
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linking W+
i+1/2(t) and Wi+1(t). Nevertheless, this family of paths does not depend

only on the states Wi(t) and Wi+1(t) (as it was the case in Definition 3.1) but on the
values at the stencil:

Wi−l(t), . . . , Wi+r(t).

The definition of well-balanced scheme can be easily extended for semi-discrete
methods (see [8]):

Definition 6.2. Let us consider a semi-discrete method for solving (2.1):





W ′
i = 1

∆xH(W(t); i), i ∈ Z,

W(0) = W0,
(6.19)

where W(t) = {Wi(t)} represents the vector of approximations to the cell averages of
the exact solution, and W0 = {W 0

i } is the vector of initial data. Let γ be a curve of
Γ. The numerical method (6.19) is said to be exactly well-balanced for γ if, given a
regular stationary solution W such that;

W (x) ∈ γ, ∀x ∈ R,

the vector W = {W (xi)}, where xi denotes the center of the cell Ii, is a critical point
for the system of differential equations (6.19), i.e.:

H(W; i) = 0, ∀i,

and it is said to be well-balanced with order k if:

H(W; i) = O
(
∆xk

)
, ∀i.

Finally, the semi-discrete method (6.19) is said to be exactly well-balanced or well-
balanced with order k if these properties are satisfied for every curve γ of the set
Γ.

We give hereafter two results concerning the well-balance property of this scheme
generalizing those presented in [8] for the particular case of Roe-based reconstruction
methods, but before we introduce a new definition.

Definition 6.3. The reconstruction operator is said to be exactly well-balanced
for a curve γ ∈ Γ if, given a sequence {Wi} in γ, the approximation functions satisfy

Pi(x; Wi−l, . . . , Wi+r) ∈ γ, ∀x ∈ [xi−1/2, xi+1/2],(6.20)

for every i.

Theorem 6.4. Let γ belong to Γ. Let us suppose that both the first order scheme
and the reconstruction operator are exactly well-balanced for γ. Then, the numerical
scheme (6.9) is also exactly well-balanced for γ.

Theorem 6.5. Under the hypothesis of Theorem 6.1, the scheme (6.9) is well-
balanced with order at least s̄ = min(s, s1 + 1, s2 + 1).

The proofs of these results are identical to the corresponding theorems stated in
[8].
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[6] F. Bouchut and F. James, One-dimensional transport equations with discontinuous coeffi-

cients, Nonlinear Anal. TMA, 32 (1998), pp. 891–933.
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[24] J. M. Greenberg, A. Y. LeRoux, R. Baraille, and A. Noussair, Analysis and approxima-

tion of conservation laws with source terms, SIAM J. Numer. Anal., 34 (1997), pp. 1980–
2007.

[25] P. G. LeFloch, Propagating phase boundaries; formulation of the problem and existence via

Glimm scheme, Arch. Rat. Mech. Anal., 123 (1993), pp. 153–197.
[26] P.G. LeFloch and A.E. Tzavaras, Representation and weak limits and definition of noncon-

servative products, SIAM J. Math. Anal., 30 (1999), pp. 1309–1342.
[27] R. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods:

the quasi-steady wave-propagation algorithm, J. Comp. Phys., 146 (1998), pp. 346–365.
[28] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univesity Press,

2002.
[29] C. Parés and M. J. Castro, On the well-balanced property of Roe’s method for nonconser-

vative hyperbolic systems. Applications to shallow water systems, ESAIM: M2AN, 38(5)
(2004), pp. 821–852.
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